JPH05154381A - Exhaust gas purifying catalyst forming process - Google Patents
Exhaust gas purifying catalyst forming processInfo
- Publication number
- JPH05154381A JPH05154381A JP9769291A JP9769291A JPH05154381A JP H05154381 A JPH05154381 A JP H05154381A JP 9769291 A JP9769291 A JP 9769291A JP 9769291 A JP9769291 A JP 9769291A JP H05154381 A JPH05154381 A JP H05154381A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- exhaust gas
- thickness
- vacuum film
- gas purifying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
- Catalysts (AREA)
- Physical Vapour Deposition (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、自動車などの排気ガス
浄化用触媒の金属帯基体への形成方法に関するものであ
り、ほかに産業機器等の燃焼ガスの浄化にも応用しうる
ものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for forming an exhaust gas purifying catalyst for automobiles, etc. on a metal strip substrate, and can also be applied to purifying combustion gas for industrial equipment. ..
【0002】[0002]
【従来の技術】自動車排気ガス浄化用触媒コンバータに
はセラミックス製基体と金属製基体のものがあるが、現
在触媒の形成方法は、いずれの基体の場合も特開昭52
−126692に示されるように触媒金属の塩化物を含
む水溶液に浸漬して乾燥するという方法である。2. Description of the Related Art There are ceramic bases and metal bases for automobile exhaust gas purifying catalytic converters. Currently, the catalyst forming method for both bases is JP-A-52 / 52.
No. 126692, it is a method of immersing in an aqueous solution containing a chloride of a catalytic metal and drying.
【0003】触媒としては、自動車排気ガス中の炭化水
素(C7 H14等)と一酸化炭素(CO)を酸化して二酸
化炭素(CO2 )と水(H2 O)に、窒素酸化物(NO
x )を還元して窒素(N2 )に浄化する反応を促進する
貴金属触媒が使用されている。これらは炭化水素、一酸
化炭素、窒素酸化物の三種類の物質の酸化及び還元反応
に寄与するため一般に三元触媒と呼ばれている。貴金属
触媒とは白金(Pt)、ロジウム(Rh)、パラジウム
(Pd)の一種または二種以上からなる触媒のことであ
る。混合比率Pt/Rh=7/1〜5/1のものが主流
で、一部Pd/RhまたはPt/Pd/Rhが使われて
いる。また、貴金属触媒と複合して用いることによっ
て、さらに酸化還元反応を促進する助触媒として、セリ
ウム(Ce)あるいはランタン(La)の酸化物または
セリウムとランタンの複合酸化物を使用する。アルミニ
ウム(Al)の酸化物を単独または上記酸化物と混合し
て使用することがある。As a catalyst, carbon dioxide (CO 2 ) and water (H 2 O) are obtained by oxidizing hydrocarbons (C 7 H 14 etc.) and carbon monoxide (CO) in automobile exhaust gas, and nitrogen oxides. (NO
Noble metal catalysts that accelerate the reaction of reducing x ) to nitrogen (N 2 ) are used. These are generally called three-way catalysts because they contribute to the oxidation and reduction reactions of three types of substances, hydrocarbons, carbon monoxide, and nitrogen oxides. The noble metal catalyst is a catalyst composed of one or more of platinum (Pt), rhodium (Rh), and palladium (Pd). The mainstream is a mixture ratio Pt / Rh = 7/1 to 5/1, and Pd / Rh or Pt / Pd / Rh is partially used. In addition, an oxide of cerium (Ce) or lanthanum (La) or a composite oxide of cerium and lanthanum is used as a co-catalyst for further promoting the redox reaction when used in combination with a noble metal catalyst. An oxide of aluminum (Al) may be used alone or as a mixture with the above oxide.
【0004】従来の金属帯基体触媒コンバータの製造工
程は図4に示すように、触媒コンバータ素材は、主にF
e−Cr−Al合金であり、波型加工を施され、円筒化
した後触媒が形成される。触媒形成方法は、まず金属製
基体を大気中で酸化熱処理することによりフレーム表面
に針状アルミナ(Al2 O3 ウイスカー)を生成させ、
次に白金などの貴金属触媒の塩化物を含む溶液(ゾルA
・B)の中に浸漬し、取り出して乾燥し製品とするもの
である。針状アルミナは溶液に浸漬したときに貴金属触
媒の付着性を向上するために生成される。As shown in FIG. 4, the manufacturing process of the conventional metal band-based catalytic converter is mainly made of F.
It is an e-Cr-Al alloy, and is subjected to corrugation processing, and after being cylindrically formed, a catalyst is formed. The catalyst formation method is as follows. First, a metallic substrate is subjected to an oxidative heat treatment in the atmosphere to generate acicular alumina (Al 2 O 3 whiskers) on the frame surface,
Next, a solution containing chloride of a noble metal catalyst such as platinum (sol A
・ The product is soaked in B), taken out and dried. The acicular alumina is generated to improve the adhesion of the noble metal catalyst when immersed in the solution.
【0005】[0005]
【発明が解決しようとする課題】金属製基体に触媒を形
成した触媒コンバータは、排気ガスの圧力損失と白金、
ロジウム、パラジウム等の貴金属触媒のリサイクルとい
う2つの観点で、現在主流のコーディエライト製触媒コ
ンバータに比べて有効であるが、次の問題点を持ってい
る。A catalytic converter in which a catalyst is formed on a metal substrate is provided with exhaust gas pressure loss and platinum,
It is effective from the viewpoint of recycling precious metal catalysts such as rhodium and palladium, compared to the currently mainstream catalytic converter made of cordierite, but it has the following problems.
【0006】第1に、表面酸化熱処理を含む触媒の形成
工程が複雑なためコストが高く、今ひとつ普及していな
いこと。触媒形成後の価格は、形成前の金属フレーム単
体の2〜3倍にも達すると言われている。第2に、触媒
のフレームへの付着は、触媒の塩化物(H2 PtC
l6 )水溶液への浸漬と400〜900℃の温度で焼成
の繰り返しにより行っているため、金属フレームの素材
の表面には錆が発生しやすいこと。触媒形成後の基体を
見ると多数の発銹が見受けられる。第3に水溶液浸漬法
では、膜厚の制御が難しいため、製品の排気ガス浄化特
性がばらつくことである。Firstly, the cost is high because the catalyst forming process including the surface oxidation heat treatment is complicated, and it is not yet widely used. The price after the catalyst is formed is said to reach 2 to 3 times that of the single metal frame before the formation. Secondly, the attachment of the catalyst to the flame is due to the catalyst chloride (H 2 PtC
l 6 ) Rusting is likely to occur on the surface of the material of the metal frame, since it is carried out by repeating the immersion in the aqueous solution and the firing at a temperature of 400 to 900 ° C. A large number of rusts can be seen in the substrate after catalyst formation. Thirdly, in the aqueous solution immersion method, it is difficult to control the film thickness, so that the exhaust gas purification characteristics of the product vary.
【0007】本発明は上記した問題点を解消しようとす
るものであって、基体に真空成膜法を適用して、錆の発
生がなく、均一な所望の厚さを有し、安定した浄化性能
をもつ触媒コンバーターを提供することを目的とする。The present invention is intended to solve the above-mentioned problems, and by applying a vacuum film-forming method to a substrate, rust is not generated, a uniform desired thickness is obtained, and stable purification is performed. It is intended to provide a catalytic converter having high performance.
【0008】[0008]
【課題を解決するための手段】本発明者らは、真空成膜
法で金属帯基体の表面に触媒物質を高エネルギーで付着
させることにより、基体表面にウィスカー生成等の工程
を省略できるとともに膜厚あるいは表面への堆積密度の
制御も自由に行えることを知見した。また真空成膜では
溶液浸漬法のような発銹の懸念がない。The inventors of the present invention can omit steps such as whisker formation on the surface of a substrate by depositing a catalyst substance on the surface of a metal strip substrate with high energy by a vacuum film forming method, and at the same time, a film can be formed. We have found that the thickness or the deposition density on the surface can be controlled freely. Further, in vacuum film formation, there is no concern about rusting as in the solution dipping method.
【0009】本発明は、以上のように知見に基づきなさ
れたものであり、その要旨は(1)金属帯基体の表面
に、真空成膜法により0.2μm以上、2μm以下の貴
金属触媒の混合層を設けることを特徴とする排気ガス浄
化触媒の形成方法であり、(2)金属帯基体の表面に、
真空成膜法により厚さ0.1μm以上、2μm以下の助
触媒層の単層または混合層を設け、さらに真空成膜法に
より厚さ0.2μm以上、2μm以下の貴金属触媒の混
合層を設けることを特徴とする排気ガス浄化触媒の形成
方法である。The present invention has been made based on the above findings, and its gist is (1) mixing a noble metal catalyst of 0.2 μm or more and 2 μm or less on the surface of a metal strip substrate by a vacuum film forming method. A method for forming an exhaust gas purifying catalyst, characterized in that a layer is provided.
A single layer or a mixed layer of a promoter layer having a thickness of 0.1 μm or more and 2 μm or less is provided by a vacuum film forming method, and a mixed layer of a noble metal catalyst having a thickness of 0.2 μm or more and 2 μm or less is further provided by a vacuum film forming method. A method for forming an exhaust gas purifying catalyst, characterized in that
【0010】上記金属帯として耐熱鋼を用いることがよ
く、また金属帯基体の厚さは25μm以上、100μm
以下であることが好ましい。また、この触媒を形成する
にあたっては、複数の真空成膜装置が組み込まれたチャ
ンバーに金属帯基体を連続的に通過させることによって
行うことができ、このような方法も本発明の特徴点の一
つである。Heat-resistant steel is preferably used as the metal strip, and the thickness of the metal strip substrate is 25 μm or more and 100 μm.
The following is preferable. Further, the catalyst can be formed by continuously passing the metal strip substrate through a chamber in which a plurality of vacuum film forming apparatuses are incorporated. Such a method is also one of the features of the present invention. Is one.
【0011】本発明に関わる触媒成形金属フレームの製
造工程を図1に示す。真空成膜法というのは、真空中で
蒸発源から蒸発させた物質を基体に凝縮付着させる物理
蒸着法または蒸発原子の代わりに気体原子を用い化学反
応を起してその生成物を気体に凝縮付着させる化学蒸着
法のことである。代表的な真空成膜法としてはイオンプ
レーティング、スパッタリング、プラズマCVD法があ
る。これら真空成膜法は、いずれもプラズマを使用し、
高エネルギーで基体に付着させることができる。また、
触媒コンバータは燃焼ガス排気系統に使用されるため、
金属基体としてはFe−Cr−Al合金やSUS30
4,SUS430,SUS309S,SUS310S等
のステンレス鋼の800℃程度の高温に耐えられる比較
的耐熱性の高い金属帯が望ましい。厚さは25μm未満
ではキャニング(円筒化)加工後の強度が十分確保でき
ず100μmを越えるとハニカムの晩面積が増加して排
気抵抗が上がる上、加工強度が上がり波型加工がしにく
くなる。従って基板となる合金の厚さは25μm以上1
00μm以下が好ましい。真空成膜法によって形成する
貴金属触媒の厚さは0.2μ未満では排気ガスの酸化還
元反応が十分に行われず、2μmを超えると薄膜形成に
は時間が掛かりすぎて不経済である(出力、ガス圧等が
同じならば膜厚は成膜槽で基体がプラズマにさらされる
時間で制御する)。このため貴金属触媒層の厚さは0.
2μm以上2μm以下とした。一方、助触媒層のCeO
2 ,LaO2 ,CeとLaの複合酸化物は空燃比の変動
を吸収する酸素貯蔵物質の役割と貴金属触媒の反応を促
進する役割を持つ(例えば自動車技術,Vol.43,N
o.4,1989参照)。またAl2 O3 は、貴金属触
媒と併用するとNOx の変換効率が向上すると言われて
いるため、CeO2 ,LaO2 またはCeとLaの複合
酸化物と交合して用いても良い。これらの助触媒は、膜
厚0.1μm以上で排気ガスの浄化性能は向上するが2
μmを超えるとその効果は逆にマイナスになる。従って
助触媒層の厚さは0.1μm以上、2μm以下とした。
本発明における金属帯基体への触媒または助触媒の連続
形成方法は、イオンプレーティング、スパッタリング等
の真空成膜装置の汲み込まれたチャンバーにこれらの鋼
帯を連続的に通過させることにより行うことが望まし
い。装置の一例の概略図を図3に示す。イオンプレーテ
ィング1、スパッタリング装置2,3及びプラズマ−C
VD装置4と鋼帯送り出し・巻き取り装置5,6が外気
から遮断されて連結しているため、真空中においてコイ
ル状の合金基体に助触媒槽、貴金属触媒層等を連続的に
積層してコイルに巻き取ることができる。The manufacturing process of the catalyst-molded metal frame according to the present invention is shown in FIG. The vacuum film formation method is a physical vapor deposition method in which a substance evaporated from an evaporation source in a vacuum is condensed and adhered to a substrate, or a gas atom is used instead of an evaporated atom to cause a chemical reaction to condense the product into a gas. It is a chemical vapor deposition method of attaching. Typical vacuum film forming methods include ion plating, sputtering, and plasma CVD. All of these vacuum film forming methods use plasma,
It can be attached to a substrate with high energy. Also,
Since the catalytic converter is used in the combustion gas exhaust system,
As the metal substrate, Fe-Cr-Al alloy or SUS30
4, a metal band having relatively high heat resistance, which can withstand a high temperature of about 800 ° C., such as stainless steel such as 4, SUS430, SUS309S, and SUS310S is desirable. If the thickness is less than 25 μm, sufficient strength after canning (cylindrical) processing cannot be secured, and if it exceeds 100 μm, the evening area of the honeycomb increases and exhaust resistance increases, and the processing strength increases and corrugation becomes difficult to perform. Therefore, the thickness of the alloy used as the substrate is 25 μm or more 1
It is preferably 00 μm or less. If the thickness of the noble metal catalyst formed by the vacuum film formation method is less than 0.2 μm, the redox reaction of the exhaust gas is not sufficiently performed, and if it exceeds 2 μm, it takes too much time to form a thin film, which is uneconomical (output, If the gas pressure is the same, the film thickness is controlled by the time the substrate is exposed to plasma in the film formation tank). Therefore, the noble metal catalyst layer has a thickness of 0.
It was set to 2 μm or more and 2 μm or less. On the other hand, CeO in the promoter layer
2 , LaO 2 , Ce and La complex oxides have a role of oxygen storage material that absorbs the fluctuation of the air-fuel ratio and a role of promoting the reaction of the noble metal catalyst (for example, Automotive Technology, Vol. 43, N.
o. 4, 1989). Al 2 O 3 is said to improve NO x conversion efficiency when used in combination with a noble metal catalyst, and thus may be used in combination with CeO 2 , LaO 2 or a Ce-La composite oxide. These co-catalysts have a film thickness of 0.1 μm or more and improve the exhaust gas purification performance.
If it exceeds μm, the effect becomes negative. Therefore, the thickness of the co-catalyst layer is set to 0.1 μm or more and 2 μm or less.
The continuous formation method of the catalyst or co-catalyst on the metal strip substrate in the present invention is carried out by continuously passing these steel strips through a pumped chamber of a vacuum film forming apparatus such as ion plating or sputtering. Is desirable. A schematic diagram of an example of the device is shown in FIG. Ion plating 1, sputtering devices 2, 3 and plasma-C
Since the VD device 4 and the steel strip feeding / winding devices 5 and 6 are connected while being shielded from the outside air, a co-catalyst tank, a noble metal catalyst layer, etc. are continuously laminated on a coiled alloy substrate in vacuum. Can be wound into a coil.
【0012】[0012]
【作用】薄膜物質の基板への形成過程は、図3に示すよ
うに、おおよそ、(a)3次元核生成、(b)核の合
体、(c)連続膜形成、という3つの過程に分けられ
る。(a)で生成した核が集まってクラスタを形成し、
クラスタ同士が合体して島状粒子となり、さらに島と島
の間に2次核が形成されて島同士が合体して連続膜とな
る。一般に、核、クラスタ、島状粒子、連続膜を含めて
薄膜と呼んでいる(薄膜材料工学,北田,入戸野,大坂
編,海文堂参照)。次に触媒の作用であるが、触媒作用
は、触媒表面原子と反応分子の反応であるため、形成し
た物質が触媒として機能するためには、触媒物質の比表
面積が大きいことが必要である。先に述べた薄膜形成過
程(b)では、半球状の触媒が基板に付着している状態
であり、クラスタの大きさは数十〜数百オングストロー
ムで、白金の場合ならば比表面積50〜100m2 /g
と大きい状態を実現できるため触媒の形成方法として適
している。このようなクラスタ状薄膜の形成は成膜室に
高速で鋼板を通過させれば良いため、連続膜形成に比べ
容易に得ることができる。As shown in FIG. 3, the process of forming a thin film substance on a substrate is roughly divided into three processes: (a) three-dimensional nucleation, (b) coalescence of nuclei, and (c) continuous film formation. Be done. The nuclei generated in (a) gather to form clusters,
The clusters coalesce into island-shaped particles, and secondary nuclei are formed between the islands, and the islands coalesce into a continuous film. Generally, the core, clusters, island-shaped particles, and continuous films are called thin films (see Thin Film Materials Engineering, Kitada, Iritono, Osaka, Kaibundou). Next, regarding the action of the catalyst, since the action of the catalyst is a reaction between the surface atoms of the catalyst and the reaction molecules, it is necessary for the formed substance to have a large specific surface area in order to function as a catalyst. In the thin film forming step (b) described above, the hemispherical catalyst is attached to the substrate, the size of the cluster is several tens to several hundreds of angstroms, and in the case of platinum, the specific surface area is 50 to 100 m. 2 / g
Therefore, it is suitable as a method for forming a catalyst. Such a cluster-shaped thin film can be formed easily by passing the steel sheet through the film forming chamber at a high speed as compared with the continuous film formation.
【0013】こうしてできた触媒膜形成合金箔は、通
常、従来と同様に波状に加工され円筒化して製品とす
る。The catalyst film-forming alloy foil thus formed is usually processed into a corrugated shape in the same manner as in the conventional case, and is made into a product.
【0014】[0014]
【実施例】表1から表6に示す基板、膜種、膜厚で作製
した供試材に対し以下の条件で排気ガス浄化性能を調べ
た。寸法2cm×2cmの触媒を真空成膜済みの供試材試験
片をシリカ製チューブに入れ、450℃に加熱し、流速
50ml/分で一酸化炭素及び酸素またはプロパン及び酸
素または五酸化二窒素及び一酸化炭素を0.05mlずつ
流し、一酸化炭素及びプロパンの酸化割合と五酸化二窒
素の還元割合をガスクロマトグラフィーにより測定し
た。結果を同じく表1〜表6に示す。表7に、従来の溶
液浸漬法による比較例の浄化性能を示すが、本発明によ
り作製したコンバータは、従来法で作成したものと同等
か、それ以上の浄化性能を有する。EXAMPLE Exhaust gas purification performance was examined under the following conditions for test materials prepared with the substrates, film types and film thicknesses shown in Tables 1 to 6. A test piece of a test material on which a catalyst having a size of 2 cm × 2 cm was vacuum-deposited was put into a silica tube and heated to 450 ° C., and carbon monoxide and oxygen or propane and oxygen or dinitrogen pentoxide were added at a flow rate of 50 ml / min. Carbon monoxide was allowed to flow by 0.05 ml, and the oxidation ratios of carbon monoxide and propane and the reduction ratio of dinitrogen pentoxide were measured by gas chromatography. The results are also shown in Tables 1 to 6. Table 7 shows the purification performance of the comparative example by the conventional solution immersion method. The converter produced by the present invention has a purification performance equivalent to or higher than that produced by the conventional method.
【0015】更に本発明の触媒形成方法は、次の利点を
有する。 a.触媒形成を真空中で行うため、従来の湿式形成法の
場合のように塩素が残留する心配がなく、従って赤錆の
発生がない。 b.真空成膜法による触媒形成では、表面酸化熱処理の
必要がないため工程を簡略化でき、コスト低減が図れ
る。 c.酸化物の助触媒も真空成膜法により形成可能であ
り、浄化性能の高い触媒コンバータが得られる。 d.金属帯基体としては、溶製,加工の難しい高Al含
有鋼を使う必要がないため、加工費等のコストが低減で
きる。 e.出力、通板速度を調節することにより、触媒膜の堆
積量及び形態が制御でき、これにより必要最小限の貴金
属触媒を有効に活用できる。 f.コイル状の鋼板に成膜チャンバーを通過させること
により、連続的に触媒,助触媒等を一度に形成できるた
め、従来の溶液浸漬・乾燥法に比べ工程が簡略でコスト
が低減できる。Further, the catalyst forming method of the present invention has the following advantages. a. Since the catalyst is formed in vacuum, there is no concern that chlorine will remain as in the case of the conventional wet forming method, and therefore red rust will not occur. b. In the catalyst formation by the vacuum film formation method, the surface oxidation heat treatment is not necessary, so the process can be simplified and the cost can be reduced. c. The oxide co-catalyst can also be formed by the vacuum film forming method, and a catalytic converter with high purification performance can be obtained. d. Since it is not necessary to use high Al-containing steel that is difficult to melt and process as the metal strip substrate, the cost such as the processing cost can be reduced. e. By adjusting the output and the plate passing speed, the deposition amount and morphology of the catalyst film can be controlled, and thus the minimum required precious metal catalyst can be effectively used. f. By passing the film-forming chamber through the coiled steel plate, the catalyst, the co-catalyst, etc. can be continuously formed at once, so that the process is simple and the cost can be reduced as compared with the conventional solution dipping / drying method.
【0016】[0016]
【表1】 [Table 1]
【0017】[0017]
【表2】 [Table 2]
【0018】[0018]
【表3】 [Table 3]
【0019】[0019]
【表4】 [Table 4]
【0020】[0020]
【表5】 [Table 5]
【0021】[0021]
【表6】 [Table 6]
【0022】[0022]
【表7】 [Table 7]
【0023】[0023]
【発明の効果】本発明によれば、従来の溶液浸漬法より
簡単な工程で、従来法と同等以上の浄化性能を有し、か
つ錆の発生がなく触媒膜の均一な浄化性能の安定した触
媒コンバータを得ることができる。EFFECTS OF THE INVENTION According to the present invention, the purification performance is equal to or more than that of the conventional method in a simpler step than the conventional solution dipping method, and the uniform purification performance of the catalyst membrane is stable without rusting. A catalytic converter can be obtained.
【図1】本発明による排ガス浄化コンバータの製造工程
を示す図である。FIG. 1 is a diagram showing a manufacturing process of an exhaust gas purifying converter according to the present invention.
【図2】本発明の連続真空成膜装置の一例の概略図であ
る。FIG. 2 is a schematic view of an example of a continuous vacuum film forming apparatus of the present invention.
【図3】真空成膜の過程を示す図であり、(a)は3次
元核生成、(c)は連続膜形成を示す。FIG. 3 is a diagram showing a process of vacuum film formation, in which (a) shows three-dimensional nucleation and (c) shows continuous film formation.
【図4】従来の溶液浸漬法による触媒形成工程を示す図
である。FIG. 4 is a diagram showing a catalyst forming step by a conventional solution dipping method.
1 イオンプレーティング装置 2,3 スパッタリング装置 4 プラズマCVD装置 5 鋼帯送出しまたは巻取り装置 6 鋼帯巻取りまたは送出し装置 1 Ion plating device 2, 3 Sputtering device 4 Plasma CVD device 5 Steel strip feeding or winding device 6 Steel strip winding or feeding device
───────────────────────────────────────────────────── フロントページの続き (72)発明者 及川 雄介 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 (72)発明者 高橋 常利 山口県光市大字島田3434番地 新日本製鐵 株式会社光製鐵所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yusuke Oikawa 3434 Shimada, Hitsu-shi, Yamaguchi Prefecture, Nippon Steel Works, Ltd., Hikari Works, Ltd. Hikari Steel Works, Ltd.
Claims (5)
0.2μm以上、2μm以下の貴金属触媒の混合層を設
けることを特徴とする排気ガス浄化形成方法。1. An exhaust gas purifying and forming method, wherein a mixed layer of a noble metal catalyst having a thickness of 0.2 μm or more and 2 μm or less is provided on the surface of a metal strip substrate by a vacuum film forming method.
厚さ0.1μm以上、2μm以下の助触媒層の単層また
は混合層を設け、さらに真空成膜法により厚さ0.2μ
m以上、2μm以下の貴金属触媒の混合層を設けること
を特徴とする排気ガス浄化触媒形成方法。2. A single layer or a mixed layer of a promoter layer having a thickness of 0.1 μm or more and 2 μm or less is provided on the surface of a metal strip substrate by a vacuum film forming method, and further, a thickness of 0.2 μm is formed by a vacuum film forming method.
A method for forming an exhaust gas purifying catalyst, comprising providing a mixed layer of a noble metal catalyst having a size of m or more and 2 μm or less.
1あるいは2記載の排気ガス浄化触媒形成方法。3. The method for forming an exhaust gas purifying catalyst according to claim 1, wherein heat resistant steel is used as the metal strip substrate.
0μm以下である請求項1,2あるいは3のいずれかに
記載の排気ガス浄化触媒形成方法。4. A metal strip substrate having a thickness of 25 μm or more, 10
The exhaust gas purifying catalyst forming method according to claim 1, wherein the exhaust gas purifying catalyst has a diameter of 0 μm or less.
ンバーに金属帯基体を連続的に通過させることを特徴と
する請求項1,2,3あるいは4のいずれかに記載の排
気ガス浄化触媒形成方法。5. The exhaust gas purifying catalyst according to claim 1, wherein the metal strip substrate is continuously passed through a chamber in which a plurality of vacuum film forming apparatuses are incorporated. Forming method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9769291A JPH05154381A (en) | 1991-04-26 | 1991-04-26 | Exhaust gas purifying catalyst forming process |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9769291A JPH05154381A (en) | 1991-04-26 | 1991-04-26 | Exhaust gas purifying catalyst forming process |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05154381A true JPH05154381A (en) | 1993-06-22 |
Family
ID=14199001
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9769291A Withdrawn JPH05154381A (en) | 1991-04-26 | 1991-04-26 | Exhaust gas purifying catalyst forming process |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05154381A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639297A (en) * | 1992-03-25 | 1994-02-15 | Basf Ag | Catalyst supported on integral structure and its production and use |
JPH0655034A (en) * | 1992-06-10 | 1994-03-01 | Shimadzu Corp | Purifying device for exhaust gas and its production |
JPH06315641A (en) * | 1993-05-01 | 1994-11-15 | Toyo Radiator Co Ltd | Formation of catalytic film for purifying exhaust gas |
EP0682982A2 (en) * | 1994-05-18 | 1995-11-22 | William C. Pfefferle | Catalytic method |
JPH08141393A (en) * | 1994-11-18 | 1996-06-04 | Matsushita Electric Ind Co Ltd | Production of catalytic member |
JPH0985088A (en) * | 1995-09-21 | 1997-03-31 | Mazda Motor Corp | Exhaust gas purifying catalyst |
JP2017013018A (en) * | 2015-07-03 | 2017-01-19 | 株式会社デンソー | Catalyst coating film and injector using the same |
WO2017033994A1 (en) * | 2015-08-25 | 2017-03-02 | 国立大学法人熊本大学 | Metal foil catalyst, method for producing same and catalyst converter |
JP2021133331A (en) * | 2020-02-28 | 2021-09-13 | いすゞ自動車株式会社 | Catalytic member, catalyst, and method for producing catalytic member |
-
1991
- 1991-04-26 JP JP9769291A patent/JPH05154381A/en not_active Withdrawn
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0639297A (en) * | 1992-03-25 | 1994-02-15 | Basf Ag | Catalyst supported on integral structure and its production and use |
JPH0655034A (en) * | 1992-06-10 | 1994-03-01 | Shimadzu Corp | Purifying device for exhaust gas and its production |
JPH06315641A (en) * | 1993-05-01 | 1994-11-15 | Toyo Radiator Co Ltd | Formation of catalytic film for purifying exhaust gas |
EP0682982A2 (en) * | 1994-05-18 | 1995-11-22 | William C. Pfefferle | Catalytic method |
EP0682982A3 (en) * | 1994-05-18 | 1996-06-12 | William C Pfefferle | Catalytic method. |
JPH08141393A (en) * | 1994-11-18 | 1996-06-04 | Matsushita Electric Ind Co Ltd | Production of catalytic member |
JPH0985088A (en) * | 1995-09-21 | 1997-03-31 | Mazda Motor Corp | Exhaust gas purifying catalyst |
JP2017013018A (en) * | 2015-07-03 | 2017-01-19 | 株式会社デンソー | Catalyst coating film and injector using the same |
WO2017033994A1 (en) * | 2015-08-25 | 2017-03-02 | 国立大学法人熊本大学 | Metal foil catalyst, method for producing same and catalyst converter |
JPWO2017033994A1 (en) * | 2015-08-25 | 2018-07-19 | 国立大学法人 熊本大学 | Metal foil catalyst, method for producing the same, and catalytic converter |
JP2021133331A (en) * | 2020-02-28 | 2021-09-13 | いすゞ自動車株式会社 | Catalytic member, catalyst, and method for producing catalytic member |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4601999A (en) | Metal support for a catalyst | |
US5413984A (en) | Method for preparing multi-metal catalysts | |
JP2005503982A (en) | Process for producing thin film porous ceramic-metal composites and composites obtained by this process | |
JPS61245848A (en) | Manufacture of catalyst for purifying waste gas | |
GB1581628A (en) | Catalytic purification of automobile exhaust gases | |
JPH0262301B2 (en) | ||
JPH05154381A (en) | Exhaust gas purifying catalyst forming process | |
US3929671A (en) | Auto exhaust control catalyst on silica cloth support | |
JPH0852356A (en) | Catalyzing method | |
JP2007203256A (en) | Catalytic converter for cleaning exhaust gas | |
JP2001145836A (en) | Exhaust gas purifying catalyst for internal combustion engine | |
JPH08332394A (en) | Exhaust gas-cleaning metal carrier catalyst, and its manufacture | |
JP2004169111A (en) | Metal foil, and honeycomb structure | |
JP2909230B2 (en) | Exhaust gas treatment catalyst and method for producing the same | |
US4719197A (en) | Process for making a carrier-supported catalyst | |
JP2788293B2 (en) | Exhaust gas purification catalyst | |
JP3327574B2 (en) | Automotive exhaust gas purification catalyst | |
US9044743B2 (en) | Catalyst for decomposition of nitrogen oxides | |
JPH0899039A (en) | Amorphous alloy catalyst for nitrogen oxide decomposition | |
JPH03157143A (en) | Catalyst for purification of exhaust gas from motorcycle | |
JPS6295142A (en) | Surface treatment for metallic foil used for catalytic carrier | |
JPH04197444A (en) | Catalyst for exhaust gas purification and its production | |
JPH06315641A (en) | Formation of catalytic film for purifying exhaust gas | |
WO1997030193A1 (en) | Catalyst on metal substrate by simultaneous electrophoretic deposition of catalyst and catalyst adhesion material | |
JP4531169B2 (en) | Metal carrier catalyst for exhaust gas purification |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19980711 |