JP6245441B2 - Method for manufacturing metal honeycomb catalyst device - Google Patents

Method for manufacturing metal honeycomb catalyst device Download PDF

Info

Publication number
JP6245441B2
JP6245441B2 JP2014022926A JP2014022926A JP6245441B2 JP 6245441 B2 JP6245441 B2 JP 6245441B2 JP 2014022926 A JP2014022926 A JP 2014022926A JP 2014022926 A JP2014022926 A JP 2014022926A JP 6245441 B2 JP6245441 B2 JP 6245441B2
Authority
JP
Japan
Prior art keywords
catalyst
substrate
corrugated
flat
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014022926A
Other languages
Japanese (ja)
Other versions
JP2015147202A (en
Inventor
修三 土田
修三 土田
友紀 三田
友紀 三田
雅俊 中村
雅俊 中村
晃宏 堀川
晃宏 堀川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2014022926A priority Critical patent/JP6245441B2/en
Publication of JP2015147202A publication Critical patent/JP2015147202A/en
Application granted granted Critical
Publication of JP6245441B2 publication Critical patent/JP6245441B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Fuel Cell (AREA)

Description

本発明は、たとえば、燃料電池などに用いられるガス処理装置、または自動車、二輪車などに用いられる排ガス処理装置に適用される触媒装置に関する。 The present invention is, for example, a gas treatment apparatus used like a fuel cell, or automotive relates to catalytic equipment applied to the exhaust gas processing apparatus used like motorcycles.

燃料電池には燃料ガスを改質する触媒装置が用いられている。自動車、自動二輪車などには、排気ガスを改質する触媒装置が用いられている。
燃料電池における触媒装置のガス通過経路は、図11(a)のように構成されている。燃料ガス101が、ガス中の硫黄を除去する水素脱硫触媒102,炭化水素を水素に水蒸気改質する改質触媒103,CO濃度を低下させる変成触媒104,COを除去する選択酸化触媒105を、順に通過して生成された水素が、燃料電池のスタック106へ導入されている。
A catalyst device for reforming fuel gas is used in the fuel cell. A catalyst device for reforming exhaust gas is used in automobiles, motorcycles and the like.
The gas passage path of the catalyst device in the fuel cell is configured as shown in FIG. The fuel gas 101 includes a hydrodesulfurization catalyst 102 for removing sulfur in the gas, a reforming catalyst 103 for steam reforming hydrocarbons to hydrogen, a shift catalyst 104 for reducing CO concentration, a selective oxidation catalyst 105 for removing CO, The hydrogen produced by passing in sequence is introduced into the stack 106 of the fuel cell.

自動二輪車の排ガスを改質する触媒装置のガス通過経路は、図11(b)のように構成されている。自動二輪車のエンジン107より排出された排気ガス108は、排ガス処理触媒109を通過して大気110へ排出している。   The gas passage route of the catalyst device for reforming the exhaust gas of the motorcycle is configured as shown in FIG. Exhaust gas 108 discharged from the engine 107 of the motorcycle passes through the exhaust gas treatment catalyst 109 and is discharged to the atmosphere 110.

ここで、図11(a)(b)の各種触媒は、それぞれのガスに活性を有する材料、一般的に金属微粒子を含む材料が用いられており、金属微粒子とガスとが接触するように形成されている。   Here, the various catalysts shown in FIGS. 11 (a) and 11 (b) are made of a material having activity in each gas, generally containing a metal fine particle, so that the metal fine particle and the gas are in contact with each other. Has been.

一般的に触媒となる金属微粒子を担持させた触媒装置には、次のものがある。
図12〜図14は各種の触媒装置の断面構造を示している。
例えば、図12に示す触媒装置は、触媒金属111を担持させた直径数mm〜数十mm程度のセラミックボール112を敷詰め、そこに被反応体であるガス113を通過させて改質している。
In general, there are the following catalyst devices supporting metal fine particles as a catalyst.
12 to 14 show cross-sectional structures of various catalyst devices.
For example, in the catalyst device shown in FIG. 12, ceramic balls 112 having a diameter of several millimeters to several tens of millimeters carrying a catalytic metal 111 are laid and reformed by passing a gas 113 as a reactant. Yes.

また、図13に示す触媒装置は、セラミックス製の多孔質体114の表面に触媒金属111が担持されており、そのセラミックス多孔質体114をガス115が通過させて改質している。   Further, in the catalyst device shown in FIG. 13, a catalytic metal 111 is supported on the surface of a ceramic porous body 114, and the ceramic porous body 114 is reformed by allowing a gas 115 to pass therethrough.

触媒装置が理想の触媒効果を発揮するためには一定の温度に保持することが必要であり、例えば燃料電池用途で使用する場合、触媒装置の外部から温度調節装置により温度を制御することが重要である。しかし、セラミックスを用いた触媒装置は、セラミックス自体は熱伝導性が悪く、外部の温度調節装置からの温度を伝達しにくく、触媒効果を十分に発揮しにくい。また、セラミックスは衝撃に弱いという問題があり、振動が大きい箇所に使用することは望ましくない。   In order for the catalytic device to exhibit an ideal catalytic effect, it is necessary to maintain a constant temperature. For example, when used in a fuel cell application, it is important to control the temperature from the outside of the catalytic device by a temperature control device. It is. However, in a catalyst device using ceramics, the ceramics themselves have poor thermal conductivity, it is difficult to transmit the temperature from an external temperature control device, and the catalyst effect is not sufficiently exhibited. Also, ceramics have a problem that they are vulnerable to impact, and it is not desirable to use them in locations where vibrations are large.

そのため図14に示す金属ハニカム触媒装置118が開発されている。これは、金属ハニカム構造体116に金属触媒117を担持させたものである。
金属ハニカム触媒装置118は、図15(a)に示すように、金属製の波板119と平板120を交互に積層しながら巻いた構造である。波板119と平板120の表面には、触媒となる金属微粒子およびその金属微粒子を固定化する担持体からなる触媒層(図示せず)が形成された構造である。
Therefore, a metal honeycomb catalyst device 118 shown in FIG. 14 has been developed. This is a metal honeycomb structure 116 having a metal catalyst 117 supported thereon.
As shown in FIG. 15A, the metal honeycomb catalyst device 118 has a structure in which metal corrugated plates 119 and flat plates 120 are alternately stacked while being laminated. On the surface of the corrugated plate 119 and the flat plate 120, a catalyst layer (not shown) made of metal fine particles serving as a catalyst and a carrier for immobilizing the metal fine particles is formed.

金属ハニカム触媒装置118は、つぎのようにして製造されている。
まず、図15(b)のように、金属製の波板119および平板120を重ねながら巻きとり、波形状と平形状の積層からなるハニカム構造体122を形成する。ここで、波板119と平板120の接触面121には、例えば波状119の頂点と平板120の接する箇所に接着の効果がある材料である接着剤やロウなどを形成しておき、巻き取り後に高温処理することで接着している。
The metal honeycomb catalyst device 118 is manufactured as follows.
First, as shown in FIG. 15B, a metal corrugated plate 119 and a flat plate 120 are wound up while being stacked to form a honeycomb structure 122 composed of a laminate of corrugated and flat shapes. Here, on the contact surface 121 of the corrugated plate 119 and the flat plate 120, for example, an adhesive or a brazing material that has an adhesive effect is formed at a position where the apex of the corrugated 119 and the flat plate 120 are in contact with each other. Bonded by high temperature treatment.

次に、図15(c)のように、上記製造方法で形成されたハニカム構造体122を、触媒金属を溶解した溶液123に含浸させることでハニカム構造体の内部の波状箔および平状箔の壁面に触媒金属を含有した触媒溶液を塗布した後、エアー124などで余分な触媒溶液を吹き飛ばして乾燥させる工程を繰り返し、所定量の触媒金属を波状箔および平状箔の表面に塗布している。   Next, as shown in FIG. 15 (c), the honeycomb structure 122 formed by the above manufacturing method is impregnated with a solution 123 in which a catalyst metal is dissolved, thereby forming a corrugated foil and a flat foil inside the honeycomb structure. After applying the catalyst solution containing the catalyst metal on the wall surface, the process of blowing and drying the excess catalyst solution with air 124 or the like is repeated, and a predetermined amount of the catalyst metal is applied to the surface of the corrugated foil and the flat foil. .

しかしこの方法では、以下の問題点がある。
図16(a)は波板と平板の接触部を表す断面図、図16(b)は金属ハニカム触媒の斜視図である。
However, this method has the following problems.
FIG. 16A is a cross-sectional view showing a contact portion between a corrugated plate and a flat plate, and FIG. 16B is a perspective view of the metal honeycomb catalyst.

図16(a)に示すように、波板119と平板120の接点付近では、狭くなった領域(図中のA)に触媒層が入り込み、被反応ガスと接触する触媒の面積が小さくなり触媒として機能しにくい部分が発生して、材料の無駄になっている。   As shown in FIG. 16 (a), in the vicinity of the contact point between the corrugated plate 119 and the flat plate 120, the catalyst layer enters a narrowed region (A in the figure), and the area of the catalyst that comes into contact with the reaction gas is reduced. As a result, parts that are difficult to function are generated and the material is wasted.

また、図16(b)のように、ハニカム構造体122の内部の波板119および平板120に塗布された触媒溶液が乾燥中に垂れて、ハニカム構造体122の開口部126に触媒溶液の玉127を発生させる。そのため、その分の触媒が無駄になるとともに、ハニカム構造体122におけるガスの通過を妨げるため、圧力損失が増加する原因になる。   Further, as shown in FIG. 16B, the catalyst solution applied to the corrugated plate 119 and the flat plate 120 inside the honeycomb structure 122 hangs down during drying, and the catalyst solution balls fall into the openings 126 of the honeycomb structure 122. 127 is generated. Therefore, the corresponding catalyst is wasted and the passage of gas in the honeycomb structure 122 is prevented, which causes an increase in pressure loss.

また、塗布工程で含浸と、吹き飛ばしと、乾燥を、何度も繰り返すため、ハニカム構造体122の側面にも触媒溶液が付着する箇所128が形成され、最終的に洗浄する必要がある。その結果、材料ロスが大きい。さらに、塗布−吹き飛ばし−乾燥の操作を繰り返すため、非常に長い時間を要するという問題がある。   In addition, since the impregnation, blowing off, and drying are repeated many times in the coating process, a portion 128 where the catalyst solution adheres is formed also on the side surface of the honeycomb structure 122, and it is necessary to finally wash it. As a result, material loss is large. Furthermore, there is a problem that it takes a very long time to repeat the coating-blowing-drying operation.

上記問題を解決するためには、触媒溶液を予め波板および平板に塗布してから巻き取ることが望ましい。ここで波板に接着剤を塗布する先行技術文献として特許文献1に示すダンボールの製造方法がある。特許文献1に示す内容について図17を用いて説明する。   In order to solve the above-mentioned problem, it is desirable to apply the catalyst solution to the corrugated plate and the flat plate in advance before winding. Here, as a prior art document for applying an adhesive to a corrugated sheet, there is a corrugated cardboard manufacturing method shown in Patent Document 1. The contents shown in Patent Document 1 will be described with reference to FIG.

特許文献1では、まずダンボールの材質となる紙シート129に、凹凸形状を有するロール130を押し当てることで波形状131を形成し、その表面に、接着剤132を塗布しておいたアプリケーターロール133を押し当てることで、波形状131の頂点に接着剤を塗布している。その後、別の紙シート134と重ねロール135により押し付けることで、貼り合せて波板と平板の積層構造136を形成している。   In Patent Document 1, first, an applicator roll 133 in which a corrugated shape 131 is formed by pressing a roll 130 having an uneven shape on a paper sheet 129 which is a cardboard material, and an adhesive 132 is applied on the surface thereof. The adhesive is applied to the apex of the wave shape 131 by pressing. Thereafter, the sheet is pressed by another paper sheet 134 and an overlapping roll 135 to form a laminated structure 136 of corrugated and flat plates.

特開2009−126103号公報JP 2009-126103 A

特許文献1を金属ハニカム触媒の塗布方法に適用するためには、以下の問題がある。
特許文献1の波形状の基材は紙であり、アプリケーターロールに対して押し付けることでアプリケーターロール上の接着剤を転写している。しかし、金属ハニカム触媒への適用を考えた場合、基材は金属製であり、基材自体に剛性があるため、波形状のバラツキに対して、アプリケーターロールへの正確な押し付けが困難である。また、特許文献1のように基材が紙の場合は、塗布された接着剤の水分もしくは溶剤成分が基材に浸み込むため、塗布された接着剤の流動が起きにくい。しかし金属ハニカム触媒への適用を考えた場合、基材が金属であり塗布された触媒溶液の溶媒成分を吸収できず、塗布された触媒溶液は表面張力の影響を受け、波形状の谷部へ触媒溶液が流動し、膜厚バラツキや、塗布膜にクラックが発生し、均一、かつ安定に触媒溶液を塗布することが難しい。
In order to apply Patent Document 1 to a method for applying a metal honeycomb catalyst, there are the following problems.
The corrugated substrate of Patent Document 1 is paper, and the adhesive on the applicator roll is transferred by pressing against the applicator roll. However, when considering application to a metal honeycomb catalyst, the base material is made of metal and the base material itself has rigidity, so that it is difficult to accurately press the applicator roll against wave-like variations. Further, when the base material is paper as in Patent Document 1, the water or solvent component of the applied adhesive soaks into the base material, so that the applied adhesive hardly flows. However, when considering application to a metal honeycomb catalyst, the base material is metal and the solvent component of the applied catalyst solution cannot be absorbed, and the applied catalyst solution is affected by the surface tension, leading to the corrugated valley. The catalyst solution flows, film thickness variation and cracks occur in the coating film, and it is difficult to apply the catalyst solution uniformly and stably.

また、触媒溶液を塗布、乾燥することで表面に触媒層を形成された波板と平板を巻き取る工程において、基材が紙であれば、波板が変形して波板と平板の接点が安定して接触するが、基材が金属の場合、変形しにくいため、強く押し付ければ波板と平板の接点で、触媒層に応力がかかることによる膜はがれが発生、逆に押し付けが弱いと、波板の形状バラツキにより波板と平板の間に隙間が発生する。そのため金属ハニカム触媒として使用する際、振動や温度変換による使用環境によってその隙間が接触したり離れたりすることで、膜が剥れる問題が発生する。   Also, in the step of winding the corrugated plate and the flat plate on which the catalyst layer is formed by applying and drying the catalyst solution, if the base material is paper, the corrugated plate is deformed and the corrugated plate and flat plate contact points. Although the contact is stable, it is difficult to deform when the base material is a metal, so if pressed strongly, the film will peel off due to stress applied to the catalyst layer at the contact point between the corrugated plate and flat plate, and conversely if the pressing is weak A gap is generated between the corrugated plate and the flat plate due to the shape variation of the corrugated plate. For this reason, when used as a metal honeycomb catalyst, the gap comes in contact with or leaves depending on the environment of use due to vibration or temperature conversion, causing a problem of film peeling.

また、波板と平板を接着するためには、先行例のような接着剤やロウを塗布することは触媒層の触媒機能を妨げるため使用できず、レーザー溶接やスポット溶接などの溶接方法が考えられる。しかし、波板と平板の接触部に触媒層が存在すると、波板と平板との溶接が安定に形成できないという課題がある。   Also, in order to bond corrugated plates and flat plates, it is not possible to use adhesives or brazing as in the previous example because it interferes with the catalytic function of the catalyst layer, and welding methods such as laser welding and spot welding are considered. It is done. However, when a catalyst layer exists in the contact part of a corrugated sheet and a flat plate, there exists a subject that welding with a corrugated sheet and a flat plate cannot be formed stably.

本発明は、金属ハニカム触媒装置を安定に製造することができる、金属ハニカム触媒装置の製造方法を提供することを目的とする。 The present invention can be stably producing a metal honeycomb catalyst device, and an object thereof is to provide a method for producing a metal honeycomb catalyst equipment.

本発明の金属ハニカム触媒装置の製造方法は、触媒金属と触媒金属の担持体および金属酸化物前駆体からなる溶液を、波形状に形成された金属箔のコルゲート基板と平形状の金属箔の平形基板に塗布する塗布工程と、塗布された前記溶液を乾燥して触媒層を形成する乾燥工程と、前記触媒層が形成された前記コルゲート基板と前記平形基板を積層して巻き取り、巻き取った前記コルゲート基板と前記平形基板を溶接して螺旋構造のハニカム構造体とする巻き取り工程とからなり、前記塗布工程の塗布方法が、スプレー塗布方法であり、前記巻き取り工程において前記平形基板と接触する前記コルゲート基板の頂点に対し、前記塗布工程の後で前記乾燥工程の前において、前記コルゲート基板の頂点に接触物を接触させ、平らな平坦個所を形成する、ことを特徴とする。 The method for manufacturing a metal honeycomb catalyst device of the present invention includes a corrugated substrate of a metal foil formed into a wave shape and a flat shape of a flat metal foil. An application process for applying to the substrate, a drying process for drying the applied solution to form a catalyst layer, the corrugated substrate on which the catalyst layer is formed, and the flat substrate are laminated and wound up and wound up wherein Ri Do and a winding step of welding the corrugated board and the flat substrate is a honeycomb structure of the helical structure, a method of applying the coating process is a spray coating method, and the flat substrate in the winding step A contact object is brought into contact with the apex of the corrugated substrate with respect to the apex of the corrugated substrate in contact with the apex of the corrugated substrate after the coating process and before the drying process. That, characterized in that.

この構成によると、表面に触媒性能を有した触媒層が形成された金属製のコルゲート基板と平形基板を重ねて巻き取った金属ハニカム触媒装置を安定に製造することができる。   According to this configuration, it is possible to stably manufacture a metal honeycomb catalyst device in which a metal corrugated substrate having a catalyst layer having catalytic performance formed on the surface thereof and a flat substrate are rolled up.

本発明の実施の形態における金属ハニカム触媒の製造方法の工程図Process drawing of a method for manufacturing a metal honeycomb catalyst in an embodiment of the present invention 本発明の実施の形態における塗布工程を示す図The figure which shows the application | coating process in embodiment of this invention 一般的な塗布方法による触媒層の膜質を示す比較例の説明図Explanatory drawing of the comparative example which shows the film quality of the catalyst layer by a general coating method 本発明の実施の形態における触媒層の膜質を示す図The figure which shows the film quality of the catalyst layer in embodiment of this invention 本発明の実施の形態における巻き取り工程を示す図The figure which shows the winding-up process in embodiment of this invention 巻き取り工程の要部の拡大断面図Enlarged sectional view of the main part of the winding process 巻き取り工程の別の具体例の要部の拡大断面図Enlarged sectional view of the main part of another specific example of the winding process 本発明の実施の形態における触媒層の塗布状態を示すコルゲート基板の斜視図The perspective view of the corrugated substrate which shows the application state of the catalyst layer in embodiment of this invention 本発明の実施の形態における巻き取り工程のより具体的な説明図The more concrete explanatory drawing of the winding process in embodiment of this invention 本発明の実施の形態における金属ハニカム触媒装置の要部の拡大断面図The expanded sectional view of the principal part of the metal honeycomb catalyst apparatus in embodiment of this invention 触媒装置の使用例を示す図Diagram showing an example of using a catalytic device 従来の触媒装置の断面図Sectional view of a conventional catalyst device 従来の別の触媒装置の断面図Sectional view of another conventional catalyst device 従来の更に別の触媒装置の断面図Sectional view of yet another conventional catalyst device 従来の金属ハニカム触媒装置の説明図Illustration of a conventional metal honeycomb catalyst device 従来の金属ハニカム触媒装置の問題点を説明する拡大断面と斜視図Enlarged cross section and perspective view for explaining problems of conventional metal honeycomb catalyst device 従来の波板および平板を積層する製造方法の説明図Explanatory drawing of the manufacturing method which laminates the conventional corrugated sheet and flat plate

金属ハニカム触媒装置は、図1に示した工程で製造される。
この金属ハニカム触媒装置は、波形状に形成された金属箔のコルゲート基板1と、平形状の金属箔の平形基板2とを重ねながら巻いて、内側にガス通路が形成されたハニカム構造体28に加工されている。
The metal honeycomb catalyst device is manufactured by the process shown in FIG.
In this metal honeycomb catalyst device, a corrugated substrate 1 made of corrugated metal foil and a flat substrate 2 made of flat metal foil are wound while being overlapped to form a honeycomb structure 28 having a gas passage formed inside. Has been processed.

図1では、ロールR1,R2,R3,R4,R5を経由して搬送したコルゲート基板1と、ロールR6,R7,R8,R9を経て搬送した平形基板2とを重ねて円柱状のハニカム構造体に加工されている。   In FIG. 1, a corrugated substrate 1 conveyed via rolls R1, R2, R3, R4, R5 and a flat substrate 2 conveyed via rolls R6, R7, R8, R9 are stacked to form a cylindrical honeycomb structure. Has been processed.

ロールR1,R2,R3,R4が設けられている第1塗布工程S1では、コルゲート基板1がロールR1,R2の間を通過する間に、塗布装置3がコルゲート基板1の下面に向かって、触媒層となる触媒溶液を塗布する。そして、コルゲート基板1がロールR3,R4の間を通過する間に、塗布装置4がコルゲート基板1の上面に向かって、触媒層となる触媒溶液を塗布する。   In the first coating step S1 in which the rolls R1, R2, R3, and R4 are provided, the coating apparatus 3 moves toward the lower surface of the corrugated substrate 1 while the corrugated substrate 1 passes between the rolls R1 and R2. Apply the catalyst solution to be a layer. Then, while the corrugated substrate 1 passes between the rolls R <b> 3 and R <b> 4, the coating device 4 applies a catalyst solution serving as a catalyst layer toward the upper surface of the corrugated substrate 1.

ロールR6,R7,R8,R9が設けられている第2塗布工程S2では、平形基板2がロールR6,R7の間を通過する間に、塗布装置5が平形基板2の上面に向かって、触媒層となる触媒溶液を塗布する。そして、平形基板2がロールR8,R9の間を通過する間に、塗布装置6が平形基板2の下面に向かって、触媒層となる触媒溶液を塗布する。   In the second coating step S2 in which the rolls R6, R7, R8, and R9 are provided, the coating apparatus 5 moves toward the upper surface of the flat substrate 2 while the flat substrate 2 passes between the rolls R6 and R7. Apply the catalyst solution to be a layer. And while the flat board | substrate 2 passes between roll R8, R9, the coating device 6 apply | coats the catalyst solution used as a catalyst layer toward the lower surface of the flat board | substrate 2. FIG.

ロールR4とロールR5の間の第1乾燥工程S3には、コルゲート基板1が通過する乾燥炉7が配置されており、コルゲート基板1の両面に塗布された触媒溶液をヒーターやランプ、熱風などで乾燥する。   In the first drying step S3 between the rolls R4 and R5, a drying furnace 7 through which the corrugated substrate 1 passes is disposed, and the catalyst solution applied to both surfaces of the corrugated substrate 1 is heated with a heater, a lamp, hot air, or the like. dry.

ロールR9を通過した平形基板2は、第2乾燥工程S4の乾燥炉8を通過して、平形基板2の両面に塗布された触媒溶液をヒーターやランプ、熱風などで乾燥する。
乾燥炉7,8を通過してそれぞれの両面に触媒層が形成されたコルゲート基板1と平形基板2は、巻き取り工程S5において前記ハニカム形状に巻き取る。ここでは軸芯を用いずに巻き取る内容を図示したが、軸芯に巻きつけることで中空状に巻き取ることも可能である。
The flat substrate 2 that has passed the roll R9 passes through the drying furnace 8 in the second drying step S4, and the catalyst solution applied to both surfaces of the flat substrate 2 is dried with a heater, a lamp, hot air, or the like.
The corrugated substrate 1 and the flat substrate 2 on which the catalyst layers are formed on both surfaces after passing through the drying furnaces 7 and 8 are wound into the honeycomb shape in the winding step S5. Here, the content of winding without using the shaft core is illustrated, but it is also possible to wind up in a hollow shape by winding the shaft core.

さらに、巻き取り工程S5では、所定のタイミングで溶接を実行する。この溶接は、レーザなどの加熱装置9を用いてコルゲート基板1と平形基板2との接触個所の一部を溶接して、金属ハニカム触媒装置を形成する。   Furthermore, in winding process S5, welding is performed at a predetermined timing. In this welding, a part of the contact portion between the corrugated substrate 1 and the flat substrate 2 is welded using a heating device 9 such as a laser to form a metal honeycomb catalyst device.

なお、巻き取り工程S5で前記溶接を完了した金属ハニカム触媒装置を、その後、焼成工程を実行して所定の温度で焼成することも可能である。
− 触媒層となる触媒溶液 −
第1,第2塗布工程S1,S2において、前記塗布装置3〜6によって塗布されて触媒層となる触媒溶液には、触媒金属およびセラミックスの微粒子および金属酸化物の前駆体を混合させた水溶液を用いた。ここで触媒金属はPt、Rh、Ru、Pd、Niなどの少なくとも一つを使用、セラミックス微粒子は、Al、SiOなどの少なくとも一つを用い、所定の粒子径に粉砕したものを使用した。また金属酸化物の前駆体としては、アルミナゾルやシリカゾルなど縮合反応することによりセラミック構造を形成する材料を用いた。
In addition, it is also possible to fire the metal honeycomb catalyst device that has completed the welding in the winding process S5 at a predetermined temperature by performing a firing process thereafter.
− Catalyst solution for catalyst layer −
In the first and second coating steps S 1 and S 2, an aqueous solution in which catalyst metal and ceramic fine particles and a metal oxide precursor are mixed is used as a catalyst solution that is applied by the coating devices 3 to 6 to become a catalyst layer. Using. Here, the catalyst metal uses at least one of Pt, Rh, Ru, Pd, Ni and the like, and the ceramic fine particles use at least one of Al 2 O 3 , SiO 2 and the like and are pulverized to a predetermined particle diameter. used. As the metal oxide precursor, a material that forms a ceramic structure by a condensation reaction such as alumina sol or silica sol was used.

ここで完成する触媒層における各材料の粒子径として、触媒金属は0.1〜30nm、セラミックス微粒子は0.1〜30μm、金属酸化物前駆体は1〜100nmを用いた。特に材料の種類、粒子径、配合比に限定はなく、第1,第2塗布工程S1,S2や巻き取り工程S5について後述する具体的な工程、製品としての触媒性能に合わせて調整して良い。   The particle diameter of each material in the catalyst layer completed here was 0.1-30 nm for the catalyst metal, 0.1-30 μm for the ceramic fine particles, and 1-100 nm for the metal oxide precursor. There are no particular limitations on the type of material, particle size, and blending ratio, and the first and second coating steps S1, S2 and the winding step S5 may be adjusted according to the specific steps described later and the catalyst performance as a product. .

また、前記焼成工程を実施する場合には、前記金属酸化物の前駆体の縮合反応を十分に進行させるため、焼成工程の温度と金属酸化物の前駆体の反応温度に合せた、触媒層となる溶液の材料選定および温度設定が必要である。本実施の形態では、200〜700℃で縮合反応が進行する材料を用いた。   Further, when carrying out the firing step, in order to sufficiently proceed the condensation reaction of the metal oxide precursor, a catalyst layer matched to the temperature of the firing step and the reaction temperature of the metal oxide precursor; It is necessary to select the material of the solution and set the temperature. In this embodiment, a material that undergoes a condensation reaction at 200 to 700 ° C. is used.

− 触媒溶液の塗布方法 −
第1,第2塗布工程S1,S2において、塗布装置3〜6による触媒溶液の塗布方法を説明する。
− Method of applying catalyst solution −
In the first and second coating steps S1 and S2, a method for coating a catalyst solution using the coating devices 3 to 6 will be described.

図2は、コルゲート基板1に触媒溶液10をスプレー塗布する場合を示している。平形基板2に触媒溶液を塗布する場合も同様である。
先ず、触媒溶液10をノズル11から所定速度で吐出させる。このとき、搬送中のコルゲート基板1の裏面に背面電極13を設置し、ノズル11と背面電極13の間に電圧14を印加する。すると、ノズル11から吐出された触媒溶液10は帯電し、背面電極13の方向へ飛翔する。その際、飛翔する触媒溶液10は乾燥しながら静電爆発を起こし、微粒子化する。そのため、触媒溶液は飛翔中に微粒子化および乾燥が促進され、高固形分な微粒子液滴となってコルゲート基板1の表面へ付着する。その結果、コルゲート基板1に付着したときには触媒溶液10の流動性は低減し、表面張力による塗布膜厚の変動が発生せず、コルゲート基板1に均一にスプレー塗布することが可能である。
FIG. 2 shows a case where the catalyst solution 10 is spray-coated on the corrugated substrate 1. The same applies when the catalyst solution is applied to the flat substrate 2.
First, the catalyst solution 10 is discharged from the nozzle 11 at a predetermined speed. At this time, the back electrode 13 is installed on the back surface of the corrugated substrate 1 being transferred, and a voltage 14 is applied between the nozzle 11 and the back electrode 13. Then, the catalyst solution 10 discharged from the nozzle 11 is charged and flies in the direction of the back electrode 13. At that time, the flying catalyst solution 10 undergoes electrostatic explosion while drying, and becomes fine particles. Therefore, the catalyst solution is promoted to be finely divided and dried during the flight, and becomes a solid particle droplet having a high solid content and adheres to the surface of the corrugated substrate 1. As a result, when it adheres to the corrugated substrate 1, the fluidity of the catalyst solution 10 is reduced, and the coating film thickness does not fluctuate due to surface tension, and the corrugated substrate 1 can be uniformly spray coated.

ここで必要に応じて、ノズル11の先端にエアーブローを吹き付けて触媒溶液10の微粒子化を促進させることも可能である。また、背面電極13を用いずに、コルゲート基板1に直接に電圧を印加することも可能である。触媒が微細化しやすい場合は、電圧14を印加せずにエアーブローのみで触媒溶液をスプレー塗布することも可能である。   Here, if necessary, it is also possible to blow air blow to the tip of the nozzle 11 to promote the atomization of the catalyst solution 10. It is also possible to apply a voltage directly to the corrugated substrate 1 without using the back electrode 13. In the case where the catalyst is easily miniaturized, it is also possible to spray the catalyst solution by air blowing without applying the voltage 14.

さらに、ノズル11とコルゲート基板1の距離は調整事項であり、この距離が遠い程、液滴の乾燥が促進されるため、使用する触媒溶液の固形分、溶媒種類に合せて距離を調整する必要がある。   Furthermore, the distance between the nozzle 11 and the corrugated substrate 1 is an adjustment item. The longer this distance is, the more the drying of the droplets is promoted. Therefore, the distance needs to be adjusted according to the solid content of the catalyst solution to be used and the type of solvent. There is.

この方法でコルゲート基板1,平形基板2に形成した触媒層の膜質には、図4に示すような特徴がある。これを図3に示した通常の塗布方法で形成された触媒層と比較して説明する。   The film quality of the catalyst layer formed on the corrugated substrate 1 and the flat substrate 2 by this method has the characteristics shown in FIG. This will be described in comparison with the catalyst layer formed by the normal coating method shown in FIG.

− 比較例 −
図3は、浸漬法(ディッピング法)など通常の塗布方法でコルゲート基板1に形成された触媒層の膜質を示す比較例である。平形基板2の場合もコルゲート基板1の場合と同様である。
− Comparative Example −
FIG. 3 is a comparative example showing the film quality of the catalyst layer formed on the corrugated substrate 1 by a normal coating method such as a dipping method (dipping method). The case of the flat substrate 2 is the same as that of the corrugated substrate 1.

この通常の方法では、塗布工程中にレベリングがおこり、図3(a)のように、溶媒15(比較例で使用した溶液では水)中にセラミックの粒子16、触媒金属17(この比較例の触媒金属は固形微粒子状態、もしくはイオン化して溶媒の溶解している状態)、金属酸化物前駆体18がレベリングされる。   In this normal method, leveling occurs during the coating process, and as shown in FIG. 3A, ceramic particles 16 and catalyst metal 17 (in this comparative example, water in a solvent 15 (in the solution used in the comparative example)). The catalyst metal is in a solid fine particle state or is ionized and dissolved in a solvent), and the metal oxide precursor 18 is leveled.

そのため、後工程で乾燥させると図3(b)のように、セラミックス微粒子16がコルゲート基板1の上に敷き詰まった状態で、セラミックス微粒子16の表面および隙間に触媒金属17および金属酸化物前駆体18が詰まった膜になる。そのため、触媒層の表面にはセラミックス微粒子16の粒子径以下の凹凸が形成され、膜内部の密度は、後述する図4に示した実施例の膜質より密になる。   Therefore, when dried in a later step, the catalyst metal 17 and the metal oxide precursor are formed on the surface and gaps of the ceramic fine particles 16 with the ceramic fine particles 16 being laid on the corrugated substrate 1 as shown in FIG. 18 becomes a clogged film. Therefore, the surface of the catalyst layer has irregularities that are equal to or smaller than the particle diameter of the ceramic fine particles 16, and the density inside the film becomes denser than the film quality of the embodiment shown in FIG.

− 実施例 −
図4は、図2に示した方法で触媒層をコルゲート基板1に塗布した場合を示している。平形基板2の場合もコルゲート基板1の場合と同様である。
− Examples −
FIG. 4 shows a case where the catalyst layer is applied to the corrugated substrate 1 by the method shown in FIG. The case of the flat substrate 2 is the same as that of the corrugated substrate 1.

図4(a)のように、第1塗布工程S1において、セラミックス微粒子16の表面に溶媒15、触媒金属17および金属酸化物の前駆体18を有した高固形分な触媒溶液の液滴として、コルゲート基板1へスプレー塗布されると、乾燥が促進された高固形分な触媒溶液の液滴がコルゲート基板1に堆積する。   As shown in FIG. 4A, in the first coating step S1, as a droplet of a high solid content catalyst solution having the solvent 15, the catalyst metal 17 and the metal oxide precursor 18 on the surface of the ceramic fine particles 16, When sprayed onto the corrugated substrate 1, droplets of the catalyst solution having a high solid content whose drying has been promoted are deposited on the corrugated substrate 1.

すると、乾燥後には、図4(b)のように触媒層19の表面にはセラミックス微粒子16の径よりも大きな凹凸を形成することができ、被反応気体と接触する箇所における触媒層19の表面粗さが、触媒層19におけるセラミックス微粒子16の粒子径より大きくなる。さらに、膜内も空隙が大きな膜、つまり、疎な膜質の膜を実現することができる。   Then, after drying, irregularities larger than the diameter of the ceramic fine particles 16 can be formed on the surface of the catalyst layer 19 as shown in FIG. 4 (b), and the surface of the catalyst layer 19 at a location in contact with the reaction gas. The roughness is larger than the particle diameter of the ceramic fine particles 16 in the catalyst layer 19. Further, a film having a large void in the film, that is, a film having a sparse film quality can be realized.

そのため、膜へ応力がかかっても、その空隙が応力を緩和する効果があり、クラックが発生しにくいという特徴が得られる。
触媒性能に関しても、触媒層の表面凹凸が大きくなる、かつ、膜内に空隙が多くなると、被反応ガスとの接触面積が向上するため、触媒性能を向上させる効果もある。
Therefore, even when stress is applied to the film, the voids have an effect of relaxing the stress, and a feature that cracks are hardly generated is obtained.
Regarding the catalyst performance, when the surface irregularities of the catalyst layer are increased and the number of voids in the film is increased, the contact area with the gas to be reacted is improved, which has the effect of improving the catalyst performance.

− 巻き取り工程 −
図5(a)は図1における巻き取り工程S5の拡大図を示す。
触媒層22,23が形成されたコルゲート基板1と、触媒層24,25が形成された平形基板2とを、巻き取り工程S5で巻き取ると、コルゲート基板1の頂点と平形基板2とが当接する箇所Bにおいて応力が強くかかるため、触媒層の膜質が図3(b)の比較例の触媒層のように密であった場合には、触媒層が剥れる、もしくは空間ができる、という前述した課題に対する対策が必要である。
− Winding process −
Fig.5 (a) shows the enlarged view of winding-up process S5 in FIG.
When the corrugated substrate 1 on which the catalyst layers 22 and 23 are formed and the flat substrate 2 on which the catalyst layers 24 and 25 are formed are wound in the winding step S5, the apex of the corrugated substrate 1 and the flat substrate 2 are matched. Since the stress is strongly applied at the contact point B, when the film quality of the catalyst layer is as dense as the catalyst layer of the comparative example of FIG. 3B, the catalyst layer is peeled off or a space is formed. It is necessary to take measures against the issues.

この実施例では、図2と図4(a)(b)に示した塗布方法によって触媒層を形成しているため、触媒層の膜質は疎であり、表面の凹凸も大きいという特徴があるため、外力が作用した場合に触媒層がつぶれ易くなっており、コルゲート基板1の頂点と平形基板2とが当接する箇所Bにおいて、平形基板2の触媒層23とコルゲート基板1の触媒層24が適度に変形するため、コルゲート基板1の頂点と平形基板2が接触することにより発生する膜応力による剥れが無く、コルゲート基板1の頂点と平形基板2が接触せずに空間が発生する問題も解決できる。また、コルゲート基板1の頂点と平形基板2が近接し易くなるため、前記溶接において、コルゲート基板1と平形基板2の溶接がより安定にできる効果がある。   In this embodiment, since the catalyst layer is formed by the coating method shown in FIG. 2 and FIGS. 4A and 4B, the film quality of the catalyst layer is sparse and the surface irregularities are large. When the external force is applied, the catalyst layer is easily crushed, and the catalyst layer 23 of the flat substrate 2 and the catalyst layer 24 of the corrugated substrate 1 are moderate at the location B where the apex of the corrugated substrate 1 and the flat substrate 2 abut. Therefore, there is no peeling due to the film stress generated when the apex of the corrugated substrate 1 and the flat substrate 2 are in contact with each other, and the problem that the apex of the corrugated substrate 1 and the flat substrate 2 are not in contact with each other is solved it can. Further, since the apex of the corrugated substrate 1 and the flat substrate 2 are likely to be close to each other, there is an effect that the welding of the corrugated substrate 1 and the flat substrate 2 can be made more stable in the welding.

ここでコルゲート基板1と平形基板2を安定に巻き取るためには、それぞれの基材に所定の張力で保持しながら巻き取ることが望ましい。さらに、コルゲート基板1と平形基板2の接触部において、よりコルゲート基板1と平形基板2の距離を近くする、つまり触媒層のつぶれ具合を多くするためには、図5(a)において平形基板2を引く張力Yを、コルゲート基板1を引く張力Xより強くすることが望ましい。ただし、平形基板2の形状が変形してしまわない程度の張力Yにする調整は必要である。   Here, in order to stably wind the corrugated substrate 1 and the flat substrate 2, it is desirable to wind the corrugated substrate 1 and the flat substrate 2 while holding the corrugated substrate 1 and the flat substrate 2 with a predetermined tension. Furthermore, in order to make the distance between the corrugated substrate 1 and the flat substrate 2 closer at the contact portion between the corrugated substrate 1 and the flat substrate 2, that is, to increase the degree of collapse of the catalyst layer, the flat substrate 2 in FIG. It is desirable to make the tension Y for pulling the tension higher than the tension X for pulling the corrugated substrate 1. However, it is necessary to adjust the tension Y so that the shape of the flat substrate 2 does not deform.

なお、上記のように張力X,Yを適切にしてコルゲート基板1と平形基板2を巻き取るだけでも、上記のように巻き取り工程における問題を回避できるが、図5(b)に示すように、コルゲート基板1の表面に形成され触媒層24のうち、波形状の頂点部(段頂)のみを予め平らに潰して平坦個所Pを形成しておくことによって、コルゲート基板1と平形基板2をさらに安定に巻き取ることが可能である。   It is possible to avoid the problem in the winding process as described above only by winding the corrugated substrate 1 and the flat substrate 2 with appropriate tensions X and Y as described above, but as shown in FIG. In the catalyst layer 24 formed on the surface of the corrugated substrate 1, only the corrugated apex (stage top) is flattened in advance to form a flat portion P, whereby the corrugated substrate 1 and the flat substrate 2 are formed. Furthermore, it is possible to wind up stably.

その理由について、図6,図7を用いて説明する。
図6(a)は、平坦個所Pを形成しなかった図5(a)の場合において、触媒層23と触媒層24が接触する直前の状態を示している。図6(b)は図5(a)の場合において、触媒層23と触媒層24が接触した後の状態を示している。
The reason will be described with reference to FIGS.
FIG. 6A shows a state immediately before the catalyst layer 23 and the catalyst layer 24 come into contact with each other in the case of FIG. 5A in which the flat portion P is not formed. FIG. 6B shows a state after the catalyst layer 23 and the catalyst layer 24 are in contact with each other in the case of FIG.

図7(a)は、平坦個所Pを形成した図5(b)の場合において、触媒層23と触媒層24が接触する直前の状態を示している。図7(b)は、図5(b)の場合において、触媒層23と触媒層24が接触した後の状態を示している。   FIG. 7A shows a state immediately before the catalyst layer 23 and the catalyst layer 24 come into contact with each other in the case of FIG. 5B where the flat portion P is formed. FIG. 7B shows a state after the catalyst layer 23 and the catalyst layer 24 are in contact with each other in the case of FIG.

なお、平坦個所Pの形成は、塗布工程後で乾燥工程前において、少なくともコルゲート基板1の頂点に接触物を接触させることによって平坦化できる。
図6(a)のように触媒層24の頂点部を潰していない場合は、図6(b)のように、コルゲート基板1の触媒層23と平形基板2の触媒層24とが変形しながら接触するため、触媒層へ横方向のせん断応力が強くかかる。そのため、接触部で触媒層が剥離する可能性がある。
The flat portion P can be formed by bringing a contact object into contact with at least the apex of the corrugated substrate 1 after the coating process and before the drying process.
When the apex of the catalyst layer 24 is not crushed as shown in FIG. 6A, the catalyst layer 23 of the corrugated substrate 1 and the catalyst layer 24 of the flat substrate 2 are deformed as shown in FIG. 6B. Because of the contact, the shear stress in the lateral direction is strongly applied to the catalyst layer. Therefore, the catalyst layer may be peeled off at the contact portion.

これに対して図7(a)のように、触媒層24に平坦個所Pを形成しておくと、図7(b)のように接触部において触媒層23,24へ横方向のせん断応力の発生を抑制する効果があるため、触媒層の剥離を低減できる。   On the other hand, if a flat portion P is formed in the catalyst layer 24 as shown in FIG. 7A, the shear stress in the lateral direction is applied to the catalyst layers 23 and 24 at the contact portion as shown in FIG. 7B. Since there is an effect of suppressing generation, peeling of the catalyst layer can be reduced.

− 巻き取り工程での溶接 −
巻き取り工程において前記溶接を実施することによって、コルゲート基板1と平形基板2の距離を近づけることができ、溶接を安定にすることができる。
− Welding in winding process −
By performing the welding in the winding process, the distance between the corrugated substrate 1 and the flat substrate 2 can be reduced, and the welding can be stabilized.

溶接する箇所を詳しく説明する。
前述したスプレー方式で触媒溶液を塗布して形成したコルゲート基板1の触媒層24は触媒溶液が放射状に塗布されるため、コルゲート基板1に形成された触媒層24の厚みは、図8に示すように幅方向の端部Cが、幅方向の中央部に比べて薄くなる。その結果を利用し、コルゲート基板1と平形基板2とを溶接する箇所を、基材の幅方向の端部Cに部分的に設けることが好ましい。
The location to be welded will be described in detail.
Since the catalyst layer 24 of the corrugated substrate 1 formed by applying the catalyst solution by the spray method described above is applied radially, the thickness of the catalyst layer 24 formed on the corrugated substrate 1 is as shown in FIG. In addition, the end portion C in the width direction is thinner than the central portion in the width direction. Using the result, it is preferable to provide a portion where the corrugated substrate 1 and the flat substrate 2 are welded partially at the end portion C in the width direction of the base material.

これにより、コルゲート基板1と平形基板2の間の触媒層の厚みが薄く、より安定した溶接を実現できる効果がある。
なお、コルゲート基板1の波形状の頂点の稜線Z−ZZにおいて平形基板2と溶接した場合には、製品として使用する際の温度衝撃、物理的衝撃による歪が溶接部にかかり易く、使用中に触媒層が剥離する可能性があるが、これに対して、端部Cを部分的に溶接することは、製品寿命をより向上させることができる。
Thereby, the thickness of the catalyst layer between the corrugated substrate 1 and the flat substrate 2 is thin, and there is an effect that more stable welding can be realized.
In addition, when it welds with the flat board | substrate 2 in the ridgeline Z-ZZ of the corrugated board | substrate 1 of the corrugated board | substrate 1, the distortion by the temperature impact at the time of using as a product and a physical impact tends to apply to a welding part, and in use There is a possibility that the catalyst layer may be peeled off. On the other hand, partial welding of the end C can further improve the product life.

図9は前記溶接における溶接手段、認識手段と、コルゲート基板1と平形基板2の位置関係を示している。
コルゲート基板1および平形基板2を所定長さ巻き取ったハニカム構造体28の外周部の両端付近に、レーザーなどを照射するように加熱装置9を配置し、平形基板2の外周側、つまり、平形基板2のコルゲート基板1と接触していない方の面から溶接処理を実施した。コルゲート基板1と金属平板2の接触部を確実に認識して加熱装置9で溶接処理するために、ハニカム構造体28の開口部側、つまりコルゲート基板1と金属平板2の巻き取り方向と直交する方向から見たハニカム構造体28の端面が確認できる場所にカメラなどの認識装置27を設置し、加熱装置9によって溶接する箇所を認識しながら処理した。
FIG. 9 shows the positional relationship between the corrugated substrate 1 and the flat substrate 2 and the welding means and recognition means in the welding.
A heating device 9 is arranged in the vicinity of both ends of the outer peripheral portion of the honeycomb structure 28 in which the corrugated substrate 1 and the flat substrate 2 are wound up by a predetermined length so as to irradiate a laser or the like. The welding process was performed from the surface of the substrate 2 that is not in contact with the corrugated substrate 1. In order to reliably recognize the contact portion between the corrugated substrate 1 and the metal flat plate 2 and perform the welding process with the heating device 9, it is orthogonal to the opening side of the honeycomb structure 28, that is, the winding direction of the corrugated substrate 1 and the metal flat plate 2. A recognition device 27 such as a camera was installed in a place where the end face of the honeycomb structure 28 as viewed from the direction could be confirmed, and the processing was performed while recognizing the location to be welded by the heating device 9.

− 金属ハニカム触媒構造 −
図10は本実施の形態により作成された金属ハニカム触媒における触媒層の形状を表す断面図である。
− Metal honeycomb catalyst structure −
FIG. 10 is a cross-sectional view showing the shape of the catalyst layer in the metal honeycomb catalyst produced according to the present embodiment.

触媒層24,25が形成されたコルゲート基板1と、触媒層22,23が形成された平形基板2の接触部Dにおいて、触媒層24の内壁が円弧形状になっておらず、鋭角な形状になる。そのため、触媒装置として使用する際に、被反応ガスとの接触面積が従来の含浸による塗布方法と比べて増加しており、触媒性能が向上する。   In the contact portion D between the corrugated substrate 1 on which the catalyst layers 24 and 25 are formed and the flat substrate 2 on which the catalyst layers 22 and 23 are formed, the inner wall of the catalyst layer 24 is not formed in an arc shape, but has an acute shape. Become. Therefore, when used as a catalyst device, the contact area with the gas to be reacted is increased as compared with the conventional application method by impregnation, and the catalyst performance is improved.

さらに、コルゲート基板1および平形基板2の接触部Eは、それ以外の部分、つまり、波形状の山の頂点と山の頂点との間の中央部分Fよりも触媒層の密度が密になっている。図4で説明したように巻き取り工程S5で巻き取る前のコルゲート基板1の表面には、図3で説明した比較例に較べて密度が疎の触媒層24,25が形成されているため、これを巻き取り工程で巻き取ることによって、平形基板2とコルゲート基板1の触媒層24,25の山の頂点との接触部には圧縮力が作用して触媒層の密度が巻き取る前よりも密になり、山の頂点のような前記圧縮力が作用しない前記中央部分Fの触媒層の密度は疎状態のままであるためである。   Further, the contact portion E between the corrugated substrate 1 and the flat substrate 2 has a density of the catalyst layer denser than other portions, that is, the central portion F between the tops of the wavy peaks. Yes. As described in FIG. 4, catalyst layers 24 and 25 having a lower density than the comparative example described in FIG. 3 are formed on the surface of the corrugated substrate 1 before being wound in the winding step S <b> 5. By winding this in the winding process, a compressive force acts on the contact portion between the flat substrate 2 and the top of the crests of the catalyst layers 24 and 25 of the corrugated substrate 1 so that the density of the catalyst layer is less than that before winding. This is because the density of the catalyst layer in the central portion F, which is dense and does not receive the compressive force such as the peak of the mountain, remains in a sparse state.

そのため、コルゲート基板1および平形基板2の接触部では、触媒装置として使用した際の機械的振動に対する強度が強くなり、製品としての信頼性性能が向上する。また、それ以外の部分の膜密度が疎であるため、被反応ガスとの接触面積を確保することができ、触媒性能が向上する効果が得られる。   Therefore, at the contact portion between the corrugated substrate 1 and the flat substrate 2, the strength against mechanical vibration when used as a catalyst device is increased, and the reliability performance as a product is improved. Moreover, since the film density of the other part is sparse, a contact area with the reaction gas can be secured, and an effect of improving the catalyst performance can be obtained.

本発明は、燃料電池などに用いられるガス処理装置、または自動車、二輪車などに用いられる排ガス処理装置などの性能向上に寄与する。   The present invention contributes to improving the performance of a gas processing device used for a fuel cell or the like, or an exhaust gas processing device used for an automobile, a motorcycle, or the like.

1 コルゲート基板
2 平形基板
3,4,5,6 塗布装置
7,8 乾燥炉
9 溶接装置
S1,S2 第1,第2塗布工程
S3,S4 第1,第2乾燥工程
S5 巻き取り工程
17 触媒金属
16 触媒金属の担持体
18 金属酸化物前駆体
22,23,24,25 触媒層
28 ハニカム構造体
DESCRIPTION OF SYMBOLS 1 Corrugated substrate 2 Flat substrate 3, 4, 5, 6 Coating device 7, 8 Drying furnace 9 Welding device S1, S2 First and second coating step S3, S4 First and second drying step S5 Winding step 17 Catalyst metal 16 catalyst metal carrier 18 metal oxide precursor 22, 23, 24, 25 catalyst layer 28 honeycomb structure

Claims (4)

触媒金属と触媒金属の担持体および金属酸化物前駆体からなる溶液を、波形状に形成された金属箔のコルゲート基板と平形状の金属箔の平形基板に塗布する塗布工程と、
塗布された前記溶液を乾燥して触媒層を形成する乾燥工程と、
前記触媒層が形成された前記コルゲート基板と前記平形基板を積層して巻き取り、巻き取った前記コルゲート基板と前記平形基板を溶接して螺旋構造のハニカム構造体とする巻き取り工程とからな
前記塗布工程の塗布方法が、スプレー塗布方法であり
前記巻き取り工程において前記平形基板と接触する前記コルゲート基板の頂点に対し、前記塗布工程の後で前記乾燥工程の前において、前記コルゲート基板の頂点に接触物を接触させ、平らな平坦個所を形成する、
金属ハニカム触媒装置の製造方法。
An application step of applying a solution comprising a catalyst metal and a catalyst metal carrier and a metal oxide precursor to a corrugated metal foil corrugated substrate and a flat metal foil flat substrate;
A drying step of drying the applied solution to form a catalyst layer;
Wound by laminating the flat substrate and the corrugated substrate on which the catalyst layer is formed, Ri Do and a winding step of welding the wound the corrugated board and the flat substrate was a honeycomb structure of the helical structure ,
The application method of the application step is a spray application method ,
The top of the corrugated substrate that contacts the flat substrate in the winding step is brought into contact with the top of the corrugated substrate after the coating step and before the drying step to form a flat flat portion. To
A method for manufacturing a metal honeycomb catalyst device.
前記溶接の後、前記ハニカム構造体を200〜700℃の温度に昇温する焼成工程を有することを特徴とする、
請求項1記載の金属ハニカム触媒装置の製造方法。
After the welding, the honeycomb structure has a firing step of raising the temperature to 200 to 700 ° C,
Method for producing a metal honeycomb catalyst according to claim 1.
前記塗布工程の塗布方法が、溶液に電荷を印加して塗布する静電スプレー塗布方法であることを特徴とする、
請求項1または2に記載の金属ハニカム触媒装置の製造方法。
The coating method in the coating step is an electrostatic spray coating method in which an electric charge is applied to the solution and applied,
The manufacturing method of the metal honeycomb catalyst apparatus of Claim 1 or 2 .
前記溶接は、前記平形基板と前記コルゲート基板の頂点をレーザー溶接する、
請求項1〜3の何れかに記載の金属ハニカム触媒装置の製造方法。
The welding is performed by laser welding the apex of the flat substrate and the corrugated substrate.
The manufacturing method of the metal honeycomb catalyst apparatus in any one of Claims 1-3 .
JP2014022926A 2014-02-10 2014-02-10 Method for manufacturing metal honeycomb catalyst device Expired - Fee Related JP6245441B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014022926A JP6245441B2 (en) 2014-02-10 2014-02-10 Method for manufacturing metal honeycomb catalyst device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014022926A JP6245441B2 (en) 2014-02-10 2014-02-10 Method for manufacturing metal honeycomb catalyst device

Publications (2)

Publication Number Publication Date
JP2015147202A JP2015147202A (en) 2015-08-20
JP6245441B2 true JP6245441B2 (en) 2017-12-13

Family

ID=53891040

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014022926A Expired - Fee Related JP6245441B2 (en) 2014-02-10 2014-02-10 Method for manufacturing metal honeycomb catalyst device

Country Status (1)

Country Link
JP (1) JP6245441B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1146148A (en) * 1981-06-30 1983-05-10 James Den Hartog Ordered bed packing module
US4711009A (en) * 1986-02-18 1987-12-08 W. R. Grace & Co. Process for making metal substrate catalytic converter cores
US4849274A (en) * 1987-06-19 1989-07-18 W. R. Grace & Co.-Conn. Honeycomb fluid conduit
JP3277261B2 (en) * 1993-05-01 2002-04-22 東洋ラジエーター株式会社 Method of forming catalyst film for exhaust gas purification
JPH1043603A (en) * 1996-08-02 1998-02-17 Nissan Motor Co Ltd Catalytic structure for purifying automotive exhaust gas and its manufacture
JPH11138020A (en) * 1997-11-05 1999-05-25 Toyota Motor Corp Honeycomb-like catalyst carrier and production thereof
JP2006326476A (en) * 2005-05-25 2006-12-07 Toyota Motor Corp Emission gas cleaning catalyst
DE102009018422A1 (en) * 2009-04-22 2010-11-04 Emitec Gesellschaft Für Emissionstechnologie Mbh Process for producing a coated honeycomb body
KR101112662B1 (en) * 2010-04-05 2012-02-15 주식회사 아모그린텍 Metal Catalyst Support of Mass and Catalyst Convertor Using the Same

Also Published As

Publication number Publication date
JP2015147202A (en) 2015-08-20

Similar Documents

Publication Publication Date Title
JP5616430B2 (en) Honeycomb body that can be heated in multiple stages
JP4272520B2 (en) Substrate having catalyst composition on both surfaces and method for producing the same
EP3218326B1 (en) High capacity structures and monoliths via paste imprinting
US10052586B2 (en) Processing apparatus equipped with catalyst-supporting honeycomb structure, and method for manufacturing same
JP6071763B2 (en) Carbon nanotube sheet manufacturing method and carbon nanotube sheet
JP7180863B2 (en) Method for manufacturing all-solid-state battery
JP4634138B2 (en) Plasma generating electrode and plasma reactor
JP5909436B2 (en) Method for manufacturing treatment apparatus having catalyst-supporting honeycomb structure
JP6245441B2 (en) Method for manufacturing metal honeycomb catalyst device
US12113201B2 (en) Method for manufacturing all-solid-state battery
CN103906904A (en) Method for applying brazing material to metal honeycomb matrix, metal honeycomb matrix and manufacturing method thereof
EP1475150B1 (en) Honeycomb body manufacturing method
US6276595B1 (en) Process and gas-permeable brazing foil for the production of a metallic honeycomb body
CN111263661B (en) Exhaust gas purifying device using metal base material and method for manufacturing same
JP2007534500A5 (en)
WO2007081032A1 (en) Electrode device for plasma discharge
WO2016002789A1 (en) Method for manufacturing multilayer electronic component
KR101048259B1 (en) Honeycomb manufacturing method and apparatus
JP2018049717A (en) Method and device for manufacturing electrode
JP4993915B2 (en) Liquid application and drying method
JP2009274927A (en) Exothermic substrate, microreactor using it, and method of manufacturing exothermic substrate
JPH0545297B2 (en)
JP6098263B2 (en) Electrode manufacturing method and electrode manufacturing apparatus
KR100534082B1 (en) Electric heater manufacturing method
WO2005056183A1 (en) Exhaust gas purifying metal carrier-use laminate, production method for exhaust gas purifying metal carrier, exhaust gas purifying metal carrier and exhaust gas purifying filter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170816

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171031

R151 Written notification of patent or utility model registration

Ref document number: 6245441

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees