JP4854886B2 - H-section steel excellent in straightness and toughness and its straightening method - Google Patents

H-section steel excellent in straightness and toughness and its straightening method Download PDF

Info

Publication number
JP4854886B2
JP4854886B2 JP2001270875A JP2001270875A JP4854886B2 JP 4854886 B2 JP4854886 B2 JP 4854886B2 JP 2001270875 A JP2001270875 A JP 2001270875A JP 2001270875 A JP2001270875 A JP 2001270875A JP 4854886 B2 JP4854886 B2 JP 4854886B2
Authority
JP
Japan
Prior art keywords
straightening
section
shaped steel
steel
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001270875A
Other languages
Japanese (ja)
Other versions
JP2003080317A (en
Inventor
忠継 吉田
茂 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2001270875A priority Critical patent/JP4854886B2/en
Publication of JP2003080317A publication Critical patent/JP2003080317A/en
Application granted granted Critical
Publication of JP4854886B2 publication Critical patent/JP4854886B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Straightening Metal Sheet-Like Bodies (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、H形鋼に関し、特に、材料全体で均一な機械特性を有する強度および靭性に優れるH形鋼およびその矯正方法に関する。
【0002】
【従来の技術】
近年、人口密度が高い都市部を中心に、建築物の高層化が指向されており、それにともない震災時の安全性を考慮し、耐震性に優れる建築構造および鋼材の開発が求められている。
【0003】
このような背景から、高層建築物の鋼構造部の骨組みに使用されているH形鋼の強度などの機械的特性が建物用鋼構造物の耐震性を決める上で重要な因子となっている。
【0004】
H形鋼などの形鋼製品は、その断面形状が複雑であるためそれを熱間圧延する場合には、各部位によって圧延または冷却条件が異なり、その組織および機械的特性のばらつきが生じる場合がある。
【0005】
また、H形鋼などの形鋼の製造技術においては、長手方向にわたる各部位の寸法精度および真直性の確保が重要な課題であり、高い寸法精度および真直性の形鋼製品を得るためには、熱間圧延のみで製造するのは限界があるため、通常、圧延後に、圧延材を、さらに冷間または温間で矯正することにより、形鋼製品の高い寸法精度および真直性を確保しているが、従来、特にH形鋼を矯正する方法において、その断面形状に起因して、以下のような局部的な機械的特性の劣化が生じやすく、耐震性を劣化させる要因となっていた。
【0006】
従来のH形鋼の矯正方法は、特開昭50−125851号公報に代表されるように、図7に示すように、パスライン(形鋼の搬送方向)に沿って上下または左右に千鳥状に、矯正ロール2を配設したローラーレベラーを用い、後段になる程、曲げの曲率が斬減するように、各矯正ロールのパスラインに対する押し込み位置を調節して、被矯正材(H形鋼)6の繰り返し曲げをおこなうことにより、矯正を行う方法が一般的であった。
【0007】
このローラーレベラーによる矯正方法は、比較的コンパクトな設備ですみ、また、一旦、適正条件に設定すれば無人運転が可能なため導入しやすい特徴があるが、以下の問題があった。
【0008】
つまり、特開昭50−125851号公報に開示された矯正方法では、図8(a)、図8(b)に示す上下に配置された矯正ロール2a,2bで、被矯正材であるH形鋼6のウェブ部61のフランジ62,62’部近傍2箇所を、上方または下方の何れか一方から形鋼のパスラインに近づく方向に、直接押し込むことで形鋼の上下曲がりを矯正するものである。その際、矯正ロール2a,2bの荷重をPとすると、H形鋼6のウェブ61とフランジ62,62’との接続部近傍(コーナー部、○で示した領域)2箇所にそれぞれP/2づつの荷重が負荷され、せん断応力として作用する。
【0009】
このウェブ61とのフランジ62,62’との接続部近傍に作用するせん断応力が、H形鋼6の降伏応力を超えるまで大きくなると、せん断塑性ひずみが発生し、常温状態で硬度が上昇(加工硬化)し、他の部分に比べて脆くなり靭性が低下する傾向となる。
【0010】
一方、近年、H形鋼の軽量化に伴うウェブの薄肉化の指向により、このようなH形鋼の矯正におけるウェブ部とフランジ部との接続部近傍(コーナー部)の局部的な加工硬化、およびそれに起因する靭性の低下が、発生しやすくなる傾向にあり、建築用鋼構造に用いるH鋼形の耐震性を劣化させる要因となっている。また、このような矯正方法により、さらに過酷な条件で矯正する場合には、図9(a)、図9(b)に示すように形鋼のウェブ部とフランジ部との接続部近傍(コーナー部)に凹み疵64(図9(a))が発生したり、あるいは割れ疵65(図9(b))が発生し易くなるという問題点も生じる。
【0011】
また、上記問題を改善するために、特開昭52−50958号公報には、図10に示すように、複数の上ロールと下ロールとを交互に配置した矯正装置において、その上下ロールがウェブ矯正用ロール3,3’とフランジ先端矯正用ロール4,4’とからなり、ウェブ矯正用ロール3,3’を互いに間隔をおいて取り付けた矯正機軸に、内径が矯正機軸に対して大きく、矯正機軸間に適度の間隔を得るように配置されたフランジ先端矯正用ロール4,4’を、回転伝達用歯を有するカラー(図示せず)を介して回転可能に取付け、かつ、このフランジ先端矯正用ロール4,4’の背方には、バックアップロール(図示せず)を介してフランジ先端に圧下するためのバックアップロール装置を設けたことを特徴するH形鋼の矯正装置が開示され、H形鋼6のウェブ部61の上方および下方の何れか一方から圧下すると同時に、H形鋼6の寸法変動に追従して同じ方向からフランジ62,62’の端部を圧下することにより、H形鋼6のウェブ部61とフランジ62,62’とのコーナー部のせん断応力を低減し、それに起因する局部割れ疵や凹み疵および材質劣化を防止することが開示されている。
【0012】
しかし、特開昭52−50958号公報に開示の方法および装置では、ローラーレベラーを構成する複数の矯正ロール(通常7本以上)にバックアップロール装置を取り付けた複雑な装置となるため、設備コストおよびメンテナンスコストが増加するとともに、複雑なバックアップロールの調整が難しいという問題がある。
【0013】
【発明が解決しようとする課題】
前記のように、従来のH形鋼をローラーレベラーで矯正する方法では、繰り返し曲げ作用を用いるために、H形鋼のウェブ部とフランジ部との接続部(コーナー部)近傍にせん断塑性歪みが集中することにより、加工硬化およびそれに起因した靭性劣化が生じやすいという問題があった。
【0014】
特開昭52−50958号公報に開示されたH形鋼のウェブ部とフランジ部を同時に圧下してウェブ部とフランジ部との接続部(コーナー部)近傍のせん断塑性歪みの集中を低減するH形鋼のローラーレベラーによる矯正方法は、特定の条件下では有効であるが、軽量化のためにウェブ厚を薄肉化したH形鋼や、真直性の要求が厳しいH形鋼を矯正する場合には、その効果は充分ではなく、ウェブ部とフランジ部との接続部(コーナー部)近傍へのせん断塑性歪みの集中による加工硬化およびそれに起因した靭性劣化の問題があった。
【0015】
本発明は、これらの従来技術の問題点に鑑みて、従来のローラーレベラーによる繰り返し曲げ作用を用いた矯正方法に代わる、長手方向全長における真直性に優れるとともに、長手方向に直角な直断面において均一なひずみ履歴が得られ、局部的な加工硬化による靭性劣化のないH形鋼の矯正方法、及びそれによって得られる長手方向全長における真直性および靭性に優れたH形鋼、およびその矯正方法を提供することを目的とする。
【0016】
【課題を解決するための手段】
本発明は上記技術課題を解決するものであり、その要旨とするところは、以下の通りである。
(1)真直性および靭性に優れるH形鋼であって、圧延後の矯正工程で、該H形鋼の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、10%以下の延伸率で、その断面全体を塑性変形するように均一に圧下するとともに、該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該H形鋼に、曲げモーメントを負荷して矯正された、矯正後のH形鋼の長手方向に直角な断面内で、該H形鋼のフランジとウェブとの接続部近傍の材料硬度が、該H形鋼長手方向に直角な断面の平均硬度の1.2倍以下であることを特徴とする真直性および靭性に優れるH形鋼。
(2)真直性および靭性に優れるH形鋼であって、圧延後の矯正工程で、該H形鋼の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、
10%以下の延伸率で、その断面全体を塑性変形するように均一に圧下するとともに、
該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該H形鋼に、曲げモーメントと長手方向の張力とを負荷して矯正された、
矯正後のH形鋼の長手方向に直角な断面内で、該H形鋼のフランジとウェブとの接続部近傍の材料硬度が、該H形鋼長手方向に直角な断面の平均硬度の1.2倍以下であること
を特徴とする真直性および靭性に優れるH形鋼。
)真直性および靭性に優れるH形鋼の矯正方法であって、
圧延後の矯正工程で、該H形鋼の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、
10%以下の延伸率で、その断面全体を塑性変形するように均一に圧下するとともに、
該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該H形鋼に、曲げモーメントを負荷することを特徴とする真直性および靭性に優れるH形鋼の矯正方法。
)真直性および靭性に優れるH形鋼の矯正方法であって、
圧延後の矯正工程で、該H形鋼の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、
10%以下の延伸率で、その断面全体を塑性変形するように均一に圧下するとともに、
該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該H形鋼に、曲げモーメントと長手方向の張力とを負荷することを特徴とする真直性および靭性に優れるH形鋼の矯正方法。
【0017】
【発明の実施の形態】
本発明について以下に説明する。
【0018】
図1は、H形鋼の長手方向に直角な断面の硬度分布を示す図であり、(a)は本発明のH形鋼の場合、(b)は従来技術であるローラーレベラー矯正後のH形鋼の場合である。なお、以下において断面とは、H形鋼の長手方向に直角な断面を指すものとする。図1(b)に示すように、ローラーレベラー矯正により局部的にひずみが集中するH形鋼のフランジとウェブとの接続部近傍の材料の硬度は、長手方向に直角な断面の平均硬度より大であり、平均硬度の1.2倍を超える領域がウェブ厚を貫通して存在する。さらにその領域内で、ウェブ表面近傍領域の硬度は、平均硬度の1.4倍以上に達する。このH形鋼を低温環境で耐震試験すると、ウェブ表面の最硬化部を起点に脆性破壊が生じやすいことが判明した。
【0019】
一般に、鋼などの金属材料は加工硬化により材料の強度が増加し、逆に延性が低下する。発明者らは、部分的に加工硬化した種々の材料の機械特性試験を実施して、図1(a)に示すように、硬化部、H形鋼のフランジとウェブとの接続部近傍(図1(a)の丸で囲んで例示した領域)の硬度が長手方向に直角な断面内の平均硬度の1.2倍以下であれば延性の劣化が少なく、1.1倍以下では事実上、局部的な延性低下は問題にならないことを知見した。すなわち、本発明は矯正後のH形鋼の長手方向に直角な断面内で、このH形鋼のフランジとウェブとの接続部近傍の材料の硬度、少なくともウェブ側の接続部近傍の材料硬度を、このH形鋼の長手方向に直角な断面の平均硬度の1.2倍以下とするものである。更に、本発明は、軽圧下を特徴とする矯正方法により、図1(a)に示す硬度分布のH形鋼を製造可能とするものである。すなわち、圧延後の矯正工程でH形鋼の長手方向に直角な断面全体を塑性変形させうる圧延機を用いて10%以下の延伸率で圧下すると共に、該圧延機の出側と入側のいづれか一方又は両方に設けたピンチロールにより、塑性変形中のH形鋼に所定の曲げモーメントと長手方向の張力とを負荷するものである。この矯正により、矯正後のH形鋼の長手方向に直角な断面内で、H形鋼のフランジとウエブとの接続部近傍の材料硬度を、H形鋼の長手方向に直角な断面内の平均硬度の1.2倍以下とすることができる。
【0020】
図2は、本発明のH形鋼の矯正方法に使用する設備の基本構成を示す図であり、圧延工程で所定の断面寸法に成形されたH形鋼50が、入側自在ピンチロール列52とユニバーサル圧延機51および出側自在ピンチロール列53を通過している状況を示す。
【0021】
図3は、図2で圧延中のH形鋼と圧延機のロールとの位置関係を示す垂直断面図である。H形鋼50は、ユニバーサル圧延機51の上下の水平ロール54,54’と左右の竪ロール55,55’とにより挟み込まれて、断面全体が同時に圧下されることにより、断面全体に塑性変形を受けており、H形鋼は、所定の断面寸法に矯正成形される。その際、水平ロールは、H形鋼のウェブを上下から挟み込む方式なので、各水平ロールからH形鋼へ負荷される圧延荷重は、ウェブで上下方向に釣り合うことにより相殺される。そのため、ウェブとフランジとの接続部近傍にはせん断力が作用せず、局部的なせん断ひずみの発生や材質の劣化などの問題が無い。このようにH形鋼の断面全体を塑性変形させうる圧延機としてユニバーサル圧延機を用いた矯正装置は、極めて有用である。
【0022】
また、矯正圧延の延伸率を10%以下と規定しているのは、延伸率を10%以下とすることで、矯正時のフランジとウェブとの接続部近傍の硬度の上昇を十分に抑制でき、これを長手方向に直角な断面の平均硬度の1.2倍以下とすることができること、これ以上の延伸を生じるとH型鋼の断面形状の変化が大きくなり、狙いの形状に制御し難いことと、圧延反力が大きくなって装置が大型化し、設備コストの増大を招くことなどのためである。
【0023】
図4は、従来方式のローラーレベラーによる矯正と本発明の矯正とによるH形鋼の変形特性を比較するために導入したモデル図である。図4(a)は従来方式のローラーレベラー矯正におけるH形鋼および矯正ロールの一部を示す図で、B’点、A点およびB点は、それぞれ矯正ロール72,71および73とH形鋼50との接触部であり、B点は、押し込み量ΔだけH形鋼50を押し込む位置に設定されている。そのため、H形鋼50は、下に凸な曲げ矯正を受けるので、B点には矯正の反力が発生する。
【0024】
図4(b)は、本発明の矯正におけるH形鋼およびロールを示す図で、B’,B点は、それぞれ入側ピンチロール57’,57および出側のピンチロール59’,59とH形鋼50との接触部に対応し、A,A’点はユニバーサル圧延機のロール55,55’とH形鋼50との接触部に対応する。この場合もB点は押し込み量ΔだけH形鋼50を押し込む位置に設定されている。そのため、H形鋼50は下に凸な曲げ矯正を受けるので、B点には矯正の反力が発生する。その際、ロール55,55’によりH形鋼50を圧下量uだけ圧延するので、圧下量uの変化に伴ってB点の反力も変化する。また、ピンチロール57,57’または59,59’が回転駆動してH形鋼50を引っ張るので、矯正効果が生じるAおよびA’近傍のH形鋼の長手方向に張力が作用する(図4(b)の左右の矢印の方向)。このようにして、塑性変形中のH形鋼に所定の曲げモーメントおよび、さらには、長手方向の張力を負荷することができる。なお、矯正のために負荷する所要の曲げモーメントおよび、さらには長手方向の張力は、被矯正材としてのH形鋼の変形状態、延伸率などを勘案して設定することができる。負荷する張力は、大きい程スプリングバック低減効果があるので好ましいが、過度に大きな張力負荷は、ピンチロールの設備コストの増加を招くので、その費用対効果を考慮して設定する必要がある。一般に形鋼の変形抵抗の10%程度の張力を負荷できれば、顕著な効果が認められる。
【0025】
図5は、図4のモデルに関して弾塑性有限要素解析により得られた結果で、ローラーレベラー矯正と本発明の強制とにおける矯正反力を比較した図である。縦軸は、図4(a)および図4(b)で矯正によりピンチロールのB点に作用する反力、横軸は、A及びA’点における圧延の圧下率である。横軸が0の場合は、圧延を施さず曲げ矯正する場合なので、図4(a)に対応しており、この場合に矯正反力が最大値となる。また、圧延における圧下率が増加するに従って矯正反力が単調に減少する。これは、図4(b)で矯正圧延の圧下により既に降伏状態にあるロールバイト内の材料、即ちA点及びA’点を含むH型鋼の断面(形鋼の長手方向に対して直角な断面)近傍の材料に対して、ピンチロール59’の反力に起因する曲げ応力が重畳する状態となるため、圧延圧下率の増加により降伏域が拡大するほどB点の反力が減少するものと理解される。また、さらには、ピンチロールによる張力が重畳することにより更に降伏しやすくなるので、張力の作用により、B点の矯正反力が図5の矢印のように低下する。本発明の技術では、従来技術に比べて矯正による残留応力が低減されるので、矯後の除荷によるスプリングバック量が大幅に減少し、高精度の矯正が可能である。
【0026】
以上より、真直で強度および靭性に優れるH形鋼が製造可能である。
【0027】
図2は、本発明の矯正方法に使用する矯正装置の一実施形態を示すが、ユニバーサル圧延機51の入側および出側に、H形鋼の送り方向に対して上下、左右の移動と、時計および反時計方向の軸の回転により上下、左右および傾斜の各位置決めが可能な自在ピンチロール列52,53を配置する基本構成となっている。このピンチロールの位置決めにより、塑性変形中のH形鋼に、所要の曲げモーメントを与えることができる。ピンチロールの移動、軸の回転などは、油圧式又は電動式などのアクチュエータなどを適宜設けて行なうことができる。自在ピンチロール列に関しては、入側、出側の何れか一方だけでもかまわないが、ピンチロール列の少なくとも1対以上のピンチロールは、回転駆動される。この回転駆動によって、圧延機とピンチロールとの間にある塑性変形中のH形鋼に対して、さらに、長手方向の張力を負荷することができる。この張力の調整は、ピンチロールの回転駆動を制御することによって可能である。なお、ピンチロールの圧下力を大きくしたり、回転速度制御するピンチロールの数を増やしたりしてピンチロールとH形鋼との間の摩擦力を確保することにより、負荷する張力を調整することも好ましい。
【0028】
【実施例】
図6は、素材を圧延、矯正して、H形鋼を製造する工程を示した図である。
【0029】
図2に示す矯正装置を、図6に示す一般的なH形鋼圧延矯正工程のローラーレベラー矯正機とリプレースし、表1に示す条件で両者の能力を比較した。また、各種の特性に関する評価結果を表1に示す。
【0030】
先ず、ローラーレベラー矯正機ではロールの押し込み量を入側で大きく、出側にいくに従って小さくする基本設定で、H形鋼定常部の曲がりを矯正することが出来た。しかし、H形鋼の端部に関しては、公差を外れる場合がかなりの頻度で見られた。これらの公差外れのH形鋼は、生産性の極めて低いプレス装置で矯正するか、歩留落ちを前提に、端部を切断除去することで救済せざるを得なかった。
【0031】
また、ローラーレベラー矯正後のH形鋼の全長、特にプレス矯正を施した部位は、H形鋼を長手方向に直角に切断した際に、切断面近傍で断面形状がスプリングバックにより変化して公差から外れる場合が観察された。
【0032】
また、矯正後のH形鋼を長手方向に直角に複数箇所切断して、断面内のビッカース硬度分布を測定した。その結果、図1(b)に示すように、ウェブとフランジとの接続部近傍の硬度が、他の部分に比べて大きいことが判明した。特に、サイズが大きくウェブ肉厚が小さいH形鋼では、その部分の硬度増加が顕著で、そのため、局部的に延性が不足する場合が見られた。
【0033】
更に、真直性に関しては、先後端に関して曲がりが矯正されないことが判明した。
【0034】
これは、ローラーレベラー矯正の原理から、矯正機のロール間隔程度の先後端部に矯正モーメントが作用しないため、回避出来ない。
【0035】
一方、本発明の方法では、表1に示す実施例において、H形鋼の両端部を含めてほぼ目標公差に入ることが判明した。また、H形鋼の端部を含めて、何れの場所で長手方向に直角に切断しても断面形状の大きな変化は見られなかった。更に、ローラーレベラーで矯正しにくい捩れ不良に関しても、矯正出来ることが確認された。
【0036】
また、長手方向に直角に複数箇所切断した断面の硬度分布を測定したが、何れの場合にも、図1(a)に示すように、フランジとウェブとの接続部近傍の材料硬さは、このH形鋼の断面の平均硬さの1.2倍以下であり、顕著な硬度差は観察されなかった。そのため、延性に関しても目標を満足していた。
【0037】
更に、真直性に関しては、全長に渡って良好な真直度であり、そのまま製品となることが判明した。
【0038】
以上の結果から、本発明の方法が寸法精度で従来のローラーレベラーを完全に代替出来ることが判明した。また、ローラーレベラーで矯正しにくい捩れ不良に関しても、矯正出来ることが確認された。
【0039】
【表1】

Figure 0004854886
【0040】
以上は、図6のH形鋼圧延矯正工程の場合であるが、本発明の技術は熱間矯正、温間矯正、冷間矯正など幅広い工程に適用可能である。
【0041】
【発明の効果】
本発明は、均一変形性に優れた圧延矯正方法と、不均一変形ではあるが形状制御性の良い曲げ矯正方法とを適切に組み合わせて、両者の欠点を補うとともに、その長所を十分発揮させるようにしたことにより、従来の矯正方法では達成が極めて困難な真直で靭性に優れるH形鋼を製造することが可能となった。
【0042】
本発明は、H形鋼の形状、材質に制限されることなく、各種のH形鋼に適用することが可能であり、いずれも耐久性、真直性に優れたH形鋼を得ることができる。
【図面の簡単な説明】
【図1】H形鋼の長手方向に直角な断面を示す図であり、図1(a)は本発明のH形鋼、図1(b)は従来技術のH形鋼の場合をそれぞれ示す。
【図2】本発明の矯正方法における矯正装置の基本構成を示す図である。
【図3】本発明の技術に関するH形鋼と圧延機のロールとの位置関係を示す垂直断面図である。
【図4】従来技術と本発明の技術の矯正特性を比較するモデルを示す図であり、図4(a)はローラーレベラーの、図4(b)は本発明の技術におけるモデルをそれぞれ示す。
【図5】図4のモデルにより求めた矯正反力と圧延圧下率との関係を示す図である。
【図6】H形鋼の圧延および矯正工程を示す図である。
【図7】従来の矯正技術を示す図である。
【図8】従来の矯正技術を示す図であり、図8(a)は上ロールの、図8(b)は下ロールの図を示す。
【図9】従来の矯正技術により矯正されたH形鋼を示す図であり、図9(a)は凹み疵、図9(b)は割れ疵の発生状況をそれぞれ示す図である。
【図10】従来の矯正技術を示す図である。
【符号の説明】
1…H形鋼
2,2a,2b…ローラーレベラーの矯正ロール
3,3’…ウエブ矯正用ロール
4,4’…フランジ先端矯正用ロール
6…被矯正材(H形鋼)
50…H形鋼
51…ユニバーサル圧延機
52…入側ピンチロール列
53…出側ピンチロール列
54,54’…ユニバーサル圧延機の水平ロール
55,55’…ユニバーサル圧延機の竪ロール
56,56’…入側ピンチロール列の水平ピンチロール
57,57’…入側ピンチロール列の竪ピンチロール
58,58’…出側ピンチロール列の水平ピンチロール
59,59’…出側ピンチロール列の竪ピンチロール
61…H形鋼のウエブ
62,62’…H形鋼のフランジ
64…ウエブとフランジとの接続部近傍の凹み疵
65…ウエブとフランジとの接続部近傍の割れ疵
71,72,73…ローラーレベラーの矯正ロール[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an H-section steel, and more particularly to an H-section steel having uniform mechanical properties throughout the material and excellent in strength and toughness and a method for correcting the same.
[0002]
[Prior art]
In recent years, high-rise buildings have been oriented mainly in urban areas where population density is high, and accordingly, development of building structures and steel materials with excellent earthquake resistance are required in consideration of safety in the event of an earthquake. .
[0003]
Against this background, mechanical properties such as the strength of the H-shaped steel used in the framework of the steel structure of high-rise buildings are important factors in determining the earthquake resistance of building steel structures. .
[0004]
Shaped steel products such as H-section steel have a complicated cross-sectional shape, so when hot-rolling it, the rolling or cooling conditions differ depending on the part, and the structure and mechanical properties may vary. is there.
[0005]
In addition, in the manufacturing technology of shape steel such as H-section steel, securing dimensional accuracy and straightness of each part in the longitudinal direction is an important issue. To obtain a shaped steel product with high dimensional accuracy and straightness Since there is a limit to manufacturing only by hot rolling, usually, after rolling, the rolled material is further corrected cold or warm to ensure high dimensional accuracy and straightness of the shaped steel product. However, in the past, particularly in the method of straightening H-section steel, the following local mechanical characteristics are likely to be deteriorated due to the cross-sectional shape, and this has been a factor that deteriorates the earthquake resistance.
[0006]
As shown in FIG. 7, a conventional straightening method for H-section steel is staggered vertically or horizontally along a pass line (conveying direction of the section steel) as shown in Japanese Patent Application Laid-Open No. 50-125851. In addition, by using a roller leveler provided with the straightening rolls 2 and adjusting the pushing position of each straightening roll with respect to the pass line so that the curvature of bending decreases as the latter stage, the material to be straightened (H-shaped steel) ) The method of correcting by repeating bending of 6 was common.
[0007]
This straightening method using a roller leveler is a relatively compact facility, and once it is set to appropriate conditions, it is easy to introduce because unattended operation is possible, but it has the following problems.
[0008]
That is, in the correction method disclosed in Japanese Patent Application Laid-Open No. 50-125851, the correction rolls 2a and 2b shown in FIGS. 8 (a) and 8 (b) are arranged in an H shape that is a material to be corrected. It is to correct the vertical bending of the shape steel by directly pushing the two locations near the flanges 62 and 62 'of the web portion 61 of the steel 6 in the direction approaching the path line of the shape steel from either the upper side or the lower side. is there. At that time, assuming that the load of the straightening rolls 2a and 2b is P, P / 2 is provided at two locations in the vicinity of the connecting portion (corner portion, region indicated by ○) between the web 61 of the H-section steel 6 and the flanges 62 and 62 ′. Each load is loaded and acts as a shear stress.
[0009]
When the shear stress acting in the vicinity of the connection portion between the web 61 and the flanges 62 and 62 ′ increases until it exceeds the yield stress of the H-section steel 6, shear plastic strain occurs and the hardness increases at room temperature (working) Hardened) and tend to be brittle compared to other parts, resulting in a decrease in toughness.
[0010]
On the other hand, in recent years, the local work hardening in the vicinity of the connecting portion (corner portion) between the web portion and the flange portion in the straightening of the H-shaped steel due to the thinning of the web accompanying the weight reduction of the H-shaped steel. And the toughness fall resulting from it tends to occur easily, and is a factor that deteriorates the earthquake resistance of the H steel shape used for the steel structure for construction. Further, in the case of correcting under more severe conditions by such a correction method, as shown in FIGS. 9 (a) and 9 (b), in the vicinity of the connecting portion between the web portion of the shape steel and the flange portion (corner) There is also a problem that a dent 64 (FIG. 9A) is generated in the portion or a crack 65 (FIG. 9B) is likely to be generated.
[0011]
In order to improve the above problem, Japanese Patent Laid-Open No. 52-50958 discloses a straightening device in which a plurality of upper rolls and lower rolls are alternately arranged as shown in FIG. It consists of straightening rolls 3 and 3 'and flange tip straightening rolls 4 and 4', and the straightening machine shaft with the web straightening rolls 3 and 3 'mounted at a distance from each other has an inner diameter larger than the straightening machine axis. Flange tip straightening rolls 4 and 4 ′ arranged so as to obtain an appropriate interval between the straightening machine shafts are rotatably mounted via a collar (not shown) having rotation transmission teeth, and the flange tip On the back of the straightening rolls 4 and 4 ', an H-shaped steel straightening device is disclosed, which is provided with a backup roll device for rolling down the flange tip via a backup roll (not shown), H type 6, the ends of the flanges 62, 62 ′ are pressed down from the same direction following the dimensional variation of the H-section steel 6. It is disclosed that the shear stress at the corner portion between the web portion 61 and the flanges 62 and 62 ′ is reduced, and local cracks and dents and material deterioration due to the shear stress are prevented.
[0012]
However, in the method and apparatus disclosed in Japanese Patent Laid-Open No. 52-50958, a complicated apparatus in which a backup roll apparatus is attached to a plurality of straightening rolls (usually 7 or more) constituting a roller leveler is required. There are problems that maintenance costs increase and it is difficult to adjust complicated backup rolls.
[0013]
[Problems to be solved by the invention]
As described above, in the conventional method of correcting the H-shaped steel with the roller leveler, shear plastic strain is generated in the vicinity of the connection portion (corner portion) between the web portion and the flange portion of the H-shaped steel in order to use the repeated bending action. Concentration has a problem that work hardening and toughness deterioration due to the work tend to occur.
[0014]
H which reduces the concentration of shear plastic strain in the vicinity of the connecting portion (corner portion) between the web portion and the flange portion by simultaneously reducing the web portion and the flange portion of the H-section steel disclosed in JP-A-52-50958. The straightening method using a roller leveler for shape steel is effective under certain conditions, but it is used to straighten H-section steel with a reduced web thickness for weight reduction and H-section steel with strict requirements for straightness. However, the effect was not sufficient, and there was a problem of work hardening due to the concentration of shear plastic strain in the vicinity of the connection portion (corner portion) between the web portion and the flange portion, and toughness deterioration resulting therefrom.
[0015]
In view of these problems of the prior art, the present invention is superior in straightness in the entire length in the longitudinal direction to replace the straightening method using the repeated bending action by the conventional roller leveler, and is uniform in a straight section perpendicular to the longitudinal direction. Of straightening and toughness in the longitudinal length and the straightening method and the straightening method of the H-shaped steel with a long strain history and no toughness deterioration due to local work hardening The purpose is to do.
[0016]
[Means for Solving the Problems]
The present invention solves the above technical problems, and the gist thereof is as follows.
(1) An H-section steel having excellent straightness and toughness , which is 10% or less using a rolling mill capable of plastically deforming the entire cross section perpendicular to the longitudinal direction of the H-section steel in the straightening process after rolling. With the draw ratio, the entire cross-section is uniformly reduced so as to be plastically deformed, and the pinch roll provided on one or both of the exit side and the entrance side of the rolling mill is used to deform the H-section steel being plastically deformed. In the cross section perpendicular to the longitudinal direction of the H-shaped steel after straightening, which is straightened by applying a bending moment, the material hardness in the vicinity of the connection between the flange of the H-shaped steel and the web is An H-section steel excellent in straightness and toughness, characterized in that the average hardness of a cross section perpendicular to the direction is 1.2 times or less.
(2) An H-section steel excellent in straightness and toughness, using a rolling mill capable of plastically deforming the entire cross section perpendicular to the longitudinal direction of the H-section steel in the straightening process after rolling,
With a stretching ratio of 10% or less, while uniformly rolling down the entire cross section so as to be plastically deformed,
The pinch roll provided on either or both of the outlet side and the inlet side of the rolling mill was corrected by applying a bending moment and a longitudinal tension to the H-shaped steel during plastic deformation,
Within the cross section perpendicular to the longitudinal direction of the H-shaped steel after straightening, the material hardness in the vicinity of the connection portion between the flange and the web of the H-shaped steel is 1. 2 times or less
H-section steel with excellent straightness and toughness.
( 3 ) A method for straightening H-section steel having excellent straightness and toughness,
Using a rolling mill that can plastically deform the entire cross section perpendicular to the longitudinal direction of the H-shaped steel in the straightening process after rolling,
With a stretching ratio of 10% or less, while uniformly rolling down the entire cross section so as to be plastically deformed,
H-shape excellent in straightness and toughness, characterized in that a bending moment is applied to the H-shaped steel during plastic deformation by a pinch roll provided on either or both of the exit side and the entry side of the rolling mill Steel straightening method.
( 4 ) A method for correcting H-section steel having excellent straightness and toughness,
Using a rolling mill that can plastically deform the entire cross section perpendicular to the longitudinal direction of the H-shaped steel in the straightening process after rolling,
With a stretching ratio of 10% or less, while uniformly rolling down the entire cross section so as to be plastically deformed,
Straightness characterized by applying a bending moment and a longitudinal tension to the H-shaped steel during plastic deformation by a pinch roll provided on one or both of the exit side and the entrance side of the rolling mill And straightening method of H-section steel excellent in toughness.
[0017]
DETAILED DESCRIPTION OF THE INVENTION
The present invention will be described below.
[0018]
FIG. 1 is a diagram showing the hardness distribution of a cross section perpendicular to the longitudinal direction of an H-section steel, where (a) is the H-section steel of the present invention, and (b) is H after the roller leveler correction, which is a prior art. This is the case of shape steel. In the following, the section refers to a section perpendicular to the longitudinal direction of the H-section steel. As shown in FIG. 1 (b), the hardness of the material in the vicinity of the connection portion between the flange of the H-section steel and the web where the strain is locally concentrated by the roller leveler correction is larger than the average hardness of the cross section perpendicular to the longitudinal direction. And an area exceeding 1.2 times the average hardness exists through the web thickness. Further, within that region, the hardness in the region near the web surface reaches 1.4 times or more of the average hardness. When this H-shaped steel was subjected to an earthquake resistance test in a low temperature environment, it was found that brittle fracture was likely to occur starting from the most hardened part of the web surface.
[0019]
In general, the strength of a metal material such as steel increases due to work hardening, and conversely, ductility decreases. The inventors conducted mechanical property tests on various materials that were partially work-hardened, and as shown in FIG. 1 (a), in the vicinity of the connection between the hardened portion, the flange of the H-shaped steel and the web (see FIG. 1 (a) circled region) is less than 1.2 times the average hardness in the cross section perpendicular to the longitudinal direction, the ductility is less deteriorated, and 1.1 times or less is practically It was found that local ductility reduction is not a problem. That is, according to the present invention, the hardness of the material in the vicinity of the connecting portion between the flange of the H-shaped steel and the web, at least the material hardness in the vicinity of the connecting portion on the web side, in the cross section perpendicular to the longitudinal direction of the straight H-shaped steel. The average hardness of the cross section perpendicular to the longitudinal direction of the H-shaped steel is 1.2 times or less. Furthermore, the present invention makes it possible to produce an H-section steel having a hardness distribution shown in FIG. 1 (a) by a correction method characterized by light reduction. That is, in a straightening process after rolling, a rolling mill capable of plastically deforming the entire cross section perpendicular to the longitudinal direction of the H-section steel is reduced at a drawing rate of 10% or less, and the outlet side and the inlet side of the rolling mill are A predetermined bending moment and a longitudinal tension are applied to the H-shaped steel during plastic deformation by a pinch roll provided on one or both of them. By this correction, the average material hardness in the cross section perpendicular to the longitudinal direction of the H-shaped steel is obtained by calculating the material hardness in the vicinity of the connection between the flange of the H-shaped steel and the web in the cross section perpendicular to the longitudinal direction of the H-shaped steel after the straightening. The hardness can be 1.2 times or less.
[0020]
FIG. 2 is a diagram showing the basic configuration of the equipment used in the method for straightening the H-section steel of the present invention. The H-section steel 50 formed into a predetermined cross-sectional dimension in the rolling process is an entry-side free pinch roll row 52. And the situation which has passed the universal rolling mill 51 and the exit side free pinch roll row | line | column 53 is shown.
[0021]
FIG. 3 is a vertical sectional view showing the positional relationship between the H-section steel being rolled in FIG. 2 and the rolls of the rolling mill. The H-section steel 50 is sandwiched between the upper and lower horizontal rolls 54 and 54 ′ and the left and right vertical rolls 55 and 55 ′ of the universal rolling mill 51, and the entire cross section is simultaneously pressed down, so that the entire cross section is plastically deformed. The H-shaped steel is straightened to a predetermined cross-sectional dimension. At that time, since the horizontal roll is a system in which the H-shaped steel web is sandwiched from above and below, the rolling load applied from each horizontal roll to the H-shaped steel is offset by balancing the web in the vertical direction. Therefore, the shear force does not act in the vicinity of the connection portion between the web and the flange, and there are no problems such as generation of local shear strain and deterioration of the material. Thus, a straightening device using a universal rolling mill as a rolling mill capable of plastically deforming the entire cross section of the H-section steel is extremely useful.
[0022]
In addition, the straightening rolling stretch rate is defined as 10% or less, and by setting the stretch rate to 10% or less, it is possible to sufficiently suppress an increase in the hardness in the vicinity of the joint between the flange and the web during straightening. , This can be less than 1.2 times the average hardness of the cross section perpendicular to the longitudinal direction, and if the elongation beyond this, the change in the cross-sectional shape of the H-shaped steel is large, it is difficult to control the target shape This is because the rolling reaction force increases, the apparatus becomes larger, and the equipment cost increases.
[0023]
FIG. 4 is a model diagram introduced in order to compare the deformation characteristics of the H-shaped steel by the correction by the conventional roller leveler and the correction of the present invention. FIG. 4A is a diagram showing a part of the H-shaped steel and the straightening roll in the conventional roller leveler straightening. The points B ′, A and B are the straightening rolls 72, 71 and 73 and the H-shaped steel, respectively. The point B is set at a position where the H-section steel 50 is pushed in by the pushing amount Δ. Therefore, since the H-section steel 50 is subjected to downward convex bending correction, a correction reaction force is generated at point B.
[0024]
FIG. 4 (b) is a view showing the H-section steel and roll in the straightening according to the present invention, and B ′ and B points are input side pinch rolls 57 ′, 57 and output side pinch rolls 59 ′, 59 and H, respectively. The points A and A ′ correspond to the contact portions between the rolls 55 and 55 ′ of the universal rolling mill and the H-section steel 50. Also in this case, the point B is set to a position where the H-section steel 50 is pushed by the pushing amount Δ. Therefore, since the H-section steel 50 is subjected to downward convex bending correction, a correction reaction force is generated at point B. At that time, since the H-section steel 50 is rolled by the rolling amount u by the rolls 55 and 55 ′, the reaction force at the point B also changes as the rolling amount u changes. Further, since the pinch rolls 57, 57 ′ or 59, 59 ′ are driven to rotate and pull the H-section steel 50, tension acts in the longitudinal direction of the H-section steel in the vicinity of A and A ′ where the correction effect occurs (FIG. 4). (The direction of the left and right arrows in (b)). In this way, a predetermined bending moment and further a longitudinal tension can be applied to the H-shaped steel during plastic deformation. It should be noted that the required bending moment and the longitudinal tension applied for correction can be set in consideration of the deformation state of the H-shaped steel as the material to be corrected, the stretch ratio, and the like. The larger the tension to be loaded, the better the effect of reducing the springback. However, an excessively large tension load increases the equipment cost of the pinch roll, so it is necessary to set it considering its cost effectiveness. In general, if a tension of about 10% of the deformation resistance of the shape steel can be applied, a remarkable effect is recognized.
[0025]
FIG. 5 is a diagram comparing the correction reaction force between the roller leveler correction and the compulsion of the present invention as a result obtained by the elasto-plastic finite element analysis with respect to the model of FIG. The vertical axis represents the reaction force acting on point B of the pinch roll by correction in FIGS. 4A and 4B, and the horizontal axis represents the rolling reduction rate at points A and A ′. When the horizontal axis is 0, since bending correction is performed without rolling, this corresponds to FIG. 4A, and in this case, the correction reaction force becomes the maximum value. Further, the straightening reaction force monotonously decreases as the rolling reduction in rolling increases. This is because the cross section of the H-shaped steel including the material in the roll bite which has already yielded due to the reduction of the straight rolling in FIG. 4B, that is, the point A and the point A ′ (the cross section perpendicular to the longitudinal direction of the section steel). ) Since the bending stress resulting from the reaction force of the pinch roll 59 'is superimposed on the nearby material, the reaction force at point B decreases as the yield zone increases due to an increase in rolling reduction. Understood. Furthermore, since the yield due to the tension applied by the pinch rolls is further increased, the correction reaction force at the point B decreases as shown by the arrow in FIG. The technique of the present invention, the residual stress due to correction in comparison with the prior art can be reduced, significantly reduced the amount of spring back due to unloading after矯positive, it is possible to correct with high accuracy.
[0026]
From the above, it is possible to produce an H-section steel that is straight and excellent in strength and toughness.
[0027]
FIG. 2 shows an embodiment of a straightening device used in the straightening method of the present invention. On the entry side and the exit side of the universal rolling mill 51, the vertical and horizontal movements with respect to the feed direction of the H-section steel, It has a basic configuration in which free pinch roll rows 52 and 53 that can be positioned up and down, left and right, and inclined by rotation of a clock and a counterclockwise shaft are arranged. By positioning the pinch roll, a required bending moment can be given to the H-shaped steel during plastic deformation. The movement of the pinch roll, the rotation of the shaft, and the like can be performed by appropriately providing a hydraulic or electric actuator or the like. With respect to the free pinch roll row, either the entry side or the exit side may be used, but at least one pair of pinch rolls in the pinch roll row is driven to rotate. By this rotational driving, a longitudinal tension can be further applied to the H-shaped steel that is being plastically deformed between the rolling mill and the pinch roll. The tension can be adjusted by controlling the rotational drive of the pinch roll. In addition, by adjusting the tension to be applied by increasing the rolling force of the pinch roll or increasing the number of pinch rolls for controlling the rotational speed to ensure the frictional force between the pinch roll and the H-section steel. Is also preferable.
[0028]
【Example】
FIG. 6 is a diagram showing a process of manufacturing H-shaped steel by rolling and straightening a material.
[0029]
The straightening device shown in FIG. 2 was replaced with a roller leveler straightening machine in a general H-shaped steel rolling straightening process shown in FIG. 6, and the capabilities of the two were compared under the conditions shown in Table 1. Table 1 shows the evaluation results regarding various characteristics.
[0030]
First, in the roller leveler straightening machine, the bending of the H-section steel steady part could be corrected with the basic setting that the roll push-in amount was large on the entry side and decreased as it went to the exit side. However, with regard to the end of the H-section steel, a case where it was out of tolerance was observed with considerable frequency. These out-of-tolerance H-shaped steels had to be remedied by correcting them with a press machine with extremely low productivity, or by cutting and removing the end portions on the premise of yield loss.
[0031]
Also, the overall length of the H-shaped steel after straightening the roller leveler, especially the part that has undergone press straightening, has a tolerance that changes when the H-shaped steel is cut at right angles to the longitudinal direction and the cross-sectional shape changes near the cut surface due to the springback. The case where it deviates from was observed.
[0032]
Further, the straightened H-section steel was cut at a plurality of positions at right angles to the longitudinal direction, and the Vickers hardness distribution in the cross section was measured. As a result, as shown in FIG.1 (b), it turned out that the hardness of the connection part vicinity of a web and a flange is large compared with another part. In particular, in the H-section steel having a large size and a small web thickness, the increase in the hardness of the portion was remarkable, and therefore, there was a case where the ductility was insufficient locally.
[0033]
Furthermore, with regard to straightness, it has been found that the bending of the front and rear ends is not corrected.
[0034]
This is unavoidable because of the principle of roller leveler correction, since the correction moment does not act on the front and rear ends of the straightening rolls.
[0035]
On the other hand, in the method of the present invention, it has been found that, in the examples shown in Table 1, the target tolerance including the both ends of the H-section steel is substantially within the target tolerance. Moreover, even if it cut | disconnected at right angles to the longitudinal direction in any place including the edge part of H-section steel, the big change of the cross-sectional shape was not seen. Furthermore, it was confirmed that it is possible to correct a torsional defect that is difficult to correct with a roller leveler.
[0036]
Moreover, although the hardness distribution of the cross section cut at a plurality of positions perpendicular to the longitudinal direction was measured, in any case, as shown in FIG. 1 (a), the material hardness in the vicinity of the connection portion between the flange and the web is The average hardness of the cross section of the H-shaped steel was 1.2 times or less, and no significant difference in hardness was observed. For this reason, the target for ductility was also satisfied.
[0037]
Furthermore, with regard to straightness, it has been found that the straightness is good over the entire length, and the product is used as it is.
[0038]
From the above results, it has been found that the method of the present invention can completely replace the conventional roller leveler with dimensional accuracy. In addition, it was confirmed that it is possible to correct a twisting defect that is difficult to correct with a roller leveler.
[0039]
[Table 1]
Figure 0004854886
[0040]
The above is the case of the H-shaped steel rolling straightening process of FIG. 6, but the technique of the present invention can be applied to a wide range of processes such as hot straightening, warm straightening, and cold straightening.
[0041]
【The invention's effect】
The present invention appropriately combines a rolling straightening method with excellent uniform deformability and a bending straightening method with non-uniform deformation but good shape controllability to make up for the disadvantages of both, and to fully demonstrate its advantages. As a result, it has become possible to produce a straight H-shaped steel with excellent toughness that is extremely difficult to achieve with conventional straightening methods.
[0042]
The present invention is not limited to the shape and material of the H-shaped steel, and can be applied to various H-shaped steels, and any H-shaped steel excellent in durability and straightness can be obtained. .
[Brief description of the drawings]
FIG. 1 is a view showing a cross section perpendicular to the longitudinal direction of an H-section steel, FIG. 1 (a) shows the case of the H-section steel of the present invention, and FIG. .
FIG. 2 is a diagram showing a basic configuration of a correction device in the correction method of the present invention.
FIG. 3 is a vertical sectional view showing a positional relationship between an H-section steel and a roll of a rolling mill related to the technique of the present invention.
FIG. 4 is a diagram showing a model for comparing the correction characteristics of the prior art and the technology of the present invention, FIG. 4 (a) shows a roller leveler, and FIG. 4 (b) shows a model in the technology of the present invention.
5 is a diagram showing the relationship between the correction reaction force obtained from the model of FIG. 4 and the rolling reduction ratio. FIG.
FIG. 6 is a diagram showing a rolling and straightening process of H-section steel.
FIG. 7 is a diagram showing a conventional correction technique.
8A and 8B are diagrams showing a conventional straightening technique, in which FIG. 8A shows an upper roll, and FIG. 8B shows a lower roll.
FIG. 9 is a view showing an H-shaped steel straightened by a conventional straightening technique, FIG. 9 (a) is a view showing the state of occurrence of dent flaws, and FIG.
FIG. 10 is a diagram showing a conventional correction technique.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... H-section steel 2, 2a, 2b ... Roller leveler straightening roll 3, 3 '... Web straightening roll 4, 4' ... Flange tip straightening roll 6 ... Material to be straightened (H-shaped steel)
DESCRIPTION OF SYMBOLS 50 ... H-section steel 51 ... Universal rolling mill 52 ... Entrance side pinch roll row | line | column 53 ... Outlet side pinch roll row | line | column 54, 54 '... Horizontal roll 55, 55' of a universal rolling mill ... Roll roll 56, 56 'of a universal rolling mill ... Horizontal pinch rolls 57 and 57 'in the entry side pinch roll row ... Pinch rolls 58 and 58' in the entry side pinch roll row Horizontal pinch rolls 59 and 59 'in the exit side pinch roll row ... Pinch roll 61 ... H-shaped steel web 62, 62 '... H-shaped steel flange 64 ... Recessed flange 65 in the vicinity of the connecting portion between the web and the flange 65 ... Cracking rod 71, 72, 73 in the vicinity of the connecting portion between the web and the flange ... Roller leveler straightening roll

Claims (4)

真直性および靭性に優れるH形鋼であって、
圧延後の矯正工程で、該H形鋼の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、
10%以下の延伸率で、その断面全体を塑性変形するように均一に圧下するとともに、
該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該H形鋼に、曲げモーメントを負荷して矯正された、
矯正後のH形鋼の長手方向に直角な断面内で、該H形鋼のフランジとウェブとの接続部近傍の材料硬度が、該H形鋼長手方向に直角な断面の平均硬度の1.2倍以下であること
を特徴とする真直性および靭性に優れるH形鋼。
H-section steel with excellent straightness and toughness,
Using a rolling mill that can plastically deform the entire cross section perpendicular to the longitudinal direction of the H-shaped steel in the straightening process after rolling,
With a stretching ratio of 10% or less, while uniformly rolling down the entire cross section so as to be plastically deformed,
The pinch roll provided on either or both of the outlet side and the inlet side of the rolling mill was corrected by applying a bending moment to the H-shaped steel during plastic deformation,
Within the cross section perpendicular to the longitudinal direction of the H-shaped steel after straightening, the material hardness in the vicinity of the connection portion between the flange and the web of the H-shaped steel is 1. An H-section steel excellent in straightness and toughness, characterized by being twice or less.
真直性および靭性に優れるH形鋼であって、
圧延後の矯正工程で、該H形鋼の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、
10%以下の延伸率で、その断面全体を塑性変形するように均一に圧下するとともに、
該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該H形鋼に、曲げモーメントと長手方向の張力とを負荷して矯正された、
矯正後のH形鋼の長手方向に直角な断面内で、該H形鋼のフランジとウェブとの接続部近傍の材料硬度が、該H形鋼長手方向に直角な断面の平均硬度の1.2倍以下であること
を特徴とする真直性および靭性に優れるH形鋼。
H-section steel with excellent straightness and toughness,
Using a rolling mill that can plastically deform the entire cross section perpendicular to the longitudinal direction of the H-shaped steel in the straightening process after rolling,
With a stretching ratio of 10% or less, while uniformly rolling down the entire cross section so as to be plastically deformed,
The pinch roll provided on either or both of the outlet side and the inlet side of the rolling mill was corrected by applying a bending moment and a longitudinal tension to the H-shaped steel during plastic deformation,
Within the cross section perpendicular to the longitudinal direction of the H-shaped steel after straightening, the material hardness in the vicinity of the connection portion between the flange and the web of the H-shaped steel is 1. An H-section steel excellent in straightness and toughness, characterized by being twice or less.
真直性および靭性に優れるH形鋼の矯正方法であって、
圧延後の矯正工程で、該H形鋼の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、
10%以下の延伸率で、その断面全体を塑性変形するように均一に圧下するとともに、
該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該H形鋼に、曲げモーメントを負荷することを特徴とする真直性および靭性に優れるH形鋼の矯正方法。
A straightening and toughness correcting method for H-section steel,
Using a rolling mill that can plastically deform the entire cross section perpendicular to the longitudinal direction of the H-shaped steel in the straightening process after rolling,
With a stretching ratio of 10% or less, while uniformly rolling down the entire cross section so as to be plastically deformed,
H-shape excellent in straightness and toughness, characterized in that a bending moment is applied to the H-shaped steel during plastic deformation by a pinch roll provided on either or both of the exit side and the entry side of the rolling mill Steel straightening method.
真直性および靭性に優れるH形鋼の矯正方法であって、
圧延後の矯正工程で、該H形鋼の長手方向に直角な断面全体を塑性変形させ得る圧延機を用いて、
10%以下の延伸率で、その断面全体を塑性変形するように均一に圧下するとともに、
該圧延機の出側と入側のどちらか一方または両方に設けたピンチロールにより、塑性変形中の該H形鋼に、曲げモーメントと長手方向の張力とを負荷することを特徴とする真直性および靭性に優れるH形鋼の矯正方法。
A straightening and toughness correcting method for H-section steel,
Using a rolling mill that can plastically deform the entire cross section perpendicular to the longitudinal direction of the H-shaped steel in the straightening process after rolling,
With a stretching ratio of 10% or less, while uniformly rolling down the entire cross section so as to be plastically deformed,
Straightness characterized by applying a bending moment and a longitudinal tension to the H-shaped steel during plastic deformation by a pinch roll provided on one or both of the exit side and the entrance side of the rolling mill And straightening method of H-section steel excellent in toughness.
JP2001270875A 2001-09-06 2001-09-06 H-section steel excellent in straightness and toughness and its straightening method Expired - Fee Related JP4854886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001270875A JP4854886B2 (en) 2001-09-06 2001-09-06 H-section steel excellent in straightness and toughness and its straightening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001270875A JP4854886B2 (en) 2001-09-06 2001-09-06 H-section steel excellent in straightness and toughness and its straightening method

Publications (2)

Publication Number Publication Date
JP2003080317A JP2003080317A (en) 2003-03-18
JP4854886B2 true JP4854886B2 (en) 2012-01-18

Family

ID=19096474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001270875A Expired - Fee Related JP4854886B2 (en) 2001-09-06 2001-09-06 H-section steel excellent in straightness and toughness and its straightening method

Country Status (1)

Country Link
JP (1) JP4854886B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106370332A (en) * 2016-08-18 2017-02-01 内蒙古包钢钢联股份有限公司 Method for detecting residual stress to cause section steel bending
CN106370331A (en) * 2016-08-18 2017-02-01 内蒙古包钢钢联股份有限公司 Method for establishing the detection model for residual stress to cause section steel bending

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5245573A (en) * 1975-10-08 1977-04-11 Sumitomo Metal Ind Method of producing shape steel with universal rolling mill
JPS59209424A (en) * 1983-05-11 1984-11-28 Sumitomo Metal Ind Ltd Straightening method of bend of shape steel
JPH0794044B2 (en) * 1990-05-30 1995-10-11 川崎製鉄株式会社 Variable width rolling roll
JPH0824953A (en) * 1994-07-13 1996-01-30 Nkk Corp Method for straightening wide flange shape steel by roller and device therefor
JPH09314235A (en) * 1996-05-23 1997-12-09 Nkk Corp Method and device for straightening shape steel
JP4132497B2 (en) * 1999-11-01 2008-08-13 新日本製鐵株式会社 Rail straightening device

Also Published As

Publication number Publication date
JP2003080317A (en) 2003-03-18

Similar Documents

Publication Publication Date Title
JP3531810B2 (en) Laura Leveler
CN110465561B (en) Hot-rolled strip steel flattening and straightening process
JP4854886B2 (en) H-section steel excellent in straightness and toughness and its straightening method
JPWO2003008121A1 (en) Cold rolling structure and cold rolling method
JP3802727B2 (en) Shape steel straightening method and apparatus
JP4626358B2 (en) Hat-type steel sheet pile claw bending device
JP3453958B2 (en) T-section steel manufacturing equipment
JP2003154410A (en) Method and device for straightening shape excellent in dimensional shape of cross section and straightness over entire length
JP3520646B2 (en) Manufacturing method for section steel
JP2976834B2 (en) Rolling channel manufacturing method
JP2004141925A (en) Method and device for bending shaped steel
JP3914742B2 (en) Straightening method for section steel with excellent cross-sectional dimensions and straightness
JP3183083B2 (en) Manufacturing equipment for cut T-section steel
JP2991066B2 (en) Roller straightening method for H-section steel
JPH09314235A (en) Method and device for straightening shape steel
JP3211709B2 (en) Manufacturing method of section steel
JPH09285801A (en) Method and equipment for manufacturing stainless steel shapes
JP2735411B2 (en) Forming method and equipment for large diameter square steel pipe
JP4355094B2 (en) Coarse universal rolling method for section steel with flange
RU2062152C1 (en) Strip metal straightening method
JP6586928B2 (en) Bending correction method and bending correction apparatus for linear steel sheet pile
JP4705283B2 (en) Rail with excellent durability and straightness and its correction method
JP5320969B2 (en) Pinch roll for width press in hot rolling line, width reduction method and hot rolling method of metal material using the same, and manufacturing method of hot rolled metal strip
JPH08215755A (en) Device for roller-straightening h-section
JP3612784B2 (en) Multi-roll straightening method and multi-roll straightening apparatus for shape steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100909

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111026

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4854886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141104

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees