JPH1066878A - Photocatalyst body - Google Patents

Photocatalyst body

Info

Publication number
JPH1066878A
JPH1066878A JP8247307A JP24730796A JPH1066878A JP H1066878 A JPH1066878 A JP H1066878A JP 8247307 A JP8247307 A JP 8247307A JP 24730796 A JP24730796 A JP 24730796A JP H1066878 A JPH1066878 A JP H1066878A
Authority
JP
Japan
Prior art keywords
film
photocatalyst
metal oxide
substrate
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8247307A
Other languages
Japanese (ja)
Other versions
JP3781065B2 (en
Inventor
Tomoko Noguchi
智子 野口
Masahito Yoshikawa
雅人 吉川
Nobuko Kato
信子 加藤
Toshio Naito
壽夫 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP24730796A priority Critical patent/JP3781065B2/en
Publication of JPH1066878A publication Critical patent/JPH1066878A/en
Application granted granted Critical
Publication of JP3781065B2 publication Critical patent/JP3781065B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Catalysts (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PROBLEM TO BE SOLVED: To prevent the deterioration irrespective of the kind of backing, to increase the crystallinity, orientation, etc., of a photocatalyst, and to improve photocatalytic activity by providing a substrate film such as a thin metal film and a thin metal oxide film between the backing and a photocatalyst film. SOLUTION: In a photocatalyst body 1, a photocatalyst film 4 is formed on a backing 2 through a substrate film 3. As regards the backing 2, its material and shape are not restricted in particular, and an organic material such as a fabric or nonwoven fabric of a plastic material such as poly(methyl methacrylate) and silicone, synthetic fibers, natural fibers, semisynthetic fibers, etc., an inorganic material such as glass, quartz, ceramics, and silica, a metallic material such as aluminum and stainless steel, and others are used. The substrate film 3 is not restricted particularly, for example, a thin metal film of Ti, Al, Co, etc., and a thin metal oxide film of SiO, SiO2 , BeO, etc., are named. A metal oxide film of TiO2 , ZnO, WO3 , Fe2 O3 , SrTiO3 , etc., is used as the photocatalyst film 4.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、水浄化、空気浄
化、消臭、油分の分解等に有効に用いられる光触媒体に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a photocatalyst which is effectively used for water purification, air purification, deodorization, oil decomposition, and the like.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
TiO2,ZnO,WO3,Fe23,SrTiO3等の
金属酸化物が光触媒として水浄化、空気浄化、消臭、油
分の分解などに広く使用されている。このような光触媒
は、通常粉末状で用いられている。この粉末状の光触媒
を固定化するためには、例えば粉末にバインダーとして
樹脂やゴムなどを混ぜて練り、それを基材に塗って数百
℃で焼結させるバインダー固定法がある。また、光触媒
を基材に膜状に密着させる方法として金属アルコキシド
溶液を用いてゲルコーティング膜を作成し、それを数百
℃で加熱するゾル−ゲル法で得た金属酸化物膜を光触媒
に用いることも知られている。しかし、バインダー固定
法もゾル−ゲル法も、上述したように金属酸化物膜の作
成時に高温で加熱するため、耐熱性の基材しか用いるこ
とができない。一方、スパッタリング法により得られる
金属酸化物膜を光触媒膜として用いれば、基材の種類を
選ばないで光触媒膜がコーティングされた光触媒体を得
ることができるが、この場合であっても、例えば有機物
質の基材を用いると、基材と光触媒膜が直接接触するた
めに、基材自身が光触媒作用を受けて劣化したり、ま
た、基材に例えばガラスなどのアモルファス(無定形、
非晶質)な材料を用いた場合、光触媒膜が薄い程、基材
の影響を受けてその結晶性や配向性が悪くなり、光触媒
膜の触媒活性が低下する可能性が生じる。
2. Description of the Related Art
Metal oxides such as TiO 2 , ZnO, WO 3 , Fe 2 O 3 , and SrTiO 3 are widely used as photocatalysts for water purification, air purification, deodorization, oil decomposition, and the like. Such a photocatalyst is usually used in a powder form. In order to fix the powdered photocatalyst, there is a binder fixing method in which, for example, a resin or rubber is mixed and kneaded with a powder as a binder, and the mixture is applied to a base material and sintered at several hundred degrees Celsius. Also, as a method of adhering the photocatalyst to the substrate in a film form, a gel coating film is prepared using a metal alkoxide solution, and a metal oxide film obtained by a sol-gel method of heating it at several hundred degrees Celsius is used as the photocatalyst. It is also known. However, in both the binder fixing method and the sol-gel method, since the metal oxide film is heated at a high temperature as described above, only a heat-resistant base material can be used. On the other hand, if a metal oxide film obtained by a sputtering method is used as a photocatalyst film, a photocatalyst coated with a photocatalyst film can be obtained regardless of the type of the base material. When a substrate of a substance is used, since the substrate and the photocatalyst film are in direct contact, the substrate itself is deteriorated by the photocatalysis, and the substrate is made of amorphous material such as glass (amorphous,
When an (amorphous) material is used, as the photocatalyst film is thinner, the crystallinity and orientation thereof are deteriorated due to the influence of the base material, and the catalytic activity of the photocatalyst film may decrease.

【0003】本発明は上記事情に鑑みなされたもので、
担持する基材の種類を選ばず、取扱性及び耐久性に優れ
るのみならず、触媒効率も良好な光触媒体を提供するこ
とを目的とする。
[0003] The present invention has been made in view of the above circumstances,
It is an object of the present invention to provide a photocatalyst that is not only excellent in handleability and durability, but also excellent in catalytic efficiency, regardless of the type of substrate to be supported.

【0004】[0004]

【課題を解決するための手段及び発明の実施の形態】本
発明者らは、上記目的を達成するため鋭意検討を行った
結果、基材と光触媒膜との間に金属薄膜や金属酸化物薄
膜などの下地膜を設けることにより、基材の種類によら
ず、その劣化を防止することができると共に、光触媒膜
の結晶性や配向性などを高めることができ、これによっ
て光触媒活性を向上させることができることを知見する
と共に、この場合、特に下地膜及び光触媒膜として、ス
パッタリング法により得られる薄膜を使用すれば、基材
の耐熱性も問題とならず、上記目的をより有効に達成で
きることを見出し、本発明をなすに至った。
Means for Solving the Problems and Embodiments of the Invention The present inventors have conducted intensive studies to achieve the above object, and as a result, have found that a metal thin film or a metal oxide thin film is provided between a substrate and a photocatalytic film. By providing a base film such as the above, regardless of the type of the base material, the deterioration can be prevented, and the crystallinity and orientation of the photocatalytic film can be enhanced, thereby improving the photocatalytic activity. In this case, it is found that, in this case, if a thin film obtained by a sputtering method is used as the base film and the photocatalyst film, the heat resistance of the substrate does not become a problem, and the above object can be more effectively achieved. The present invention has been accomplished.

【0005】従って、本発明は(1)基材上に下地膜を
介在させて光触媒膜を形成してなることを特徴とする光
触媒体、(2)下地膜が金属薄膜又は金属酸化物薄膜で
ある上記(1)の光触媒体、(3)下地膜が、金属ター
ゲットを用いてスパッタリングを行うことによって得ら
れる金属薄膜、又は酸素分子を有するガスを含有する不
活性ガス中で金属ターゲットを用いてリアクティブスパ
ッタリングを行うことによって得られる金属酸化物薄膜
であると共に、光触媒膜が、酸素分子を有するガスを含
有する不活性ガス中で金属ターゲットを用いてリアクテ
ィブスパッタリングを行うことによって得られる金属酸
化物膜である上記(1)又は(2)の光触媒体を提供す
る。
Accordingly, the present invention provides (1) a photocatalyst characterized in that a photocatalyst film is formed by interposing a base film on a substrate, and (2) the base film is a metal thin film or a metal oxide thin film. The photocatalyst of (1) above, (3) the base film is formed of a metal thin film obtained by performing sputtering using a metal target, or a metal target in an inert gas containing a gas containing oxygen molecules. A metal oxide thin film obtained by performing reactive sputtering, and a photocatalytic film formed by performing reactive sputtering using a metal target in an inert gas containing a gas having oxygen molecules. The photocatalyst according to the above (1) or (2), which is a material film, is provided.

【0006】以下、本発明につき図面を参照して更に詳
しく説明する。図1は、本発明の光触媒体の構成を説明
する光触媒体1の断面図である。この光触媒体1は、基
材2上に下地膜3を介在させて光触媒膜4を形成したも
のである。ここで、該基材としては、その材質や形状は
特に限定されず、通常光触媒体の基材として用いられて
いるものであればいずれのものでもよく、例えばポリメ
チルメタクリレート、ポリカーボネート、シリコーン、
ポリスチレン等のプラスチック材、ポリエステル系,ポ
リアミド系,ポリビニルアルコール系などの合成繊維、
天然繊維、半合成繊維等からなる織布又は不織布などの
有機系材料やガラス、石英、セラミックス、シリカ等の
無機質材料及びアルミ、ステンレス等の金属材料などの
無機系材料を使用することができるが、本発明は、基材
が有機系材料(有機物質)からなる場合に、特に効果的
である。
Hereinafter, the present invention will be described in more detail with reference to the drawings. FIG. 1 is a cross-sectional view of a photocatalyst 1 illustrating the configuration of the photocatalyst of the present invention. The photocatalyst 1 is obtained by forming a photocatalyst film 4 on a substrate 2 with a base film 3 interposed therebetween. Here, the material and the shape of the substrate are not particularly limited, and any material may be used as long as it is generally used as a substrate of a photocatalyst. For example, polymethyl methacrylate, polycarbonate, silicone,
Plastic materials such as polystyrene, synthetic fibers such as polyester, polyamide and polyvinyl alcohol,
Organic materials such as woven or non-woven fabrics made of natural fibers, semi-synthetic fibers and the like, inorganic materials such as glass, quartz, ceramics and silica, and inorganic materials such as aluminum and stainless steel can be used. The present invention is particularly effective when the substrate is made of an organic material (organic substance).

【0007】下地膜としては、上記基材と光触媒膜との
間に介在させることができ、基材を劣化させることな
く、光触媒膜の触媒活性を損わないものであれば、その
種類は特に限定されず、例えばTi,Al,Co,C
r,Cu,Fe,Au,Ag,Pt,Pd,In,M
g,Sn,Zn等の金属薄膜やSiO,SiO2,Be
O,MgO,Al23,SnO2,ZrO2等の金属酸化
物薄膜などを挙げることができるが、本発明の目的を鑑
みれば、金属薄膜の場合、これらの中でも特にAg,N
i,Cu,Au,Ti,Al,Pt,Pd等が好適に使
用され、金属酸化物薄膜の場合、光触媒活性を有さない
SiO,SiO2,Al23,SnO2等が好適に使用さ
れる。この下地膜の厚さは特に制限されるものではない
が、本発明の目的を達成するには、通常数十〜数千Åの
範囲とすることが好ましい。下地膜は、公知の湿式めっ
き、無電解めっき、真空蒸着法、イオンプレーティング
法、CVD法、ゾル−ゲル法等によって上記基材上に膜
形成することもできるが、後述するスパッタリング法に
より成膜すれば、成膜に際して基材の耐熱性が問題とな
らず、基材の材質の選択の余地が広がるので好適であ
る。
[0007] The type of the undercoating film is not particularly limited as long as it can be interposed between the base material and the photocatalytic film and does not deteriorate the base material and does not impair the catalytic activity of the photocatalytic film. Without limitation, for example, Ti, Al, Co, C
r, Cu, Fe, Au, Ag, Pt, Pd, In, M
g, Sn, Zn and other metal thin films, SiO, SiO 2 , Be
Metal oxide thin films such as O, MgO, Al 2 O 3 , SnO 2 , and ZrO 2 can be mentioned. In view of the object of the present invention, in the case of metal thin films, Ag, N
i, Cu, Au, Ti, Al, Pt, Pd and the like are preferably used, and in the case of a metal oxide thin film, SiO, SiO 2 , Al 2 O 3 , SnO 2 and the like having no photocatalytic activity are preferably used. Is done. Although the thickness of the underlayer is not particularly limited, it is usually preferably in the range of several tens to several thousand degrees to achieve the object of the present invention. The base film may be formed on the above-mentioned base material by a known wet plating, electroless plating, vacuum deposition method, ion plating method, CVD method, sol-gel method or the like, but may be formed by a sputtering method described later. It is preferable to form a film because the heat resistance of the base material does not become a problem during the film formation, and the room for selection of the material of the base material is widened.

【0008】光触媒膜としては、TiO2,ZnO,W
3,Fe23,SrTiO3等の金属酸化物膜が用いら
れる。ここで、光触媒膜の厚さは特に制限されるもので
はなく、光触媒体の用途等により種々選定することでき
るが、本発明の場合、上記下地膜の存在によって光触媒
膜の触媒活性を良好に発揮するものであるので、数百〜
数千Åの比較的薄い光触媒膜の場合、特に触媒活性の向
上という点において効果的である。なお、下地膜と光触
媒膜との膜厚比は、特に制限されるものではないが、通
常下地膜/光触媒膜=0.1〜10程度とすると好適で
ある。光触媒膜も上記下地膜と同様に、公知のバインダ
ー固定法、真空蒸着法、イオンプレーティング法、CV
D法、ゾル−ゲル法等の方法によって成膜することがで
きるが、スパッタリング法が好適に採用される。
As the photocatalytic film, TiO 2 , ZnO, W
A metal oxide film of O 3 , Fe 2 O 3 , SrTiO 3 or the like is used. Here, the thickness of the photocatalyst film is not particularly limited and can be variously selected depending on the use of the photocatalyst, etc., but in the case of the present invention, the catalytic activity of the photocatalyst film is favorably exhibited by the presence of the undercoat film. Several hundred to
In the case of a relatively thin photocatalytic film having a thickness of several thousand mm, it is particularly effective in improving the catalytic activity. The thickness ratio of the base film and the photocatalyst film is not particularly limited, but it is generally preferable that the base film / photocatalyst film is about 0.1 to 10. The photocatalyst film is made of a known binder fixing method, vacuum deposition method, ion plating method, CV
The film can be formed by a method such as a D method or a sol-gel method, but a sputtering method is preferably employed.

【0009】以下、本発明の下地膜及び光触媒膜を成膜
する方法として好適に採用されるスパッタリング法につ
いて述べる。
Hereinafter, a sputtering method suitably employed as a method for forming a base film and a photocatalytic film of the present invention will be described.

【0010】金属薄膜からなる下地膜を形成するスパッ
タリング法は、真空又は不活性ガス中で金属ターゲット
を用いてスパッタリングを行うものであるが、ここで用
いる金属ターゲットとしては、上述した金属薄膜の中で
所望する金属薄膜を形成する金属である。
[0010] The sputtering method for forming a base film made of a metal thin film is to perform sputtering using a metal target in a vacuum or an inert gas. Is a metal that forms a desired metal thin film.

【0011】また、金属酸化物からなる下地膜を形成す
る(リアクティブ)スパッタリング法は、酸素分子を含
むガスを含有する不活性ガス中で金属ターゲットを用い
て、これらを酸化させながらスパッタリングを行うもの
であるが、ここで用いる金属ターゲットとしては、上述
した金属酸化物薄膜の中で所望する金属酸化物MeO x
(MeはSi,Al,Mg,Be,Zr等の金属を示
し、xは金属の種類によって異なるが、0〜10、好ま
しくは0〜5の範囲の正数であり、xは必ずしも金属の
価数に相当していなくともよい)に対応したSi,A
l,Mg,Be,Zr等の金属である。
Further, a base film made of a metal oxide is formed.
Reactive sputtering involves the use of oxygen molecules.
Using a metal target in an inert gas containing
That perform sputtering while oxidizing these
However, as the metal target used here,
Metal oxide MeO of the desired metal oxide thin film x
(Me represents a metal such as Si, Al, Mg, Be, Zr, etc.
X varies depending on the type of metal, but is preferably 0 to 10,
Or a positive number in the range of 0 to 5, and x is not necessarily
Si, A corresponding to (a does not need to correspond to a valence)
1, metals such as Mg, Be, and Zr.

【0012】また、光触媒膜の場合、金属ターゲットと
しては、所望する金属酸化物MeOx(MeはFe,
W,SrTi ,Ti,Zn等の金属を示し、xは金属の
種類によって異なるが、0〜10、好ましくは0〜5の
範囲の正数であり、xは必ずしも金属の価数に相当して
いなくともよい)に対応した金属であり、特には光触媒
として優れたTiO2,ZnO,WO3,Fe23,Sr
TiO3等に対応した金属であり、このような金属ター
ゲットを酸素分子を含むガスを含有する不活性ガス中で
酸化させながらスパッタリングを行って、光触媒作用を
有する金属酸化物膜からなる光触媒膜を形成する。
In the case of a photocatalytic film, a metal target and
Then, the desired metal oxide MeOx(Me is Fe,
W, SrTi , Ti, Zn, etc., and x represents the metal
Depending on the type, 0-10, preferably 0-5
Is a positive number in the range, where x necessarily corresponds to the valence of the metal
Is not required), especially photocatalysts
Excellent TiOTwo, ZnO, WOThree, FeTwoOThree, Sr
TiOThreeMetal, etc.
Get in an inert gas containing gas containing oxygen molecules
Sputtering while oxidizing, photocatalysis
A photocatalyst film made of a metal oxide film is formed.

【0013】ここで、スパッタリング用の不活性ガスと
しては、ヘリウム、アルゴン等が用いられ、特に工業的
に安価なアルゴンが好ましい。また、リアクティブスパ
ッタリング法の場合、酸素分子を有するガス(酸化性ガ
ス)を含有する不活性ガスの存在下で上記金属ターゲッ
トより金属をスパッタさせ、所望の基材(下地膜の場
合)又は下地膜(光触媒膜の場合)上にこのスパッタさ
れた金属の酸化物膜を形成するものであるが、上記酸化
性ガスとしては、酸素、オゾン、空気、水等が挙げら
れ、通常は酸素が用いられる。なお、上記不活性ガスと
酸化性ガスとの流量比(容量比)は適宜選定されるが、
不活性ガス:酸化性ガス=100:0.1〜100:1
000の範囲とすることが好ましい。
Here, as the inert gas for sputtering, helium, argon, or the like is used, and particularly, argon which is industrially inexpensive is preferable. In the case of the reactive sputtering method, a metal is sputtered from the above-mentioned metal target in the presence of an inert gas containing a gas having an oxygen molecule (oxidizing gas), and a desired base material (in the case of a base film) or a desired base material is formed. The sputtered metal oxide film is formed on the ground film (in the case of a photocatalytic film). Examples of the oxidizing gas include oxygen, ozone, air, and water. Can be The flow ratio (volume ratio) between the inert gas and the oxidizing gas is appropriately selected,
Inert gas: oxidizing gas = 100: 0.1-100: 1
000 is preferable.

【0014】本発明において、スパッタリング装置、リ
アクティブスパッタリング装置、スパッタリング圧力等
のスパッタリング条件などは特に制限されず、公知の装
置、条件を採用することができる。例えば、DCマグネ
トロンスパッタリング、対向スパッタリングなどの装置
を用いることができ、またスパッタリング時の圧力は高
真空下から大気圧下とすることができるが、通常1mT
orr〜1Torrの真空下で行われる。
In the present invention, sputtering conditions such as a sputtering device, a reactive sputtering device, and a sputtering pressure are not particularly limited, and known devices and conditions can be employed. For example, an apparatus such as DC magnetron sputtering or facing sputtering can be used, and the pressure at the time of sputtering can be from high vacuum to atmospheric pressure.
It is performed under a vacuum of orr to 1 Torr.

【0015】なお、本発明の光触媒体は、基材としてプ
ラスチックフィルムを使用し、その表面に上記下地膜を
成膜し、さらにその上に上記光触媒膜を形成した後に、
プラスチックフィルムの裏面に粘着加工を施したものと
することもできる。このような光触媒体によれば、例え
ば蛍光灯の反射板の表面に貼着することによって、既存
の蛍光灯にでも貼り替え可能に使用することができる。
この場合、プラスチックフィルムとしては、特に制限さ
れないが、上記のような使用方法を考慮すれば、通常ポ
リプロピレン、ポリスチレン、ポリエチレンテレフタレ
ート、ポリカーボネート、ポリ塩化ビニル等のプラスチ
ックを厚さ数十〜数百μm程度のフィルム状に成形した
ものが好適に使用される。また、粘着加工としては、例
えば室内用品のような種々の対象物に上記プラスチック
フィルムを貼り付けることができる限りその手段は特に
制限されるものではない。
In the photocatalyst of the present invention, a plastic film is used as a base material, the undercoat film is formed on the surface of the plastic film, and the photocatalyst film is further formed thereon.
The back surface of the plastic film may be subjected to adhesive processing. According to such a photocatalyst, for example, by attaching the photocatalyst to the surface of a reflector of a fluorescent lamp, the photocatalyst can be used so as to be replaceable with an existing fluorescent lamp.
In this case, the plastic film is not particularly limited, but in consideration of the above-described method of use, usually, a plastic such as polypropylene, polystyrene, polyethylene terephthalate, polycarbonate, or polyvinyl chloride has a thickness of about several tens to several hundreds μm. What was shape | molded in the film shape of this is used suitably. The means for the adhesive processing is not particularly limited as long as the plastic film can be attached to various objects such as indoor articles.

【0016】本発明の光触媒体は、公知の光触媒体と同
様にして使用することができ、例えばこの光触媒体の表
面に光を照射することによって表面に形成された光触媒
膜が励起し、殺菌、脱臭等の作用を発揮するもので、水
浄化、空気浄化、消臭、油分の分解などに用いることが
できるものである。この際、基材と光触媒膜との間に下
地膜が介在していることにより、基材が例えば有機系材
料からなる場合であっても基材が劣化することもなく長
時間使用することができ、また、例えば基材がアモルフ
ァスな材料からなる場合であっても光触媒膜の光触媒活
性を良好に発揮させることができる。
The photocatalyst of the present invention can be used in the same manner as a known photocatalyst. For example, by irradiating the surface of the photocatalyst with light, the photocatalyst film formed on the surface is excited to sterilize the photocatalyst. It exhibits an effect such as deodorization, and can be used for water purification, air purification, deodorization, oil decomposition, and the like. At this time, since the base film is interposed between the base material and the photocatalytic film, the base material can be used for a long time without deterioration even if the base material is made of, for example, an organic material. In addition, even when the base material is made of an amorphous material, the photocatalytic activity of the photocatalytic film can be sufficiently exhibited.

【0017】[0017]

【発明の効果】本発明の光触媒体は、基材を劣化させる
ことなく長時間使用することが可能であると共に、光触
媒膜の光触媒活性を良好に発揮させることができ、光触
媒膜が薄い場合であっても高い光触媒活性が得られる。
The photocatalyst of the present invention can be used for a long time without deteriorating the base material, can exhibit the photocatalytic activity of the photocatalyst film well, and can be used when the photocatalyst film is thin. Even with this, high photocatalytic activity can be obtained.

【0018】[0018]

【実施例】以下、実施例及び比較例を示し、本発明を具
体的に説明するが、本発明は下記の実施例に制限される
ものではない。
EXAMPLES The present invention will be described below in detail with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples.

【0019】〔実施例1,比較例1〕4×5(cm2
のポリエステル不織布を基材として使用し、この基材に
対し、対向スパッタリング法(ターゲット Ti)で、
不活性ガスとしてアルゴンガス5ml/分をスパッタ装
置内に流し、ガス圧5mTorr、ターゲット投入パワ
ー1.2kWで基材表面全体に5分成膜を行って、基材
上に3000ÅのTi薄膜からなる下地膜を形成した
後、対向スパッタリング法(ターゲット Ti)で、酸
化用ガスとして酸素5ml/分をアルゴンガス5ml/
分とともにスパッタ装置内に流し、ガス圧5mTor
r、ターゲット投入パワー1.2kWで基材表面に形成
された下地膜表面全体に60分成膜を行って、3000
ÅのTiO2薄膜からなる光触媒膜を形成して実施例1
の光触媒体を得た。一方、実施例1において、下地膜を
介在させない以外は実施例1と同様にして基材表面全体
に光触媒膜を形成して比較例1の光触媒体を得た。
Example 1, Comparative Example 1 4 × 5 (cm 2 )
Polyester nonwoven fabric as a substrate, and this substrate is subjected to a facing sputtering method (target Ti),
5 ml / min of an argon gas is flowed into the sputtering apparatus as an inert gas, and a film is formed on the entire surface of the substrate for 5 minutes at a gas pressure of 5 mTorr and a target input power of 1.2 kW. After forming the base film, 5 ml / min of oxygen was used as an oxidizing gas and 5 ml / min of argon gas was applied by a facing sputtering method (target Ti).
With a gas pressure of 5 mTorr.
r, a film was formed on the entire surface of the base film formed on the surface of the base material at a target input power of 1.2 kW for 60 minutes, and 3000
Example 1 of forming a photocatalytic film composed of a TiO 2 thin film of Å
Was obtained. On the other hand, a photocatalyst film of Comparative Example 1 was obtained by forming a photocatalyst film on the entire surface of the base material in the same manner as in Example 1 except that the base film was not interposed.

【0020】これらの光触媒体について、サンシャイン
ウェザーメーターに500時間暴露する前後の光触媒体
の破壊強度を測定し、その破壊強度の変化を調べた。結
果を表1に示す。
With respect to these photocatalysts, the breaking strength of the photocatalyst before and after exposure to a sunshine weather meter for 500 hours was measured, and the change in the breaking strength was examined. Table 1 shows the results.

【0021】[0021]

【表1】 表1によれば、本発明の光触媒体は光暴露による基材の
劣化を防止することが認められる。
[Table 1] According to Table 1, it is recognized that the photocatalyst of the present invention prevents deterioration of the substrate due to light exposure.

【0022】〔実施例2,比較例2〕実施例1におい
て、基材として4×5(cm2)のパイレックスガラス
を使用した以外は実施例1と同様にして実施例2の光触
媒体を得た。一方、比較例1において、基材として4×
5(cm2)のパイレックスガラスを使用した以外は比
較例1と同様にして比較例2の光触媒体を得た。
Example 2, Comparative Example 2 A photocatalyst of Example 2 was obtained in the same manner as in Example 1, except that Pyrex glass of 4 × 5 (cm 2 ) was used as the base material. Was. On the other hand, in Comparative Example 1, 4 ×
A photocatalyst of Comparative Example 2 was obtained in the same manner as in Comparative Example 1, except that Pyrex glass of 5 (cm 2 ) was used.

【0023】これらの光触媒体を22mlのアマランス
(赤色顔料)溶液(3mg/リットル)中に浸し、25
0W超高圧水銀灯(300nm以下をカット)を照射し
て、その濃度変化を紫外−可視分光光度計で測定し、ア
マランスの分解率を求めた。結果を表2に示す。
These photocatalysts were immersed in 22 ml of an amaranth (red pigment) solution (3 mg / liter),
Irradiation was performed with a 0 W ultra-high pressure mercury lamp (cut at 300 nm or less), and the change in concentration was measured with an ultraviolet-visible spectrophotometer to determine the decomposition rate of amaranth. Table 2 shows the results.

【0024】[0024]

【表2】 表2によれば、本発明の光触媒体は光触媒活性を良好に
発揮することが認められる。
[Table 2] According to Table 2, it is recognized that the photocatalyst of the present invention exhibits good photocatalytic activity.

【0025】〔実施例3,比較例3〕4×5(cm2
のポリエステルフィルムを基材として使用し、この基材
に対し、対向スパッタリング法(ターゲット Al)
で、不活性ガスとしてアルゴンガス5ml/分をスパッ
タ装置内に流し、ガス圧5mTorr、ターゲット投入
パワー1.0kWで基材表面全体に1分間成膜を行っ
て、基材上に500ÅのAl薄膜からなる下地膜を形成
した後、対向スパッタリング法(ターゲット Ti)
で、酸化用ガスとして酸素5ml/分をアルゴンガス5
ml/分とともにスパッタ装置内に流し、ガス圧5mT
orr、ターゲット投入パワー1.2kWで基材表面に
形成された下地膜表面全体に60分間成膜を行って、3
000ÅのTiO2薄膜からなる光触媒膜を形成して実
施例3の光触媒体を得た。一方、実施例3において、下
地膜を介在させない以外は実施例3と同様にして基材表
面全体に光触媒膜を形成して比較例3の光触媒体を得
た。
Example 3, Comparative Example 3 4 × 5 (cm 2 )
Polyester film is used as a substrate, and this substrate is subjected to a facing sputtering method (target Al).
Then, 5 ml / min of an argon gas was flowed into the sputtering apparatus as an inert gas, and a film was formed on the entire surface of the substrate at a gas pressure of 5 mTorr and a target input power of 1.0 kW for 1 minute. After forming a base film consisting of, counter facing sputtering method (target Ti)
Then, 5 ml / min of oxygen was used as an oxidizing gas and argon gas 5
flow into the sputtering device together with the gas pressure of 5 mT
orr, a target input power of 1.2 kW, a film was formed on the entire surface of the base film formed on the base material surface for 60 minutes, and 3
A photocatalyst film of a TiO 2 thin film of 2,000 mm was formed to obtain a photocatalyst of Example 3. On the other hand, a photocatalyst film of Comparative Example 3 was obtained by forming a photocatalyst film on the entire surface of the base material in the same manner as in Example 3 except that the base film was not interposed.

【0026】これらの光触媒体を22mlのアマランス
溶液(3mg/リットル)中に浸し、250W超高圧水
銀灯(300nm以下をカット)を照射して、その濃度
変化を紫外−可視分光光度計で測定し、アマランスの分
解率を求めた。なお、基材のみについても同様の測定を
行った。結果を表3に示す。
These photocatalysts were immersed in 22 ml of an amaranth solution (3 mg / liter), irradiated with a 250 W ultra-high pressure mercury lamp (cut at 300 nm or less), and their concentration change was measured with an ultraviolet-visible spectrophotometer. The degradation rate of amaranth was determined. Note that the same measurement was performed for only the base material. Table 3 shows the results.

【0027】[0027]

【表3】 表3によれば、本発明の光触媒体は光触媒活性を良好に
発揮することが認められる。
[Table 3] According to Table 3, it is recognized that the photocatalyst of the present invention exhibits good photocatalytic activity.

【0028】〔実施例4,比較例4〕4×5(cm2
のポリエステルフィルムを基材として使用し、この基材
に対し、対向スパッタリング法(ターゲット Sn
2)で、不活性ガスとしてアルゴンガス5ml/分を
スパッタ装置内に流し、ガス圧5mTorr、ターゲッ
ト投入パワー1.2kWで基材表面全体に5分成膜を行
って、基材上に3000ÅのSnO2薄膜からなる下地
膜を形成した後、対向スパッタリング法(ターゲット
Ti)で、酸化用ガスとして酸素5ml/分をアルゴン
ガス5ml/分とともにスパッタ装置内に流し、ガス圧
5mTorr、ターゲット投入パワー1.2kWで基材
表面に形成された下地膜表面全体に60分成膜を行っ
て、3000ÅのTiO2薄膜からなる光触媒膜を形成
して実施例4の光触媒体を得た。一方、実施例4におい
て、下地膜を介在させない以外は実施例4と同様にして
基材表面全体に光触媒膜を形成して比較例4の光触媒体
を得た。
Example 4, Comparative Example 4 4 × 5 (cm 2 )
Is used as a substrate, and the substrate is subjected to a facing sputtering method (target Sn
O 2 ), 5 ml / min of an argon gas as an inert gas is flowed into the sputtering apparatus, and a film is formed on the entire surface of the substrate for 5 minutes at a gas pressure of 5 mTorr and a target input power of 1.2 kW. After forming a base film composed of a SnO 2 thin film, a facing sputtering method (target
At Ti), 5 ml / min of oxygen as an oxidizing gas was flown into the sputtering apparatus together with 5 ml / min of argon gas, and the entire surface of the base film formed on the surface of the base material at a gas pressure of 5 mTorr and a target input power of 1.2 kW was applied for 60 minutes. The photocatalyst of Example 4 was obtained by forming a film and forming a photocatalyst film composed of a 3000 ° TiO 2 thin film. On the other hand, a photocatalyst film of Comparative Example 4 was obtained by forming a photocatalyst film on the entire surface of the base material in the same manner as in Example 4 except that no base film was interposed.

【0029】これらの光触媒体について、サンシャイン
ウェザーメーターに500時間暴露する前後の光触媒体
の破壊強度を測定し、その破壊強度の変化を調べた。結
果を表4に示す。
With respect to these photocatalysts, the breaking strength of the photocatalyst before and after exposure to a sunshine weather meter for 500 hours was measured, and the change in the breaking strength was examined. Table 4 shows the results.

【0030】[0030]

【表4】 表4によれば、本発明の光触媒体は光暴露による基材の
劣化を防止することが認められる。
[Table 4] According to Table 4, it is recognized that the photocatalyst of the present invention prevents deterioration of the base material due to light exposure.

【0031】〔実施例5,比較例5〕実施例4におい
て、基材として4×5(cm2)のパイレックスガラス
を使用した以外は実施例4と同様にして実施例5の光触
媒体を得た。一方、比較例4において、基材として4×
5(cm2)のパイレックスガラスを使用した以外は比
較例4と同様にして比較例5の光触媒体を得た。
Example 5, Comparative Example 5 A photocatalyst of Example 5 was obtained in the same manner as in Example 4, except that Pyrex glass of 4 × 5 (cm 2 ) was used as the base material. Was. On the other hand, in Comparative Example 4, 4 ×
A photocatalyst of Comparative Example 5 was obtained in the same manner as in Comparative Example 4, except that Pyrex glass of 5 (cm 2 ) was used.

【0032】これらの光触媒体を22mlのアマランス
溶液(3mg/リットル)中に浸し、250W超高圧水
銀灯(300nm以下をカット)を照射して、その濃度
変化を紫外−可視分光光度計で測定し、アマランスの分
解率を求めた。結果を表5に示す。
These photocatalysts were immersed in 22 ml of amaranth solution (3 mg / liter), irradiated with a 250 W ultra-high pressure mercury lamp (cut below 300 nm), and the change in concentration was measured with an ultraviolet-visible spectrophotometer. The degradation rate of amaranth was determined. Table 5 shows the results.

【0033】[0033]

【表5】 表5によれば、本発明の光触媒体は光触媒活性を良好に
発揮することが認められる。
[Table 5] According to Table 5, it is recognized that the photocatalyst of the present invention exhibits good photocatalytic activity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の構成を説明する断面図である。FIG. 1 is a cross-sectional view illustrating a configuration of the present invention.

【符号の説明】 1 光触媒体 2 基材 3 下地膜 4 光触媒膜[Description of Signs] 1 Photocatalyst 2 Base material 3 Base film 4 Photocatalytic film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 基材上に下地膜を介在させて光触媒膜を
形成してなることを特徴とする光触媒体。
1. A photocatalyst comprising a photocatalyst film formed on a base material with a base film interposed therebetween.
【請求項2】 基材が有機系材料からなる請求項1記載
の光触媒体。
2. The photocatalyst according to claim 1, wherein the substrate is made of an organic material.
【請求項3】 下地膜が金属薄膜又は金属酸化物薄膜で
ある請求項1又は2記載の光触媒体。
3. The photocatalyst according to claim 1, wherein the base film is a metal thin film or a metal oxide thin film.
【請求項4】 下地膜が、金属ターゲットを用いてスパ
ッタリングを行うことによって得られる金属薄膜、又は
酸素分子を有するガスを含有する不活性ガス中で金属タ
ーゲットを用いてリアクティブスパッタリングを行うこ
とによって得られる金属酸化物薄膜であると共に、光触
媒膜が、酸素分子を有するガスを含有する不活性ガス中
で金属ターゲットを用いてリアクティブスパッタリング
を行うことによって得られる金属酸化物膜である請求項
1、2又は3記載の光触媒体。
4. The method according to claim 1, wherein the base film is a metal thin film obtained by performing sputtering using a metal target, or by performing reactive sputtering using a metal target in an inert gas containing a gas having oxygen molecules. The metal oxide thin film obtained, and the photocatalytic film is a metal oxide film obtained by performing reactive sputtering using a metal target in an inert gas containing a gas having oxygen molecules. 4. The photocatalyst according to 2, 3 or 4.
【請求項5】 基材がプラスチックフィルムからなり、
該プラスチックフィルムの表面に下地膜を介在させて光
触媒膜を形成してなると共に、このプラスチックフィル
ムの裏面に粘着加工を施してなる請求項3又は4記載の
光触媒体。
5. The substrate comprises a plastic film,
The photocatalyst according to claim 3 or 4, wherein a photocatalytic film is formed on a surface of the plastic film with a base film interposed therebetween, and an adhesive process is performed on a back surface of the plastic film.
JP24730796A 1996-08-29 1996-08-29 Photocatalyst Expired - Lifetime JP3781065B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24730796A JP3781065B2 (en) 1996-08-29 1996-08-29 Photocatalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24730796A JP3781065B2 (en) 1996-08-29 1996-08-29 Photocatalyst

Publications (2)

Publication Number Publication Date
JPH1066878A true JPH1066878A (en) 1998-03-10
JP3781065B2 JP3781065B2 (en) 2006-05-31

Family

ID=17161471

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24730796A Expired - Lifetime JP3781065B2 (en) 1996-08-29 1996-08-29 Photocatalyst

Country Status (1)

Country Link
JP (1) JP3781065B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046488A1 (en) * 1999-12-21 2001-06-28 Nippon Sheet Glass Co., Ltd. Article coated with photocatalyst film, method for preparing the article and sputtering target for use in coating with the film
WO2003053577A1 (en) 2001-12-21 2003-07-03 Nippon Sheet Glass Co., Ltd. Member having photocatalytic function and method for manufacture thereof
WO2004108605A1 (en) * 2003-06-04 2004-12-16 Jong-Seob Shim Photocatalyst sterilizer
WO2004113064A1 (en) * 2003-06-20 2004-12-29 Nippon Sheet Glass Co., Ltd. Member having photocatalytic activity and multilayered glass
JP2005206229A (en) * 2004-01-26 2005-08-04 Mosho Tei Bottle-shaped container with protective film
JP2011116038A (en) * 2009-12-03 2011-06-16 Hosokawa Yoko Co Ltd Laminate and method for producing the same
JP2014054599A (en) * 2012-09-12 2014-03-27 Dainippon Printing Co Ltd Method for producing photocatalytic function material and photocatalytic substrate
JP2014523335A (en) * 2011-05-31 2014-09-11 ヴォルフガング・コールマン Production and application of catalytically active metal reactive foam materials
CN113274995A (en) * 2021-05-10 2021-08-20 天津大学 Doped strontium titanate semiconductor material and preparation method thereof
WO2023230111A1 (en) * 2022-05-26 2023-11-30 Intermolecular Inc. Oxide buffer layer to promote tio2 crystallinity and increase tio2 refractive index for optical applications

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001046488A1 (en) * 1999-12-21 2001-06-28 Nippon Sheet Glass Co., Ltd. Article coated with photocatalyst film, method for preparing the article and sputtering target for use in coating with the film
US6761984B2 (en) 1999-12-21 2004-07-13 Nippon Sheet Glass Co., Ltd. Article coated with photocatalyst film, method for preparing the article and sputtering target for use in coating with the film
WO2003053577A1 (en) 2001-12-21 2003-07-03 Nippon Sheet Glass Co., Ltd. Member having photocatalytic function and method for manufacture thereof
US7612015B2 (en) 2001-12-21 2009-11-03 Nippon Sheet Glass Company, Limited Member having photocatalytic function and method for manufacture thereof
US7230255B2 (en) 2003-06-04 2007-06-12 Jong-Seob Shim Photocatalyst sterilizer
WO2004108605A1 (en) * 2003-06-04 2004-12-16 Jong-Seob Shim Photocatalyst sterilizer
WO2004113064A1 (en) * 2003-06-20 2004-12-29 Nippon Sheet Glass Co., Ltd. Member having photocatalytic activity and multilayered glass
JP2005206229A (en) * 2004-01-26 2005-08-04 Mosho Tei Bottle-shaped container with protective film
JP2011116038A (en) * 2009-12-03 2011-06-16 Hosokawa Yoko Co Ltd Laminate and method for producing the same
JP2014523335A (en) * 2011-05-31 2014-09-11 ヴォルフガング・コールマン Production and application of catalytically active metal reactive foam materials
US9346041B2 (en) 2011-05-31 2016-05-24 Wolfgang Kollmann Production of a catalytically active, metallized reactive foam material and use thereof
JP2014054599A (en) * 2012-09-12 2014-03-27 Dainippon Printing Co Ltd Method for producing photocatalytic function material and photocatalytic substrate
CN113274995A (en) * 2021-05-10 2021-08-20 天津大学 Doped strontium titanate semiconductor material and preparation method thereof
CN113274995B (en) * 2021-05-10 2023-08-08 天津大学 Doped strontium titanate semiconductor material and preparation method thereof
WO2023230111A1 (en) * 2022-05-26 2023-11-30 Intermolecular Inc. Oxide buffer layer to promote tio2 crystallinity and increase tio2 refractive index for optical applications

Also Published As

Publication number Publication date
JP3781065B2 (en) 2006-05-31

Similar Documents

Publication Publication Date Title
JP5766778B2 (en) refrigerator
US6387844B1 (en) Titanium dioxide photocatalyst
JP4957244B2 (en) Titanium oxide photocatalyst, method for producing the same, and use thereof
Rodriguez et al. Interaction of silver, cesium, and zinc with alumina surfaces: thermal desorption and photoemission studies
JPH07171408A (en) Photocatalytic body and its production
JPH1066878A (en) Photocatalyst body
JP2003220340A (en) Titanium oxide photocatalyst thin film and its manufacturing method
JPWO2009110236A1 (en) Hydrophilic member and hydrophilic product using the same
JP2000070673A (en) Antibacterial deodorizing photocatalyst type filter and its production
JP3716885B2 (en) Photocatalyst and method for producing the same
JP2000096212A (en) Photocatalyst film coated member and its production
JP3781066B2 (en) photocatalyst
JP2001152130A (en) Photocatalytically hydrophilizable member and its manufacturing method
JP3780592B2 (en) Photocatalyst composition, method for producing the same, and substrate with photocatalyst composition
JPH10278165A (en) Manufacture of laminate
JP2001205105A (en) Photocatalytic thin film
JP2000042419A (en) Photocatalytic body
JPS635304A (en) Multi-layered interference film
JP2000042320A (en) Functional filter
JPH08309201A (en) Photocatalytic body
JPH08103488A (en) Multifunctional material having photocatalyst function
JP2003253450A (en) Thin film deposition method and apparatus
JPH11130434A (en) Titanium dioxide film, photocatalyst film and its production
JP3565628B2 (en) Lighting
JPH08309204A (en) Photocatalyst

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050810

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060228

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090317

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100317

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110317

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120317

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130317

Year of fee payment: 7