JP3277261B2 - Method of forming catalyst film for exhaust gas purification - Google Patents

Method of forming catalyst film for exhaust gas purification

Info

Publication number
JP3277261B2
JP3277261B2 JP12819493A JP12819493A JP3277261B2 JP 3277261 B2 JP3277261 B2 JP 3277261B2 JP 12819493 A JP12819493 A JP 12819493A JP 12819493 A JP12819493 A JP 12819493A JP 3277261 B2 JP3277261 B2 JP 3277261B2
Authority
JP
Japan
Prior art keywords
exhaust gas
metal substrate
catalyst
film
ceramic carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12819493A
Other languages
Japanese (ja)
Other versions
JPH06315641A (en
Inventor
総一郎 宮崎
雅志 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP12819493A priority Critical patent/JP3277261B2/en
Publication of JPH06315641A publication Critical patent/JPH06315641A/en
Application granted granted Critical
Publication of JP3277261B2 publication Critical patent/JP3277261B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は自動車等の燃焼排ガスを
浄化するための排ガス浄化用触媒の皮膜形成法に関する
ものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming a film of an exhaust gas purifying catalyst for purifying a combustion exhaust gas of an automobile or the like.

【0002】[0002]

【従来の技術】従来から自動車や産業用燃焼装置から排
出される燃焼排ガスを浄化するため、金属基体上に形成
されたセラミック担体に、白金、パラジウムまたはロジ
ウム等の貴金属の排ガス浄化用触媒を被着した触媒装置
が使用されている。通常から排ガス浄化用触媒をセラミ
ック担体に被着し皮膜形成する方法として湿式法が採用
されている。この方法は触媒化合物を溶解または分散さ
せた溶液をセラミック担体上に塗布し、次いでこれを乾
燥させた後、焼成および水素による活性化等の工程を経
て触媒膜形成を行っている。
2. Description of the Related Art Conventionally, in order to purify combustion exhaust gas discharged from automobiles and industrial combustion devices, a ceramic carrier formed on a metal substrate is coated with a catalyst for purifying exhaust gas of a noble metal such as platinum, palladium or rhodium. A worn catalyst device is used. Conventionally, a wet method has been adopted as a method for forming a film by applying an exhaust gas purifying catalyst to a ceramic carrier. In this method, a solution obtained by dissolving or dispersing a catalyst compound is applied on a ceramic carrier, and then dried, and then a catalyst film is formed through steps such as firing and activation with hydrogen.

【0003】[0003]

【発明が解決しようとする課題】しかしながら上記の湿
式法による排ガス浄化用触媒の膜形成法は次のような問
題があった。すなわち、 (1) 触媒原料の塗布および乾燥工程に手間がかかる
上に、触媒層の厚みを調整したり均一な厚さの膜を形成
することが難しい。 (2) 湿式であるため作業環境が悪く、廃液処理を必
要とする。 (3) セラミック担体が複雑な形状の場合において
は、排ガス浄化用触媒の被膜形成が困難である。 そこで本発明は、かかる従来の排ガス浄化用触媒の被膜
形成法における問題の解決を課題とするものである。
However, the method for forming a film of an exhaust gas purifying catalyst by the above-mentioned wet method has the following problems. That is, (1) it takes time and effort to apply and dry the catalyst raw material, and it is difficult to adjust the thickness of the catalyst layer and to form a film having a uniform thickness. (2) The working environment is poor due to the wet type, and waste liquid treatment is required. (3) When the ceramic carrier has a complicated shape, it is difficult to form a film of the exhaust gas purifying catalyst. Therefore, an object of the present invention is to solve the problems in the conventional method for forming a coating film on an exhaust gas purifying catalyst.

【0004】[0004]

【課題を解決するための手段】前記課題を解決する本発
明の排ガス浄化用触媒皮膜の形成法は、凹凸曲折加工さ
れた薄い金属帯を巻回してなる金属基体を製造する工程
と、 次いで、気相法によりその巻回された状態の金属基
体の表面に厚さ数10μmのセラミック担体を形成させ
る工程と、 次いで、その金属基体表面に形成したセラミ
ック担体に気相法により排ガス浄化用触媒を被着する
程と、 を具備することを特徴とするものである。
According to the present invention, there is provided a method for forming a catalyst film for purifying an exhaust gas, comprising the steps of:
For manufacturing a metal substrate formed by winding a thin metal band
And then the metal substrate in the wound state by the gas phase method
Form a ceramic carrier with a thickness of several 10 μm on the surface of the body
That step and, then, Engineering depositing a catalyst for purifying an exhaust gas by a vapor phase method on a ceramic support which is formed on the metal substrate surface
And (2 ).

【0005】次に本発明を詳細に説明する。本発明に使
用する金属基体は、ステンレス薄鋼板のような排ガス雰
囲気中において耐久性を有する薄い金属板から作られ
る。また特開昭59−96726号公報に記載のアルミ
ニウム含有フェライトステンレス鋼のようなステンレス
合金の薄板を使用することもできる。このような金属板
の厚さは、加工性および形状保持性を有する範囲で適宜
選択されるが、通常0.05mm〜0.2mm程度の範
囲のものが使用される。金属基体は、通常その基体間に
排ガスの流通路を形成するように波形に曲折された金属
板と、平坦な金属板とが重ね合わされ、それらが巻回加
工されて渦巻き状にされたたものが使用される。
Next, the present invention will be described in detail. The metal substrate used in the present invention is made of a thin metal plate having durability in an exhaust gas atmosphere such as a stainless steel sheet. Further, a thin plate of a stainless alloy such as an aluminum-containing ferrite stainless steel described in JP-A-59-96726 can also be used. The thickness of such a metal plate is appropriately selected in a range having workability and shape retention, but is usually in the range of about 0.05 mm to 0.2 mm. A metal substrate is usually formed by laminating a flat metal plate with a corrugated metal plate that is bent in a corrugated manner so as to form an exhaust gas flow path between the substrates, and then winding them into a spiral shape. Is used.

【0006】金属基体の表面に被着されるセラミック担
体の原料としては、例えばアルミナ(Al2 3 )、ジ
ルコニア、マグネシア、ゼオライト等のセラミック微粉
を使用することができる。これらセラミック微粉の平均
粒径は100オングストローム〜0.5ミクロン程度の
範囲が好ましい。セラミック担体を金属基体の表面に被
着するには、湿式法、または気相法のいずれかの方法が
使用できる。本発明の方法においてゼオライト微粉を使
用する場合は、従来から採用されている湿式法、すなわ
ちゼオライト微粉を水に分散させてスラリー状とし、そ
れをスプレーまたは刷毛塗り等により金属基体上に塗布
し、乾燥した後、加熱して焼き付ける方法によりセラミ
ック担体を被着させることができる。また、ゼオライト
を超微粉化し、静電塗装方式等による乾式方法で金属基
体上に被着させることもできる。
[0006] As a raw material of the ceramic carrier to be deposited on the surface of the metal substrate, for example, ceramic fine powder such as alumina (Al 2 O 3 ), zirconia, magnesia and zeolite can be used. The average particle size of these ceramic fine powders is preferably in the range of about 100 Å to 0.5 μm. To apply the ceramic carrier to the surface of the metal substrate, either a wet method or a gas phase method can be used. In the case of using zeolite fine powder in the method of the present invention, a conventionally employed wet method, that is, disperse zeolite fine powder in water to form a slurry, and apply it on a metal substrate by spraying or brushing, etc. After drying, the ceramic carrier can be applied by a method of heating and baking. Further, zeolite can be made into ultrafine powder and applied on a metal substrate by a dry method such as an electrostatic coating method.

【0007】アルミナ、ジルコニア、マグネシア等のセ
ラミック微粉を使用する場合においては、湿式法によっ
ても金属基体に被着することができるが、PVD法(フ
ィジカル ベーパー デポジション法)またはCVD法
(ケミカル ベーパー デポジション法)等の気相法を
採用することが好ましい。PVD法としては真空蒸着法
やイオンプレーティング法があり、アルミナ、ジルコニ
ア、マグネシア等を被着する場合に適している。またC
VD法はアルミナの被着にも採用できる。これらの方法
による被着は、これら材料の被着に際して通常採用され
ている条件で行うことができる。
In the case of using ceramic fine powder such as alumina, zirconia, magnesia, etc., the powder can be applied to the metal substrate by a wet method. However, a PVD method (physical vapor deposition method) or a CVD method (chemical vapor deposition method) can be used. It is preferable to employ a gas phase method such as a position method. As the PVD method, there are a vacuum deposition method and an ion plating method, which is suitable for the case where alumina, zirconia, magnesia or the like is applied. Also C
The VD method can be used for depositing alumina. The deposition by these methods can be performed under the conditions usually employed when depositing these materials.

【0008】気相法によれば金属基体表面へのセラミッ
クの効果的な被着を行うことができる。例えば真空蒸着
法によりアルミナを被着する場合、10-3〜10-5To
rrの真空度範囲で金属基体上に緻密で比較的強く接合
されたセラミックの第一段階被着を行い、次いで第一段
階被着より低い10-2〜10-3Torrの真空度範囲
で、その上からポーラスなセラミックの第二段階被着を
行うことができる。このような方法によれば、金属基体
表面に強固に被着され且つ比表面積が著しく増大された
セラミック担体層を形成することができる。
According to the vapor phase method, it is possible to effectively deposit the ceramic on the surface of the metal substrate. For example, when depositing alumina by a vacuum deposition method, 10 −3 to 10 −5 To
performing a first stage deposition of a dense and relatively strongly bonded ceramic on a metal substrate in a vacuum range of rr, and then in a vacuum range of 10 -2 to 10 -3 Torr lower than the first stage deposition; A second stage deposition of a porous ceramic can be performed from above. According to such a method, it is possible to form a ceramic carrier layer which is firmly adhered to the surface of the metal substrate and whose specific surface area is significantly increased.

【0009】セラミック被着を気相法で行う場合は、複
雑な形状を有する金属基体であっても均一に且つ効率良
く被着することができる。例えば前述のように自動車用
の排ガス浄化触媒装置は排気管に取り付けられるような
筒状とされる。従って装置の筒状ケース内に触媒部をコ
ンパクトに収容するため、通常細長い金属板をコルゲー
ト加工した後、平坦な金属板を介して渦巻き状に密に巻
回した金属基体が使用される。そして排ガス流通路とさ
れたその巻回壁面間の片面もしくは両面に、セラミック
担体および触媒被膜が形成される。気相法によればこの
ような複雑な形状および配置関係を有する金属基体両面
に同時にセラミック担体を均一に被着させることができ
る。
When the ceramic is applied by a vapor phase method, even a metal substrate having a complicated shape can be applied uniformly and efficiently. For example, as described above, an exhaust gas purifying catalyst device for an automobile has a tubular shape that can be attached to an exhaust pipe. Therefore, in order to compactly accommodate the catalyst portion in the cylindrical case of the apparatus, a metal base is used which is usually formed by corrugating an elongated metal plate and then spirally and densely wound through a flat metal plate. Then, a ceramic carrier and a catalyst coating are formed on one or both surfaces between the winding wall surfaces serving as exhaust gas passages. According to the vapor phase method, the ceramic carrier can be simultaneously and uniformly applied to both surfaces of the metal substrate having such a complicated shape and arrangement.

【0010】また真空蒸着法等のPVD法によりアルミ
ナを金属基体表面に被着した後、さらにその上にCVD
法によるアルミナ被着を行うこともできる。このCVD
法は例えば原料ガスとして塩化アルミニウムガスを使用
し、650℃程度の温度で6〜20時間被着操作を行
う。同様な方法はジルコニアやマグネシアを使用する場
合にも、それらの塩化物である塩化ジルコニアや塩化マ
グネシアを原料ガスとして採用することができる。この
ようにPVD法による被膜表面にさらにCVD法による
被膜を形成してもよい。この場合には、PVDによる緻
密で金属基体とアルミナ被膜との密着性を良好に確保し
た後、その上層にCVDによるポーラス状で比表面積を
増加した被膜を形成することが出来ると共に、その膜厚
等を自由にコントロールし、排気ガス浄化能力の高いも
のを提供できるという効果がある。
After alumina is applied to the surface of a metal substrate by a PVD method such as a vacuum evaporation method, a CVD is further applied thereon.
Alumina deposition by the method can also be performed. This CVD
In the method, for example, an aluminum chloride gas is used as a source gas, and the deposition operation is performed at a temperature of about 650 ° C. for 6 to 20 hours. A similar method can also be used when zirconia or magnesia is used as the raw material gas, such as chlorinated zirconia or magnesia. As described above, a film may be further formed on the film surface by the PVD method by the CVD method. In this case, after a dense film of PVD and good adhesion between the metal substrate and the alumina film are secured, a porous film having an increased specific surface area can be formed thereon by CVD, and the film thickness thereof can be increased. And the like can be freely controlled to provide a product having a high exhaust gas purification ability.

【0011】次に、排ガス浄化用触媒としては従来使用
されている白金、パラジウムまたはロジウム等の貴金属
触媒を使用することができる。本発明においてはこれら
排ガス浄化用触媒を気相、すなわちPVD法やCVD法
等によって前記セラミック担体へ被着させることに特徴
がある。排ガス浄化用触媒を気相法で被着すると、均一
で綺麗な皮膜を安定に形成することができる。特に前記
セラミック担体の被着の場合と同様に、コルゲート加工
された金属板を巻回して筒状とした金属基体の両面に被
着されるセラミック担体のように、複雑な形状と配置関
係を有する被着面であっても、それに排ガス浄化用触媒
を均一且つ効率良く被着させることができる。
Next, as the exhaust gas purifying catalyst, a noble metal catalyst such as platinum, palladium or rhodium which is conventionally used can be used. The present invention is characterized in that these exhaust gas purifying catalysts are applied to the ceramic carrier in a gas phase, that is, by a PVD method, a CVD method, or the like. When the exhaust gas purifying catalyst is applied by a gas phase method, a uniform and beautiful film can be stably formed. In particular, similarly to the case of the attachment of the ceramic carrier, it has a complicated shape and arrangement relationship, such as a ceramic carrier attached to both surfaces of a cylindrical metal base formed by winding a corrugated metal plate. Even on the adhered surface, the exhaust gas purifying catalyst can be uniformly and efficiently adhered to the adhered surface.

【0012】セラミック担体への白金、パラジウムまた
はロジウム等の被着条件は、通常この種の金属被着に採
用されている条件を使用すればよい。例えば白金をイオ
ンプレーティング法で被着させる場合には、10-3〜1
-5Torrの真空度中において金属基体に電圧を印加
した状態で、常温〜300℃の範囲の温度で数分〜10
分程度被着操作して200〜300オングストローム程
度の厚さに皮膜形成する。
The conditions for depositing platinum, palladium or rhodium on the ceramic carrier may be the conditions usually employed for this type of metal deposition. For example, when platinum is deposited by the ion plating method, 10 -3 to 1
In a state where a voltage is applied to the metal substrate in a degree of vacuum of 0 -5 Torr, the temperature is in a range of room temperature to 300 ° C. for several minutes to 10 minutes.
A coating is formed to a thickness of about 200 to 300 angstroms by a coating operation for about a minute.

【0013】本発明においては、上記したイオンプレー
ティング法のようなPVD法により貴金属触媒層を形成
した後、さらにその上にCVD法による同種もしくは異
種の貴金属を被着させてもよい。例えば白金をCVD法
より被着する場合は、原料ガスとして白金の塩化物を使
用し、常温〜300℃の範囲で5〜20分程度で行う。
ポーラス状な形態を有するセラミック担体を使用する場
合、このようにCVD法よる被着を行うことによりセラ
ミック担体内部まで排ガス浄化用触媒の皮膜を形成する
ことが容易である。本発明においては、排ガス浄化用触
媒をセラミック担体に被着させた後、必要により水素ガ
ス中において熱処理して触媒の活性をより高めることが
できる。例えば白金を被着した場合、100℃〜300
℃の温度で1〜3時間程度で熱処理することが好まし
い。次に、本発明の実施例を説明する。
In the present invention, after a noble metal catalyst layer is formed by a PVD method such as the above-described ion plating method, a same or different noble metal may be further deposited thereon by a CVD method. For example, in the case of depositing platinum by the CVD method, a chloride of platinum is used as a raw material gas at a temperature in a range of room temperature to 300 ° C. for about 5 to 20 minutes.
When a ceramic carrier having a porous form is used, it is easy to form a coating film of an exhaust gas purifying catalyst up to the inside of the ceramic carrier by performing the deposition by the CVD method as described above. In the present invention, after the exhaust gas purifying catalyst is applied to the ceramic carrier, the catalyst can be heat-treated in hydrogen gas, if necessary, to further enhance the activity of the catalyst. For example, when platinum is applied, 100 ° C. to 300 ° C.
The heat treatment is preferably performed at a temperature of about 1 to 3 hours. Next, examples of the present invention will be described.

【0014】[0014]

【実施例1】ロール状に巻かれた厚さ0.1mm、幅2
0cmの細長いステンレス薄帯を一対の加工ロール間に
通してコルゲート加工した。コルゲート加工形状は振幅
が、2.5mm、ピッチ5mmである。次いでコルゲー
ト加工されたステンレス薄帯を、出入口を真空シールし
た連続イオンプレーティング装置を通過させ、その上に
アルミナの膜を被着した。被着条件は真空度10-4To
rrの第一段階、真空度10-3Torrの第二段階と
し、その間の被着部通過時間をそれぞれ5分と120分
とした。被着されたアルミナ担体はポーラス状に表面積
が増大された厚さ20μm の均一な膜であった。次にこ
のアルミナ担体が被着されたステンレス薄帯を、出入口
を真空シールした連続真空蒸着装置を通過させ、その上
に白金触媒皮膜を蒸着した。蒸着条件は真空度10-4
orr、蒸着部通過時間を5分とした。その結果表面が
綺麗な厚さ100オングストロームの均一で安定した白
金触媒層が被着された。この白金触媒層を被着したステ
ンレス薄帯は巻回して筒状の触媒部に形成することがで
きる。
[Example 1] A thickness of 0.1 mm and a width of 2 wound in a roll shape
A long and thin stainless steel strip of 0 cm was passed between a pair of processing rolls, and corrugated. The corrugated shape has an amplitude of 2.5 mm and a pitch of 5 mm. Next, the corrugated stainless steel ribbon was passed through a continuous ion plating apparatus whose entrance and exit were vacuum-sealed, and an alumina film was applied thereon. Deposition conditions are vacuum degree 10 -4 To
The first stage of the rr and the second stage of the degree of vacuum of 10 −3 Torr were performed, and the passage times of the adherends during that period were 5 minutes and 120 minutes, respectively. The deposited alumina support was a uniform film having a thickness of 20 μm and a porous surface area increased. Next, the stainless steel ribbon coated with the alumina carrier was passed through a continuous vacuum vapor deposition device in which the entrance and exit were vacuum-sealed, and a platinum catalyst film was deposited thereon. Deposition conditions are vacuum degree 10 -4 T
orr, the passage time in the vapor deposition section was set to 5 minutes. As a result, a uniform and stable platinum catalyst layer having a clean surface and a thickness of 100 Å was deposited. The stainless steel ribbon on which the platinum catalyst layer is applied can be wound to form a cylindrical catalyst portion.

【0015】[0015]

【実施例2】実施例1と同様にコルゲート加工した細長
いステンレス薄帯を巻回して、直径1000mm、幅2
50mmの筒体を作った。この筒体をCVD装置に入れ
て塩化アルミニウムガスを巻層間に流通させて流しなが
ら、真空度10-2Torr、温度650℃で6時間処理
した。その結果巻回壁面に厚さ50μm の均一なアルミ
ナ担体層が形成された。次に真空蒸着装置でこのアルミ
ナ担体が被着されたステンレス薄帯の上に白金触媒皮膜
を蒸着した。蒸着条件は真空度10-2Torr、蒸着時
間を10分とした。次いで水素ガス中で加熱処理し原料
ガス中のCl成分をHClとして外部に取出し、その結
果表面が綺麗な厚さ80オングストロームの均一で安定
した白金触媒層が被着された。
Example 2 A long and thin stainless steel strip corrugated in the same manner as in Example 1 was wound to a diameter of 1000 mm and a width of 2 mm.
A 50 mm cylinder was made. The tube was placed in a CVD apparatus and treated at a degree of vacuum of 10 −2 Torr and a temperature of 650 ° C. for 6 hours while flowing aluminum chloride gas between the winding layers. As a result, a uniform alumina carrier layer having a thickness of 50 μm was formed on the wound wall surface. Next, a platinum catalyst film was vapor-deposited on the stainless steel ribbon on which the alumina carrier was adhered by a vacuum vapor deposition device. The deposition conditions were a vacuum degree of 10 -2 Torr and a deposition time of 10 minutes. Next, a heat treatment was performed in hydrogen gas to take out the Cl component in the raw material gas as HCl, and as a result, a uniform and stable platinum catalyst layer having a clean surface and a thickness of 80 Å was deposited.

【0016】[0016]

【発明の効果】以上のような構成からなる本発明は、以
下のような効果を奏する。凹凸曲折加工された薄い金属
帯を巻回してなる金属基体を先ず成形して、その後に気
相法によりセラミック担体を厚さ数10μmに形成さ
せ、次いでそのセラミック担体に気相法により排ガス浄
化用触媒を被着するものである。そのため、製造が容易
であると共に、夫々気相法を採用することにより巻回さ
れた複雑な金属基体の表面に確実にセラミック担体を均
一に担持させ、さらにそのセラミック担体上に触媒を均
一に被着することが可能となる。また、被着され排ガ
ス浄化用触媒の厚み調整が容易である。さらには、乾式
であるため作業環境が良く、廃液処理の問題がない。
The present invention having the above-described structure has the following effects. Thin metal with uneven bending
First, a metal substrate formed by winding a band is formed, and then a metal substrate is formed.
A ceramic carrier is formed to a thickness of several tens of micrometers by the phase method.
And then purify the exhaust gas on the ceramic carrier by gas phase method.
And a catalyst for chemical conversion. Easy to manufacture
And each is wound by adopting the gas phase method.
Ensures that the ceramic carrier is leveled over the surface of the complex metal substrate
And the catalyst is evenly spread on the ceramic support.
It is possible to apply them all at once. Further, it is easy to adjust the thickness of the attached exhaust gas purifying catalyst. Furthermore, since it is a dry type, the working environment is good and there is no problem of waste liquid treatment.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平4−187247(JP,A) 特開 平5−154381(JP,A) 特表 平6−501877(JP,A) (58)調査した分野(Int.Cl.7,DB名) B01J 21/00 - 37/36 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-4-187247 (JP, A) JP-A-5-154381 (JP, A) Table 6-501877 (JP, A) (58) Investigation Field (Int.Cl. 7 , DB name) B01J 21/00-37/36

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 凹凸曲折加工された薄い金属帯を巻回し
てなる金属基体を製造する工程と、 次いで、気相法によりその巻回された状態の金属基体の
表面に厚さ数10μmのセラミック担体を形成させる工
程と、 次いで、その 金属基体表面に形成したセラミック担体に
気相法により排ガス浄化用触媒を被着する工程と、 を具備することを 特徴とする排ガス浄化用触媒皮膜の形
成法。
1. A method of winding a thin metal band which has been subjected to an uneven bending process.
Manufacturing a metal substrate, and then forming the metal substrate in a wound state by a gas phase method.
A process to form a ceramic carrier with a thickness of several 10 μm on the surface
Extent and, then, the method of forming the exhaust gas purifying catalyst coating the catalyst for exhaust gas purification characterized by comprising the steps of: depositing a by vapor phase method on a ceramic support which is formed on the metal substrate surface.
JP12819493A 1993-05-01 1993-05-01 Method of forming catalyst film for exhaust gas purification Expired - Lifetime JP3277261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12819493A JP3277261B2 (en) 1993-05-01 1993-05-01 Method of forming catalyst film for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12819493A JP3277261B2 (en) 1993-05-01 1993-05-01 Method of forming catalyst film for exhaust gas purification

Publications (2)

Publication Number Publication Date
JPH06315641A JPH06315641A (en) 1994-11-15
JP3277261B2 true JP3277261B2 (en) 2002-04-22

Family

ID=14978784

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12819493A Expired - Lifetime JP3277261B2 (en) 1993-05-01 1993-05-01 Method of forming catalyst film for exhaust gas purification

Country Status (1)

Country Link
JP (1) JP3277261B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1328343A1 (en) * 2000-09-29 2003-07-23 OMG AG & Co. KG Catalytic soot filter and use thereof in treatment of lean exhaust gases
SE527179C2 (en) 2003-12-05 2006-01-17 Sandvik Intellectual Property Thin film solar cell or thin film battery, comprising a zirconia coated ferritic chrome strip product
JP6245441B2 (en) * 2014-02-10 2017-12-13 パナソニックIpマネジメント株式会社 Method for manufacturing metal honeycomb catalyst device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5051241A (en) * 1988-11-18 1991-09-24 Pfefferle William C Microlith catalytic reaction system
JPH04187247A (en) * 1990-11-20 1992-07-03 Toyota Motor Corp Production of catalyst for purification of exhaust gas
JPH05154381A (en) * 1991-04-26 1993-06-22 Nippon Steel Corp Exhaust gas purifying catalyst forming process

Also Published As

Publication number Publication date
JPH06315641A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
JP4093532B2 (en) Method for producing amorphous metal oxide thin film material
JP2005503982A (en) Process for producing thin film porous ceramic-metal composites and composites obtained by this process
JP3277261B2 (en) Method of forming catalyst film for exhaust gas purification
JP2001522408A (en) Skeletal columnar coating
KR20000048815A (en) A Metal Foil Having Reduced Permanent Thermal Expansion for Use in a Catalyst Assembly and a Method of Making the Same
US6319877B1 (en) Catalyzed hardware
JP3716885B2 (en) Photocatalyst and method for producing the same
JPH1066878A (en) Photocatalyst body
JPH05154381A (en) Exhaust gas purifying catalyst forming process
JPH0663423A (en) Production of catalyst element
JP3817603B2 (en) Photocatalyst particle fixing coating agent and photocatalyst particle fixing method
JP3801709B2 (en) Method and apparatus for producing exhaust gas purifying catalyst
JPH04187247A (en) Production of catalyst for purification of exhaust gas
JP4620846B2 (en) Metal plate with photocatalytic activity
JP2909230B2 (en) Exhaust gas treatment catalyst and method for producing the same
JPS63107751A (en) Method for coating catalyst carrier
WO2022158296A1 (en) Electrode manufacturing method and manufacturing device, and electrode obtained therewith
JPH08206517A (en) Exhaust gas purifying catalyst
WO2001049900A1 (en) Method for coating with metal and material coated with metal
RU2080179C1 (en) Method of manufacturing catalytic block for neutralizing hazardous gas outbursts
JP2831113B2 (en) Metal catalyst and its production method
JPH08196906A (en) Catalyst member
JPH03193141A (en) Preparation of self-heating type catalyst
JPH04108539A (en) Preparation of catalyst for cleaning exhaust gas
JPH02258069A (en) Plate-shaped laminated catalyst

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110215

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140215

Year of fee payment: 12

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

EXPY Cancellation because of completion of term