JP3276872B2 - Semiconductor device and method of manufacturing semiconductor device - Google Patents

Semiconductor device and method of manufacturing semiconductor device

Info

Publication number
JP3276872B2
JP3276872B2 JP02933597A JP2933597A JP3276872B2 JP 3276872 B2 JP3276872 B2 JP 3276872B2 JP 02933597 A JP02933597 A JP 02933597A JP 2933597 A JP2933597 A JP 2933597A JP 3276872 B2 JP3276872 B2 JP 3276872B2
Authority
JP
Japan
Prior art keywords
region
concentration
oxide film
breakdown
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02933597A
Other languages
Japanese (ja)
Other versions
JPH10229189A (en
Inventor
康雄 北平
康成 野口
満穂 土田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP02933597A priority Critical patent/JP3276872B2/en
Publication of JPH10229189A publication Critical patent/JPH10229189A/en
Application granted granted Critical
Publication of JP3276872B2 publication Critical patent/JP3276872B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体装置及び半導
体装置の製造方法に関し、特に、横型高耐圧MOSFE
Tに形成されるLOCOS(Local oxidation of silic
on)直下に設けられた耐圧向上のために形成された不純
物拡散層の濃度の安定化に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and a method of manufacturing a semiconductor device, and more particularly, to a lateral high voltage MOSFE.
LOCOS (Local oxidation of silic) formed in T
on) The present invention relates to stabilization of the concentration of an impurity diffusion layer formed immediately below for improving withstand voltage.

【0002】[0002]

【従来の技術】以下に、従来例に係る横型高耐圧MOS
FETについて図面を参照しながら説明する。図8は、
一般的な横型高耐圧MOSFETの断面図であり、横型
高耐圧MOSFETは、半導体基板1と、その基板表層
にドレイン領域となる第1のウェル領域2と、その第1
のウェル領域2に形成された耐圧を向上させるための拡
散領域3(以下、高耐圧用拡散領域3という。)、及び
高濃度ドレイン領域8と、高耐圧用拡散領域3上に形成
されたLOCOS酸化膜5と、チャネルを形成する高濃
度の第2のウェル領域12と、その第2のウェル領域1
2に形成された高濃度ソース領域7及びソース領域7を
共通接続するP型のバックゲート用高濃度領域13と、
第2のウェル12とLOCOS酸化膜5上に形成された
ゲート電極6とをから構成される。
2. Description of the Related Art A conventional high-voltage lateral high-voltage MOS will be described below.
The FET will be described with reference to the drawings. FIG.
FIG. 1 is a cross-sectional view of a general lateral high-voltage MOSFET. The lateral high-voltage MOSFET includes a semiconductor substrate 1, a first well region 2 serving as a drain region on a surface layer of the substrate, and a first well region 2.
A diffusion region 3 (hereinafter referred to as a high-breakdown-voltage diffusion region 3) formed in the well region 2 and a high-concentration drain region 8 and a LOCOS formed on the high-breakdown-voltage diffusion region 3 are formed. Oxide film 5, high-concentration second well region 12 for forming a channel, and second well region 1
2, a high-concentration source region 7 formed in 2 and a P-type high-concentration region 13 for the back gate that connects the source region 7 in common;
It comprises a second well 12 and a gate electrode 6 formed on the LOCOS oxide film 5.

【0003】この横型高耐圧MOSFETは、図8に示
すように、例えば、P型の半導体基板1上に、N型不純
物を拡散してドレイン領域となる第1のウェル領域2が
形成され、その表層にボロン(B+ )などのP型の不純
物を注入、拡散して高耐圧用拡散領域3が形成されてい
る。この高耐圧用拡散領域3は、ドレイン−ソース間、
特にドレイン領域となる第1のウェル領域2で生じるジ
ャンクション効果により、空乏層の広がりを内側に向け
る事により、ドレイン−ソース間の高耐圧化を向上させ
るものであり、横型高耐圧MOSFETにおいては必須
の拡散領域である。
In this lateral high voltage MOSFET, as shown in FIG. 8, for example, a first well region 2 serving as a drain region is formed on a P-type semiconductor substrate 1 by diffusing an N-type impurity. A high breakdown voltage diffusion region 3 is formed by implanting and diffusing a P-type impurity such as boron (B +) into the surface layer. This high breakdown voltage diffusion region 3 is formed between the drain and the source,
In particular, the junction effect generated in the first well region 2 serving as the drain region improves the breakdown voltage between the drain and the source by directing the expansion of the depletion layer toward the inside. This is essential for a lateral high breakdown voltage MOSFET. Is a diffusion region.

【0004】高耐圧用拡散領域3上にはゲート・ドレイ
ン間耐圧を向上させるために所定の厚みのLOCOS酸
化膜5が形成されており、LOCOS酸化膜5が形成さ
れていない領域の半導体基板1上には酸化膜或いは窒化
膜等によりゲート絶縁膜4が形成されている。また、第
1のウェル領域2に隣接して高濃度のP型不純物を拡散
してチャネルを形成する高濃度の第2のウェル領域12
が形成され、その表層にはN+ 型不純物が拡散されて高
濃度ソース領域7が形成されている。さらに、高耐圧用
拡散領域3が形成されていない第1のウェル領域2の表
層上には、N+ 不純物を注入・拡散して高濃度ドレイン
領域8が形成される。
A LOCOS oxide film 5 having a predetermined thickness is formed on the high-breakdown-voltage diffusion region 3 in order to improve the gate-drain breakdown voltage, and the semiconductor substrate 1 in a region where the LOCOS oxide film 5 is not formed is formed. A gate insulating film 4 made of an oxide film, a nitride film, or the like is formed thereon. A high concentration second well region 12 is formed adjacent to the first well region 2 to form a channel by diffusing a high concentration P-type impurity.
Is formed, and an N + -type impurity is diffused in the surface layer to form a high-concentration source region 7. Further, on the surface layer of the first well region 2 where the high breakdown voltage diffusion region 3 is not formed, an N + impurity is implanted and diffused to form a high concentration drain region 8.

【0005】さらにゲート絶縁膜4からLOCOS酸化
膜5上に、第2のウェル領域12にチャネル形成及び耐
圧特性を向上させるためのポリシリコンを堆積してゲー
ト電極6及び耐圧用電極6Aが形成されており、それら
を被覆するように層間絶縁膜9が形成されている。ソー
ス領域7、ドレイン領域8の形成領域の層間絶縁膜9に
は開口が形成され、この開口中にアルミなどからなるソ
ース電極10,ドレイン電極11が形成されている。上
記耐圧用電極6Aはドレイン電極11と電気的に接続さ
れる。また、上記高耐圧用拡散領域3は、図示されない
が、ソース電極10と電気的に接続され基板1と同電位
にしてある。さらに、ソース領域7内には、チャネルを
安定化させるバックゲート用のP+高濃度領域13が形
成される。
Further, polysilicon is deposited on the second well region 12 from the gate insulating film 4 to the LOCOS oxide film 5 to form a channel and improve withstand voltage characteristics to form a gate electrode 6 and a withstand voltage electrode 6A. And an interlayer insulating film 9 is formed so as to cover them. An opening is formed in the interlayer insulating film 9 in a region where the source region 7 and the drain region 8 are formed, and a source electrode 10 and a drain electrode 11 made of aluminum or the like are formed in the opening. The withstand voltage electrode 6 </ b> A is electrically connected to the drain electrode 11. Although not shown, the high-breakdown-voltage diffusion region 3 is electrically connected to the source electrode 10 and has the same potential as the substrate 1. Further, in the source region 7, a P + high-concentration region 13 for a back gate for stabilizing a channel is formed.

【0006】上述した横型高耐圧MOSFETにおいて
は、耐圧特性をいかに向上させるかの検討が行われてい
る。耐圧特性を向上させるために、上述したように、L
OCOS酸化膜5の直下に、例えば、P+型の不純物拡
散で高耐圧用拡散領域3を形成している。この高耐圧用
拡散領域3は、LOCOS酸化膜5の形成と同一の熱処
理工程により形成される。以下に、高耐圧用拡散領域3
の形成方法を図9及び図10を参照しながら説明する。
In the above-mentioned lateral high-voltage MOSFET, how to improve the withstand voltage characteristics is being studied. In order to improve the breakdown voltage characteristics, as described above, L
Immediately below the OCOS oxide film 5, the high breakdown voltage diffusion region 3 is formed by, for example, P + type impurity diffusion. This high-breakdown-voltage diffusion region 3 is formed by the same heat treatment step as that for forming the LOCOS oxide film 5. The following describes the diffusion region 3 for high withstand voltage.
Will be described with reference to FIGS. 9 and 10. FIG.

【0007】まず、図9に示すように、表層にドレイン
領域となるN型の第1のウェル領域2を形成したP型半
導体基板1表面にシリコン酸化膜等の酸化膜Aを形成
し、その酸化膜Aの所定領域にフォトレジストPRを選
択形成する。このフォトレジストPRをマスクにして、
例えば、ボロンイオン(B+ )を加速電圧100ke
V,ドーズ量3×1013cm-2の条件で注入する。
First, as shown in FIG. 9, an oxide film A such as a silicon oxide film is formed on the surface of a P-type semiconductor substrate 1 having an N-type first well region 2 serving as a drain region formed in a surface layer. A photoresist PR is selectively formed in a predetermined region of the oxide film A. Using this photoresist PR as a mask,
For example, boron ions (B +) are accelerated at an acceleration voltage of 100 ke.
V is implanted under the conditions of a dose of 3 × 10 13 cm −2.

【0008】次いで、図10に示すように、シリコン窒
化膜Bを形成し、LOCOS法によって酸化膜Aの所定
領域、ボロンイオンが注入された注入領域上にLOCO
S酸化膜5を形成する。このとき、先に注入されたボロ
ンイオン(B+ )が、LOCOS酸化膜形成時の熱によ
り拡散され、LOCOS酸化膜5の直下に所定の濃度を
有した高耐圧用拡散領域3が形成される。
Next, as shown in FIG. 10, a silicon nitride film B is formed, and a predetermined region of the oxide film A and a LOCOS
An S oxide film 5 is formed. At this time, the previously implanted boron ions (B @ +) are diffused by the heat at the time of forming the LOCOS oxide film, and a high breakdown voltage diffusion region 3 having a predetermined concentration is formed immediately below the LOCOS oxide film 5. .

【0009】[0009]

【発明が解決しようとする課題】上述したように、この
高耐圧用拡散領域3は、LOCOS酸化膜5の酸化工程
を経て形成されるので、酸化膜中のB+ の偏析係数及び
LOCOS酸化膜5の膜厚のばらつきにより、高耐圧用
拡散領域3の不純物濃度が不安定になり、場所ごとにば
らついてしまう。
As described above, since the high breakdown voltage diffusion region 3 is formed through the oxidation process of the LOCOS oxide film 5, the segregation coefficient of B + in the oxide film and the LOCOS oxide film are increased. 5, the impurity concentration of the high-breakdown-voltage diffusion region 3 becomes unstable and varies from place to place.

【0010】上記従来の条件によって形成された高耐圧
用拡散領域3のボロンイオンの不純物濃度のプロファイ
ルを図11に示す。このときは、LOCOS酸化膜の膜
厚は7000オングストロームで基板内に約3150オ
ングストロームの深さを有している。図11は、不純物
注入後の濃度ピークを示す濃度分布図であり、をこれに
よると、加速電圧が100keVと比較的低いためにボ
ロンイオンは注入時にあまり深く入らずに基板表面近く
に集中するため、不純物濃度の最も高い箇所(以下、不
純物濃度のピークと称する。)が、その後形成されるL
OCOS酸化成長のバラツキによって、LOCOS酸化
膜内に留まっている。一方、図示しないが、LOCOS
酸化膜のバラツキ具合によっては、上記の濃度ピークが
LOCOS酸化膜領域外で留まる場合もある。即ち、同
一機種或いは同一工程で製造しながら、LOCOS酸化
膜のバラツキにより、高耐圧用拡散領域の濃度がLOC
OS酸化膜中に吸収され、その濃度ピークがLOCOS
酸化膜内で形成される。
FIG. 11 shows a profile of the impurity concentration of boron ions in the high breakdown voltage diffusion region 3 formed under the above conventional conditions. At this time, the thickness of the LOCOS oxide film is 7,000 angstroms, and has a depth of about 3150 angstroms in the substrate. FIG. 11 is a concentration distribution diagram showing a concentration peak after impurity implantation. According to this, since the acceleration voltage is relatively low at 100 keV, boron ions do not enter too deeply during implantation and concentrate near the substrate surface. , A portion having the highest impurity concentration (hereinafter referred to as an impurity concentration peak) is formed in L
Due to the variation of the OCOS oxidation growth, it remains in the LOCOS oxide film. On the other hand, although not shown,
The above concentration peak may remain outside the LOCOS oxide film region depending on the variation of the oxide film. In other words, while the same type or the same process is used, the concentration of the high breakdown voltage diffusion region is set to LOC due to the variation of the LOCOS oxide film.
Absorbed in the OS oxide film and its concentration peak is LOCOS
It is formed in the oxide film.

【0011】従って、上記の濃度ピークがLOCOS酸
化膜内に留まる場合には、高耐圧用拡散領域3形成後に
残留する不純物の総量は、図11の斜線部に示した領域
面積と同じとなり、図11に示すように、その大部分が
LOCOS酸化膜内に吸収されるので、高耐圧用拡散領
域3自体の不純物の総量も少なくなる。LOCOS酸化
膜3を形成する場合、そのバラツキ(矢印)は深さ方向
で約±350オングストローム〜±約700オングスト
ローム程度あり、その膜厚の制御は難しく、素子が複数
形成された場合に、その膜厚が場所によってばらつくこ
とを避ける事はほとんど不可能である。従って、高耐圧
用拡散領域の不純物濃度のバラツキは避けられないこと
から、横型高耐圧MOSFETの耐圧が場所によってば
らつくこともまた避けられず耐圧特性を均一化、即ち、
耐圧特性の向上化の妨げの原因となっていた。
Therefore, when the above-mentioned concentration peak remains in the LOCOS oxide film, the total amount of impurities remaining after the formation of the high-breakdown-voltage diffusion region 3 becomes the same as the area of the region shown by the hatched portion in FIG. As shown in FIG. 11, most of the impurities are absorbed in the LOCOS oxide film, so that the total amount of impurities in the high-breakdown-voltage diffusion region 3 itself is reduced. When the LOCOS oxide film 3 is formed, its variation (arrow) is about ± 350 angstroms to ± 700 angstroms in the depth direction, and it is difficult to control the film thickness. It is almost impossible to avoid thickness variations from place to place. Therefore, since the variation in the impurity concentration of the high-breakdown-voltage diffusion region is inevitable, the breakdown voltage of the lateral high-breakdown-voltage MOSFET cannot be scattered from place to place, and the breakdown voltage characteristics are made uniform, that is,
This has been a cause of hindering improvement in the breakdown voltage characteristics.

【0012】また、高耐圧用拡散領域3の不純物濃度が
大きくばらつくとドレイン領域となる第1のウェル領域
2のトップ濃度と高耐圧用拡散領域3のトップ濃度にず
れが生じ、接合領域(P+型の高耐圧用拡散領域3とN
型の第1のウェル領域2)での電界が低下し、高耐圧用
拡散領域3を形成したにも係わらず耐圧特性の低下を招
く恐れがある。
If the impurity concentration of the high-breakdown-voltage diffusion region 3 greatly varies, the top concentration of the first well region 2 serving as a drain region and the top concentration of the high-breakdown-voltage diffusion region 3 are deviated, and the junction region (P + Type diffusion region 3 for high withstand voltage and N
There is a possibility that the electric field in the first well region 2) of the mold is reduced, and the breakdown voltage characteristics are reduced despite the formation of the high breakdown voltage diffusion region 3.

【0013】図12〜図14は、ドレイン−ソース間に
所定電圧を印加したと時に長さ方向に生じる電界を示し
たものである。同図において、a点はP+型の高耐圧用
拡散領域3とN型の第1のウェル領域2との接合面、b
点はチャネル領域となるP+型の第2のウェル領域12
と第1のウェル領域2との接合面、c点はN+型の高濃
度ドレイン領域8、d点はN+型の高濃度ソース領域7
を示す。
FIGS. 12 to 14 show electric fields generated in the length direction when a predetermined voltage is applied between the drain and the source. In the figure, a point a is a junction surface between the P + type high breakdown voltage diffusion region 3 and the N type first well region 2;
A point is a P + type second well region 12 serving as a channel region.
A point c is an N + -type high-concentration drain region 8, and a point c is an N + -type high-concentration source region 7.
Is shown.

【0014】電界集中は接合面であるa点及びb点で発
生することから両点で電界がピークとなる。a点のP+
型の高耐圧用拡散領域3とN型の第1のウェル領域2と
のトップ濃度がほぼ同一である場合には、a点の電界は
ピークがMAXとなる(図12参照)。一方、b点の電
界はP+型の第2のウェル領域12とN型の第1のウェ
ル領域2との両者の拡散濃度でそのピーク値が決定され
る。a点、b点、c点、d点で囲まれた斜線領域の面積
が実効保証耐圧値となる。
Since electric field concentration occurs at points a and b, which are junction surfaces, the electric field peaks at both points. P + at point a
When the top concentration of the high withstand voltage type diffusion region 3 and the N type first well region 2 are substantially the same, the electric field at the point a has a peak MAX (see FIG. 12). On the other hand, the peak value of the electric field at the point b is determined by the diffusion concentration of both the P + -type second well region 12 and the N-type first well region 2. The area of the hatched area surrounded by points a, b, c, and d is the effective guaranteed breakdown voltage.

【0015】ところで、上述したように、LOCOS酸
化膜5形成時に高耐圧用拡散領域3の拡散濃度にバラツ
キが生じると、高耐圧用拡散領域3とドレイン領域とな
る第1のウェル領域2とでトップ濃度差においてもバラ
ツキが生じる。図13は高耐圧用拡散領域3のトップ濃
度が第1のウェル領域2より低くなった場合、及び、図
14は高耐圧用拡散領域3のトップ濃度が第1のウェル
領域2のトップ濃度より高くなった場合の電界分布を示
しており、図13及び図14の斜線領域面積と図14の
斜線領域面積を比較してみると、図12の斜線領域面積
より、図13及び図9の面積が狭くなっていることがわ
かり、これは実効保証耐圧値が図12の実効耐圧値より
低下していることを示している。
As described above, if the diffusion concentration of the high-breakdown-voltage diffusion region 3 varies when the LOCOS oxide film 5 is formed, the high-breakdown-voltage diffusion region 3 and the first well region 2 serving as the drain region are not separated. Variations also occur in the top density difference. FIG. 13 shows the case where the top concentration of the high-breakdown-voltage diffusion region 3 is lower than that of the first well region 2, and FIG. 14 shows that the top concentration of the high-breakdown-voltage diffusion region 3 is higher than the top concentration of the first well region 2. 13 shows the distribution of the electric field when the height is increased. When the area of the shaded area in FIGS. 13 and 14 is compared with the area of the shaded area in FIG. 14, the area in FIG. 13 and FIG. Is narrowed, which indicates that the effective guaranteed withstand voltage value is lower than the effective withstand voltage value in FIG.

【0016】従って、横型高耐圧MOSFETに必要な
高耐圧用拡散領域3の濃度にバラツキが生じると電界分
布領域に影響を及ぼし、そのバラツキが顕著に現れた場
合には、耐圧特性を低下させることが判明した。また、
実行保証耐圧値が数百V以上となるような横型高耐圧M
OSFETにおいては、高耐圧用拡散領域3及びドレイ
ン領域2の不純物のトップ濃度を低く設定する必要があ
る。例えば、実行保証耐圧値を600Vとした場合、高
耐圧用拡散領域3及びドレイン領域2のトップ濃度が約
2×1015cm-2とする。
Therefore, if the concentration of the high-breakdown-voltage diffusion region 3 required for the lateral type high-breakdown-voltage MOSFET varies, it affects the electric-field distribution region, and if the variation remarkably appears, the breakdown voltage characteristics are reduced. There was found. Also,
Horizontal high withstand voltage M such that the guaranteed withstand voltage value is several hundred V or more
In the OSFET, the top concentration of impurities in the high breakdown voltage diffusion region 3 and the drain region 2 needs to be set low. For example, when the guaranteed withstand voltage value is 600 V, the top concentration of the high-breakdown-voltage diffusion region 3 and the drain region 2 is about 2 × 10 15 cm −2.

【0017】上述したように、高耐圧用拡散領域3及び
ドレイン領域2のトップ濃度を低く設定することで、高
高耐圧化を実現することが可能となる。しかしながら、
高耐圧用拡散領域3の濃度を低くしすぎると、高耐圧用
拡散領域3の周辺部とエピタキシャル層表面付近で形成
される空乏層が、図15に示すように、高耐圧用拡散領
域3側(内側)に入り込むようになり(矢印A)、高高
耐圧構造としているにも係わらず、このA部分で電界集
中が起こり却って耐圧が低下すると不具合がある。
As described above, by setting the top concentration of the high withstand voltage diffusion region 3 and the drain region 2 to be low, it is possible to realize a high withstand voltage. However,
If the concentration of the high-breakdown-voltage diffusion region 3 is too low, a depletion layer formed around the high-breakdown-voltage diffusion region 3 and near the surface of the epitaxial layer may be formed as shown in FIG. (Inside) (arrow A), and despite the high and high withstand voltage structure, there is a problem that the electric field concentration occurs in this A portion and the withstand voltage is lowered, instead.

【0018】この現象は、エピタキシャル層表面形成さ
れたシリコン酸化膜内に残留された正(+)の固定電荷
により、低濃度のP型の高耐圧用拡散領域3の表面周辺
部分のホールが押し出され、前記周辺部分が逆導電型
化、即ち、N化することによって生じるものである。本
発明は、上記した事情に鑑みてなされたものであり、L
OCOS酸化膜直下に耐圧向上のために形成された高耐
圧用拡散領域の不純物濃度をLOCOS酸化膜形成時の
バラツキに影響されず、また、トップ濃度が低い高耐圧
用拡散領域の周辺部と基板表面付近で生じる電界集中に
よる不具合を防止し、高高耐圧化された横型高耐圧MO
SFETを提供することを目的とする。
This phenomenon is caused by positive (+) fixed charges remaining in the silicon oxide film formed on the surface of the epitaxial layer, whereby holes in the peripheral portion of the low-concentration P-type high withstand voltage diffusion region 3 are pushed out. This is caused by making the peripheral portion reverse conductivity type, ie, N-type. The present invention has been made in view of the above circumstances, and
The impurity concentration of the high-breakdown-voltage diffusion region formed just below the OCOS oxide film to improve the breakdown voltage is not affected by the variation in the formation of the LOCOS oxide film, and the peripheral portion of the high-breakdown-voltage diffusion region having a low top concentration and the substrate Horizontal type high breakdown voltage MO with high breakdown voltage, preventing problems due to electric field concentration occurring near the surface
It is intended to provide an SFET.

【0019】[0019]

【課題を解決するための手段】本発明は、上記課題を解
決するために、以下の構成及び方法を採用した。即ち、
本発明の半導体装置は、一導電型の半導体基板と、前記
半導体基板に形成された逆導電型のドレイン領域と、前
記ドレイン領域表面に形成されたLOCOS酸化膜と、
前記LOCOS酸化膜の直下に所定の幅を有し、前記ド
レイン領域に形成される空乏層の広がりを抑制する一導
電型の高耐圧用拡散領域と、前記ドレイン領域に形成さ
れた逆導電型の高濃度ドレイン領域と、チャネルを形成
する一導電型の高濃度チャネル領域と、前記高濃度チャ
ネル領域に形成された逆導電型の高濃度ソース領域と、
前記LOCOS酸化膜上に形成され前記高濃度チャネル
領域にチャネルを形成するゲート電極とを有し、前記高
耐圧用拡散領域は、前記ドレイン領域のチャネル形成側
の前記LOCOS酸化膜の周辺領域で前記高耐圧用拡散
領域の不純物濃度をその中央部分の濃度より高濃度化し
たことを特徴としている。
The present invention employs the following configuration and method in order to solve the above-mentioned problems. That is,
The semiconductor device of the present invention includes a semiconductor substrate of one conductivity type, a drain region of the opposite conductivity type formed on the semiconductor substrate, and a LOCOS oxide film formed on the surface of the drain region.
A one-conductivity-type high-withstand-voltage diffusion region having a predetermined width immediately below the LOCOS oxide film and suppressing the spread of a depletion layer formed in the drain region, and a reverse-conduction-type diffusion region formed in the drain region; A high-concentration drain region, a high-concentration channel region of one conductivity type forming a channel, and a high-concentration source region of the opposite conductivity type formed in the high-concentration channel region;
A gate electrode formed on the LOCOS oxide film and forming a channel in the high-concentration channel region; and the high-breakdown-voltage diffusion region is formed in a peripheral region of the LOCOS oxide film on the channel formation side of the drain region. It is characterized in that the impurity concentration of the high-breakdown-voltage diffusion region is higher than that of the central portion.

【0020】ここで、前記LOCOS酸化膜と前記ドレ
イン領域との一番深い界面領域より深い位置に、前記一
導電型の高耐圧用拡散領域の濃度ピークが設定され、前
記高耐圧用拡散領域と前記ドレイン領域とのトップ濃度
が略同一であることを特徴としている。また、本発明の
半導体装置の製造方法は、一導電型の半導体基板の所定
領域に逆導電型のドレイン領域を形成する工程と、前記
ドレイン領域の表面に形成した酸化膜を介してLOCO
S酸化膜を形成する領域に、前記LOCOS酸化膜を形
成した時の前記ドレイン領域との一番深い界面領域より
深い領域で濃度ピークを有するように一導電型の高濃度
不純物を注入する工程と、前記高濃度不純物が注入され
た領域を露出し、且つ、前記高濃度不純物領域のチャネ
ル側の周辺領域と実質的に一致するか又は部分的に重畳
するように選択的にシリコン窒化膜を形成する工程と、
前記高濃度不純物領域上に形成された前記酸化膜を熱酸
化しLOCOS酸化膜を形成すると共に、前記高濃度不
純物を拡散してチャネル側の周辺領域の濃度がその中央
部分の濃度より高濃度となる高耐圧用拡散領域を形成す
る工程とを具備することを特徴としている。
Here, a concentration peak of the one-conductivity-type high-breakdown-voltage diffusion region is set at a position deeper than the deepest interface region between the LOCOS oxide film and the drain region. The top concentration of the drain region is substantially the same as that of the drain region. Further, in the method of manufacturing a semiconductor device according to the present invention, a step of forming a drain region of a reverse conductivity type in a predetermined region of a semiconductor substrate of one conductivity type; and a method of forming a LOCO through an oxide film formed on the surface of the drain region.
Implanting a one-conductivity-type high-concentration impurity into a region where an S-oxide film is to be formed so as to have a concentration peak in a region deeper than a deepest interface region with the drain region when the LOCOS oxide film is formed; Forming a silicon nitride film selectively so as to expose the region into which the high-concentration impurity is implanted and to substantially coincide with or partially overlap a peripheral region on the channel side of the high-concentration impurity region. The process of
The oxide film formed on the high-concentration impurity region is thermally oxidized to form a LOCOS oxide film, and the high-concentration impurity is diffused so that the concentration in the peripheral region on the channel side is higher than the concentration in the central portion. Forming a high-breakdown-voltage diffusion region.

【0021】ここで、前記シリコン窒化膜のドレイン側
の終端辺は前記高濃度不純物領域の終端辺より外側に形
成することを特徴としている。上述したように、高耐圧
用拡散領域は、前記ドレイン領域のチャネル形成側の前
記LOCOS酸化膜の周辺領域で前記高耐圧用拡散領域
の不純物濃度をその中央部分の濃度より高濃度化される
ことにより、高耐圧用拡散領域のトップ濃度を低下さ
せ、MOSFETの高高耐圧化を図った場合でも、高耐
圧用拡散領域の周辺部と基板との界面付近に生じる電界
集中を抑制することができる。
Here, the terminal side on the drain side of the silicon nitride film is formed outside the terminal side of the high concentration impurity region. As described above, in the high breakdown voltage diffusion region, the impurity concentration of the high breakdown voltage diffusion region in the peripheral region of the LOCOS oxide film on the channel formation side of the drain region is higher than the concentration of the central portion thereof. Accordingly, even when the top concentration of the high-breakdown-voltage diffusion region is reduced and the MOSFET has a high withstand voltage, electric field concentration occurring near the interface between the peripheral portion of the high-breakdown-voltage diffusion region and the substrate can be suppressed. .

【0022】また、LOCOS酸化膜と前記ドレイン領
域との一番深い界面領域より深い位置に、一導電型の高
耐圧用拡散領域となる一導電型の不純物注入後のの濃度
ピークを設定し、且つ、拡散後の高耐圧用拡散領域とド
レイン領域とのトップ濃度を略同一に設定することによ
り、高耐圧用拡散領域の不純物濃度の低下又は、増加す
る度合いが著しく減少するために耐圧特性を均一化させ
ることができる。
A concentration peak after the implantation of one conductivity type impurity which is to be a diffusion region for high breakdown voltage of one conductivity type is set at a position deeper than the deepest interface region between the LOCOS oxide film and the drain region, In addition, by setting the top concentration of the diffusion region for high breakdown voltage and the drain region after diffusion to be substantially the same, the reduction or increase in the impurity concentration of the diffusion region for high breakdown voltage is remarkably reduced. It can be made uniform.

【0023】また、高濃度不純物が注入された領域を露
出し、且つ、前記高濃度不純物領域のチャネル側の周辺
領域と実質的に一致するか又は部分的に重畳するように
選択的にシリコン窒化膜を形成し、前記高濃度不純物領
域上に形成された前記酸化膜を熱酸化しLOCOS酸化
膜を形成すると共に、前記高濃度不純物を拡散してチャ
ネル側の周辺領域の濃度がその中央部分の濃度より高濃
度となる高耐圧用拡散領域を形成することにより、高耐
圧用拡散領域の周辺部と基板との界面付近に生じる電界
集中を抑制する高濃度領域をLOCOS酸化膜形成と同
時形成することができる。
Also, silicon nitride is selectively exposed so as to expose the region into which the high-concentration impurity is implanted and substantially coincide with or partially overlap the peripheral region of the high-concentration impurity region on the channel side. A LOCOS oxide film is formed by thermally oxidizing the oxide film formed on the high-concentration impurity region to form a LOCOS oxide film. By forming a high breakdown voltage diffusion region having a concentration higher than the concentration, a high concentration region for suppressing electric field concentration occurring near the interface between the peripheral portion of the high breakdown voltage diffusion region and the substrate is formed simultaneously with the formation of the LOCOS oxide film. be able to.

【0024】[0024]

【発明の実施の形態】以下に、本発明の実施形態に係る
半導体装置、及びその製造方法について説明する。本発
明の半導体装置の一実施形態は、図1に示すように、半
導体基板1と、その基板表層にドレイン領域となる第1
のウェル領域2と、その第1のウェル領域2に形成され
た耐圧を向上させるための拡散領域3(以下、高耐圧用
拡散領域3という。)、及び高濃度ドレイン領域8と、
LOCOS酸化膜5のチャネル側周辺領域直下に形成さ
れた高耐圧用拡散領域3と同時形成された高濃度領域3
Aと、高耐圧用拡散領域3上に形成されたLOCOS酸
化膜5と、チャネルを形成する高濃度の第2のウェル領
域12と、その第2のウェル領域12に形成された高濃
度ソース領域7及びソース領域7を共通接続するP型の
高濃度共通接続領域13と、第2のウェル12とLOC
OS酸化膜5上に形成されたゲート電極6とをから構成
される。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a semiconductor device according to an embodiment of the present invention and a method for manufacturing the same will be described. As shown in FIG. 1, a semiconductor device according to an embodiment of the present invention includes a semiconductor substrate 1 and a first region serving as a drain region in a surface layer of the substrate.
A well region 2, a diffusion region 3 formed in the first well region 2 for improving the breakdown voltage (hereinafter referred to as a high breakdown voltage diffusion region 3), and a high-concentration drain region 8.
High-concentration region 3 formed simultaneously with high-breakdown-voltage diffusion region 3 formed immediately below the channel-side peripheral region of LOCOS oxide film 5
A, a LOCOS oxide film 5 formed on the high-breakdown-voltage diffusion region 3, a high-concentration second well region 12 forming a channel, and a high-concentration source region formed in the second well region 12. P-type high-concentration common connection region 13 for commonly connecting the source region 7 and the source region 7, the second well 12 and the LOC
And a gate electrode 6 formed on the OS oxide film 5.

【0025】この横型高耐圧MOSFETは、図1に示
すように、例えば、P型の半導体基板1上に、N型不純
物を拡散してドレイン領域となる第1のウェル領域2が
形成され、その表層にボロン(B+ )などのP型の不純
物を注入、拡散して高耐圧用拡散領域3が形成されてい
る。この高耐圧用拡散領域3は、ドレイン−ソース間、
特にドレイン領域となる第1のウェル領域2で生じるジ
ャンクション効果により、空乏層の広がりを内側に向け
る事により、ドレイン−ソース間の高耐圧化を向上させ
るものであり、横型高耐圧MOSFETにおいては必須
の拡散領域である。
In this lateral high-voltage MOSFET, as shown in FIG. 1, for example, a first well region 2 serving as a drain region is formed on a P-type semiconductor substrate 1 by diffusing an N-type impurity. A high breakdown voltage diffusion region 3 is formed by implanting and diffusing a P-type impurity such as boron (B +) into the surface layer. This high breakdown voltage diffusion region 3 is formed between the drain and the source,
In particular, the junction effect generated in the first well region 2 serving as the drain region improves the breakdown voltage between the drain and the source by directing the expansion of the depletion layer toward the inside. This is essential for a lateral high breakdown voltage MOSFET. Is a diffusion region.

【0026】高耐圧用拡散領域3上にはゲート−ドレイ
ン間耐圧を向上させるために所定の厚みのLOCOS酸
化膜5が形成されており、LOCOS酸化膜5が形成さ
れていない領域の半導体基板1上には酸化膜或いは窒化
膜等によりゲート絶縁膜4が形成されている。また、第
1のウェル領域2に隣接して高濃度のP型不純物を拡散
してチャネルを形成する高濃度の第2のウェル領域12
が形成され、その表層にはN+ 型不純物が拡散されて高
濃度ソース領域7が形成されている。さらに、高耐圧用
拡散領域3が形成されていない第1のウェル領域2の表
層上には、N+ 不純物を注入・拡散して高濃度ドレイン
領域8が形成される。
A LOCOS oxide film 5 having a predetermined thickness is formed on the high withstand voltage diffusion region 3 in order to improve the gate-drain withstand voltage, and the semiconductor substrate 1 in a region where the LOCOS oxide film 5 is not formed is formed. A gate insulating film 4 made of an oxide film, a nitride film, or the like is formed thereon. A high concentration second well region 12 is formed adjacent to the first well region 2 to form a channel by diffusing a high concentration P-type impurity.
Is formed, and an N + -type impurity is diffused in the surface layer to form a high-concentration source region 7. Further, on the surface layer of the first well region 2 where the high breakdown voltage diffusion region 3 is not formed, an N + impurity is implanted and diffused to form a high concentration drain region 8.

【0027】さらにゲート絶縁膜4からLOCOS酸化
膜5上に、第2のウェル領域12にチャネル形成及び耐
圧特性を向上させるためのポリシリコンを堆積してゲー
ト電極6及び耐圧用電極6Aが形成されており、それら
を被覆するように層間絶縁膜9が形成されている。ソー
ス領域7、ドレイン領域8の形成領域の層間絶縁膜9に
は開口が形成され、この開口中にアルミなどからなるソ
ース電極10,ドレイン電極11が形成されている。上
記耐圧用電極6Aはドレイン電極11と電気的に接続さ
れる。また、上記高耐圧用拡散領域3は、図示されない
が、ソース電極10と電気的に接続され基板1と同電位
にしてある。さらに、ソース領域7内には、チャネルを
安定化させるバックゲート用のP+高濃度領域13が形
成される。
Further, polysilicon is deposited on the second well region 12 from the gate insulating film 4 to the LOCOS oxide film 5 to improve channel formation and breakdown voltage characteristics, thereby forming a gate electrode 6 and a breakdown voltage electrode 6A. And an interlayer insulating film 9 is formed so as to cover them. An opening is formed in the interlayer insulating film 9 in a region where the source region 7 and the drain region 8 are formed, and a source electrode 10 and a drain electrode 11 made of aluminum or the like are formed in the opening. The withstand voltage electrode 6 </ b> A is electrically connected to the drain electrode 11. Although not shown, the high-breakdown-voltage diffusion region 3 is electrically connected to the source electrode 10 and has the same potential as the substrate 1. Further, in the source region 7, a P + high-concentration region 13 for a back gate for stabilizing a channel is formed.

【0028】本発明の特徴とするところは、上記した高
耐圧用拡散領域3の濃度がLOCOS酸化膜5を形成す
る際に生じる膜厚のバラツキによる高耐圧用拡散領域3
の濃度の低下及び増加により生じる耐圧特性の低下及び
バラツキを改善すると共に、LOCOS酸化膜と同時形
成で高耐圧用拡散領域3の周辺部とドレイン領域との界
面付近に生じる電界集中を抑制するものであり、具体的
には、本発明では、LOCOS酸化膜5とドレイン領域
8との一番深い界面領域Xより深い位置に、高耐圧用拡
散領域3の濃度ピークCPを設定し、図6に示すよう
に、高耐圧用拡散領域3とドレイン領域2、本実施形態
では第1のウェル領域2とのトップ濃度を略同一に設定
し、且つ、LOCOS酸化膜5のチャネル側の周辺部
(バーズビーク)を用いて、LOCOS酸化膜形成と同
時に高耐圧用拡散領域3の一部分を用いて高濃度領域3
Aを形成するものである。
A feature of the present invention is that the concentration of the high-breakdown-voltage diffusion region 3 depends on the thickness variation caused when the LOCOS oxide film 5 is formed.
To improve the reduction and variation of the breakdown voltage characteristics caused by the decrease and increase of the concentration of GaN, and to suppress the electric field concentration generated near the interface between the peripheral region of the high breakdown voltage diffusion region 3 and the drain region by simultaneous formation with the LOCOS oxide film. Specifically, in the present invention, the concentration peak CP of the high breakdown voltage diffusion region 3 is set at a position deeper than the deepest interface region X between the LOCOS oxide film 5 and the drain region 8, and FIG. As shown, the top concentration of the high-breakdown-voltage diffusion region 3 and the drain region 2, and in this embodiment, the top concentration of the first well region 2 are set to be substantially the same, and the peripheral portion of the LOCOS oxide film 5 on the channel side (bird's beak) ) To form a high-concentration region 3 using a part of the high-breakdown-voltage diffusion region 3 simultaneously with the formation of the LOCOS oxide film.
A is formed.

【0029】以下に、高耐圧用拡散領域3及び高濃度領
域3Aの形成方法について図2乃至図4を参照しながら
説明する。まず、図2に示すように、例えば、表層に約
6μm程度のドレイン領域となるN型の第1のウェル領
域2を形成したP型半導体基板1表面にシリコン酸化膜
等の酸化膜Aを形成し、さらに、その酸化膜A上にフォ
トレジストPRを形成し高耐圧用拡散領域となる領域に
開口部Xを形成し、このフォトレジストPRをマスクに
して、例えば、ボロンイオン(B+ )を注入し、高耐圧
用拡散領域となる不純物領域Aを形成する。
Hereinafter, a method of forming the high-breakdown-voltage diffusion region 3 and the high-concentration region 3A will be described with reference to FIGS. First, as shown in FIG. 2, for example, an oxide film A such as a silicon oxide film is formed on the surface of a P-type semiconductor substrate 1 on which an N-type first well region 2 serving as a drain region of about 6 μm is formed in a surface layer. Further, a photoresist PR is formed on the oxide film A, and an opening X is formed in a region to be a high-breakdown-voltage diffusion region. Using this photoresist PR as a mask, for example, boron ions (B +) are formed. Implantation is performed to form an impurity region A to be a high breakdown voltage diffusion region.

【0030】このボロンイオンの注入は、LOCOS酸
化膜を形成したときに、LOCOS酸化膜形成時におけ
るバラツキを考慮して、LOCOS酸化膜と第1のウェ
ル領域2(ドレイン領域)との一番深い界面領域より深
い領域で、不純物注入後の濃度ピークを有するように第
1のウェル領域2内にボロンイオンを注入する。ここで
重要なことは、第1のウェル領域2内に注入するボロン
イオン等の不純物は、単に深く注入するだけではなく、
既に拡散形成されている第1のウェル領域2のトップ濃
度と拡散後のボロンのトップ濃度とがLOCOS酸化膜
形成時のバラツキによる変化を考慮しつつ、両者のトッ
プ濃度が略同一に成るように注入することが重要であ
る。
This implantation of boron ions is performed at the deepest point between the LOCOS oxide film and the first well region 2 (drain region) in consideration of the variation in forming the LOCOS oxide film when the LOCOS oxide film is formed. Boron ions are implanted into the first well region 2 so as to have a concentration peak after impurity implantation in a region deeper than the interface region. What is important here is that impurities such as boron ions implanted into the first well region 2 are not only implanted deeply but also implanted.
The top concentration of the first well region 2 already formed by diffusion and the top concentration of boron after diffusion are adjusted so that the top concentrations of the two are substantially the same, taking into account the variation due to the variation at the time of forming the LOCOS oxide film. It is important to inject.

【0031】具体的には、例えば、ドレイン領域となる
第1のウェル領域2のトップ濃度が5×1012cm-2の
時、加速電圧約150〜220keV,ドーズ量1.3
〜1.1×1013cm-2の条件でドレイン領域となる第
1のウェル2内に注入することで拡散後の両者のトップ
濃度を実質的に同一にすることができる。高耐圧用拡散
領域3となる不純物の注入が深すぎると高耐圧拡散領域
3のトップ濃度の方が第1のウェル領域2とのトップ濃
度より高くなり、両者のトップ濃度差にバラツキが生じ
耐圧低下を招く恐れがある。
More specifically, for example, when the top concentration of the first well region 2 serving as the drain region is 5 × 10 12 cm −2, the acceleration voltage is about 150 to 220 keV, and the dose is 1.3.
By implanting into the first well 2 serving as the drain region under the condition of about 1.1.times.10@13 cm @ -2, the top concentrations of both after diffusion can be made substantially the same. If the impurity to be the high-breakdown-voltage diffusion region 3 is too deeply implanted, the top concentration of the high-breakdown-voltage diffusion region 3 becomes higher than the top concentration of the first well region 2, and a difference occurs between the top concentrations of the two regions. There is a risk of lowering.

【0032】次いで、フォトレジストPRを除去した
後、図3に示すように、LOCOS法によってLOCO
S酸化膜を形成するためにシリコン酸化膜4上にシリコ
ン窒化膜Bを形成する。さらに、シリコン窒化膜B上に
レジストPRを形成し、先に注入したボロン注入領域A
上のレジストを除去し、その後、露出したシリコン窒化
膜Bを除去しLOCOS酸化膜となるシリコン酸化膜4
を露出させる開口部Yを形成する。ここで、重要なこと
は、シリコン窒化膜Bのチャネル側(ソース側)の開口
部終端辺YCは、図3に示すように、ボロン注入領域A
の終端辺と一致させるか、又は若干(約0.5μm)ボ
ロン注入領域終端辺よりも内側となるように形成する。
一方、その相対向するドレイン側のシリコン窒化膜の開
口部終端辺YDは、ボロン注入領域Aの終端辺よりも外
側となるように形成する。
Next, after removing the photoresist PR, as shown in FIG.
A silicon nitride film B is formed on silicon oxide film 4 to form an S oxide film. Further, a resist PR is formed on the silicon nitride film B, and the boron implanted region A previously implanted is formed.
The upper resist is removed, and thereafter, the exposed silicon nitride film B is removed, and the silicon oxide film 4 serving as a LOCOS oxide film is removed.
An opening Y for exposing is formed. Here, it is important that the opening end side YC of the silicon nitride film B on the channel side (source side) is, as shown in FIG.
Or slightly (approximately 0.5 μm) inward of the end side of the boron implantation region.
On the other hand, the opposite end side YD of the opening of the silicon nitride film on the drain side facing the opposite side is formed outside the end side of the boron implantation region A.

【0033】シリコン窒化膜Bに上記したような開口部
Yを形成した後、図4に示すように、LOCOS技術に
よって開口部Yにより露出された領域に厚さ約7000
オングストロームのLOCOS酸化膜5を形成する。こ
のとき、先に注入されたボロンイオン(B+ )が、LO
COS酸化膜形成時の熱により拡散され、LOCOS酸
化膜5の直下に約1.5μmで所定の濃度を有した高耐
圧用拡散領域3が形成される。
After forming the opening Y as described above in the silicon nitride film B, as shown in FIG. 4, a thickness of about 7000 is formed in a region exposed by the opening Y by the LOCOS technique.
An Angstrom LOCOS oxide film 5 is formed. At this time, the previously implanted boron ions (B +)
The high-voltage diffusion region 3 having a predetermined concentration of about 1.5 μm and having a predetermined concentration is formed immediately below the LOCOS oxide film 5 by being diffused by heat at the time of forming the COS oxide film.

【0034】また、上記したように、チャネル側のシリ
コン窒化膜Bの開口部終端辺YCはボロン注入領域Aの
終端辺と一致、又は重畳形成しているために、高耐圧用
拡散領域3のチャネル側の終端辺は、上記拡散工程によ
り等方向(横方向)にも拡散が広がり、シリコン窒化膜
Bの直下にも幅約0.5μm程度の高耐圧用拡散領域3
Aが形成されることになる。一方、ドレイン側のシリコ
ン窒化膜Bの開口部終端辺YDは、ボロン注入領域の終
端辺よりも外側に形成しているので、ドレイン側の高耐
圧用拡散領域3の終端部はシリコン窒化膜Bの直下まで
拡散しない。
As described above, since the terminal side YC of the opening of the silicon nitride film B on the channel side coincides with or overlaps with the terminal side of the boron implanted region A, the diffusion region 3 for the high withstand voltage is formed. In the channel side terminal side, the diffusion is spread in the same direction (lateral direction) by the above diffusion step, and the high breakdown voltage diffusion region 3 having a width of about 0.5 μm is formed immediately below the silicon nitride film B.
A will be formed. On the other hand, since the opening end side YD of the silicon nitride film B on the drain side is formed outside the end side of the boron implantation region, the terminal end of the high breakdown voltage diffusion region 3 on the drain side is formed by the silicon nitride film B. Does not spread to just below.

【0035】本実施形態においては、上記のボロンイオ
ン(B+ )の注入工程において、従来よりも約1.5倍
以上の大きい加速電圧で加速して注入しているので、基
板内でのボロンイオンの飛程距離が長くなり、ボロンイ
オンは従来よりも基板1の内部に深く打ち込まれ、従来
と異なり基板1の奥深くに集中する。また、打ち込みの
際のドーズ量が従来の半分程度の1.3×1013cm-2
になっている。これらのことより、このときのボロンイ
オンの濃度のプロファイルは、図5に示すようになり、
不純物濃度のピーク(CP)が、従来のようにLOCO
S酸化膜5内に現れるのではなく、高耐圧用拡散領域3
にまで達する。
In the present embodiment, the boron ions (B +) are implanted by accelerating at an acceleration voltage that is about 1.5 times or more larger than that in the prior art, so that boron ions (B +) are implanted in the substrate. The range of the ions becomes longer, and boron ions are implanted deeper into the substrate 1 than before, and are concentrated deep inside the substrate 1 unlike the conventional case. In addition, the dose at the time of implantation is 1.3 × 10 13 cm −2, which is about half of the conventional dose.
It has become. From these facts, the profile of the boron ion concentration at this time is as shown in FIG.
The impurity concentration peak (CP) is lower than
Instead of appearing in the S oxide film 5, the diffusion region 3 for high withstand voltage
To reach.

【0036】すると、図5に示すように、図5の斜線部
に示す領域面積は、その大部分がLOCOS酸化膜5の
界面領域より深い領域で存在し、LOCOS酸化膜3形
成後において膜厚にバラツキ(矢印)がある場合でも高
耐圧用拡散領域3の不純物の総量は、図11に示す従来
の方法による不純物の総量に比して多くなる。上述した
ように、LOCOS酸化膜5形成時に生じる膜厚のバラ
ツキがあったとしても、高耐圧用拡散領域を形成する不
純物の濃度ピークCPはLOCOS酸化膜5の界面領域
より深い領域と成るために、LOCOS酸化膜5が深さ
方向にバラツキがあっても高耐圧用拡散領域自体の不純
物濃度は従来に比してバラツキがなくなる。
Then, as shown in FIG. 5, most of the area indicated by the hatched area in FIG. 5 exists in a region deeper than the interface region of the LOCOS oxide film 5, and the film thickness after the LOCOS oxide film 3 is formed. However, the total amount of impurities in the high breakdown voltage diffusion region 3 is larger than the total amount of impurities according to the conventional method shown in FIG. As described above, even if there is a variation in the film thickness that occurs when the LOCOS oxide film 5 is formed, the impurity concentration peak CP that forms the high-breakdown-voltage diffusion region is deeper than the interface region of the LOCOS oxide film 5. Even if the LOCOS oxide film 5 varies in the depth direction, the impurity concentration of the high-breakdown-voltage diffusion region itself does not vary as compared with the conventional case.

【0037】従って、高耐圧用拡散領域3のトップ濃度
を設計値に近い値に形成することが可能となり、高耐圧
用拡散領域3のトップ濃度を本実施形態のドレイン領域
である第1のウェル領域2のトップ濃度とをLOCOS
酸化膜形成時のバラツキに影響されずに、図6に示すよ
うに、高耐圧用拡散領域とドレイン領域となる第1のウ
ェル領域のトップ濃度を略同一にすることができる。そ
の結果、高耐圧用拡散領域3と本実施形態でドレイン領
域となる第1のウェル領域2との接合面の電界強度が、
図12に示すように、そのピーク値をMAXとすること
ができ耐圧特性の極めた優れた横型高耐圧MOSFET
を提供することができる。
Therefore, the top concentration of the high-breakdown-voltage diffusion region 3 can be set to a value close to the designed value, and the top concentration of the high-breakdown-voltage diffusion region 3 can be reduced to the first well which is the drain region of the present embodiment. LOCOS and the top density of region 2
As shown in FIG. 6, the top concentration of the high-breakdown-voltage diffusion region and the first well region serving as the drain region can be made substantially the same without being affected by the variation in the formation of the oxide film. As a result, the electric field strength at the junction surface between the high-breakdown-voltage diffusion region 3 and the first well region 2 serving as the drain region in the present embodiment becomes:
As shown in FIG. 12, the peak value can be set to MAX and an excellent lateral high withstand voltage MOSFET having excellent withstand voltage characteristics.
Can be provided.

【0038】また、上記したように、高耐圧用拡散領域
3のチャネル側の終端辺は、上記拡散工程により等方向
(横方向)にも拡散が広がり、シリコン窒化膜Bの直下
にも幅約0.5μm程度の高耐圧用拡散領域3Aが形成
されている。この終端部分の高耐圧用拡散領域3AはL
OCOS酸化膜5のバーズビーク直下に位置するように
形成されるために、上述したように、LOCOS酸化膜
5のバラツキによる濃度低下の影響を直接受けないの
で、LOCOS酸化膜5のバーズビーク直下、即ち、チ
ャネル側の高耐圧用拡散領域3の終端部分の濃度は他の
拡散領域3の濃度より高濃度化された高濃度領域3Aが
形成される。
As described above, the terminal side near the channel of the high-breakdown-voltage diffusion region 3 is diffused in the same direction (lateral direction) by the above-mentioned diffusion step, and has a width of approximately just below the silicon nitride film B. A diffusion region 3A for high withstand voltage of about 0.5 μm is formed. The high-breakdown-voltage diffusion region 3A at the end portion is L
Since it is formed so as to be located immediately below the bird's beak of the OCOS oxide film 5, as described above, it is not directly affected by the concentration decrease due to the variation of the LOCOS oxide film 5. A high-concentration region 3A is formed in which the concentration of the terminal portion of the high-breakdown-voltage diffusion region 3 on the channel side is higher than that of the other diffusion regions 3.

【0039】この高濃度領域3Aは、特に、高耐圧用拡
散領域3のトップ濃度を低くした場合に高耐圧用拡散領
域3のチャネル側の周辺部と第1のウェル領域(ドレイ
ン領域)との界面部分での生じる逆導電型現象を防止し
高高耐圧化に寄与することができる。一方、ドレイン側
の高耐圧用拡散領域3の終端辺は、上述したように、シ
リコン窒化膜Bの開口部の終端辺がボロン注入領域の終
端辺よりも外側に形成されているために、チャネル側の
ような高濃度領域3Aは形成されることはないため耐圧
特性が低下することはない。
The high-concentration region 3A is formed between the peripheral portion on the channel side of the high-breakdown-voltage diffusion region 3 and the first well region (drain region) when the top concentration of the high-breakdown-voltage diffusion region 3 is reduced. It is possible to prevent the reverse conductivity type phenomenon occurring at the interface portion and to contribute to high breakdown voltage. On the other hand, as described above, the terminal side of the drain-side high-withstand-voltage diffusion region 3 has the channel end because the terminal side of the opening of the silicon nitride film B is formed outside the terminal side of the boron implantation region. Since the high-concentration region 3A such as the side is not formed, the withstand voltage characteristic does not decrease.

【0040】上述した本実施形態では、注入の際の加速
電圧を150〜220keVとし、注入の際のドーズ量
を1.3×1013cm-2とし、加速電圧を従来の約1.
5倍程度、注入の際のドーズ量を従来の半分程度にして
いるが、本発明はこれに限らず、不純物濃度のピークが
高耐圧用拡散領域3において現れるような条件で注入す
れば同様の効果を奏する。
In the above-described embodiment, the acceleration voltage at the time of implantation is 150 to 220 keV, the dose at the time of implantation is 1.3 × 10 13 cm −2, and the acceleration voltage is about 1.
The dose at the time of implantation is about five times that of the conventional one, but the present invention is not limited to this, and the same applies if the implantation is performed under such conditions that the peak of the impurity concentration appears in the high withstand voltage diffusion region 3. It works.

【0041】また、本実施形態では、高耐圧用拡散領域
3の不純物としてボロンイオンを注入しているが、P型
不純物であれば同様の効果を奏する。さらに、本実施形
態では、ドレイン領域を第1のウェル領域2として用い
たが、本発明はこれに限定されるものではなく、ドレイ
ン領域として第1のウェル領域の代わりに、図7に示す
ように、P型基板1上にN型エピタキシャル層2を形成
して、そのエピタキシャル層2をドレイン領域として用
いることも可能である。尚、同図に付された他の図番号
は上述した図番号と同一とみなしてここでの説明は省略
する。
In this embodiment, boron ions are implanted as impurities in the high-breakdown-voltage diffusion region 3. However, similar effects can be obtained with P-type impurities. Further, in the present embodiment, the drain region is used as the first well region 2. However, the present invention is not limited to this. Instead of the first well region as the drain region, as shown in FIG. Alternatively, it is possible to form an N-type epitaxial layer 2 on a P-type substrate 1 and use the epitaxial layer 2 as a drain region. It should be noted that the other figure numbers given in the same figure are regarded as the same as the above-mentioned figure numbers, and the description is omitted here.

【0042】最後に、上述した実施形態ではNチャネル
横型高耐圧MOSFETについて説明したが、本発明は
Pチャネル横型高耐圧MOSFETにおいても同様に成
し得ることは説明するまでもない。
Lastly, in the above-described embodiment, an N-channel lateral high withstand voltage MOSFET has been described. However, it is needless to say that the present invention can be similarly applied to a P-channel lateral high withstand voltage MOSFET.

【0043】[0043]

【発明の効果】上述したように、本発明の半導体装置に
よれば、高耐圧用拡散領域は、前記ドレイン領域のチャ
ネル形成側の前記LOCOS酸化膜の周辺領域で前記高
耐圧用拡散領域の不純物濃度をその中央部分の濃度より
高濃度化されることにより、高耐圧用拡散領域のトップ
濃度を低下させ、MOSFETの高高耐圧化を図った場
合でも、高耐圧用拡散領域の周辺部と基板との界面付近
に生じる電界集中を抑制することができ、耐圧特性の優
れた半導体装置を提供することができる。
As described above, according to the semiconductor device of the present invention, the high breakdown voltage diffusion region is formed in the peripheral region of the LOCOS oxide film on the channel formation side of the drain region. By increasing the concentration to be higher than the concentration in the central portion, the top concentration of the high-breakdown-voltage diffusion region is reduced, and even if the MOSFET is designed to have a high withstand voltage, the peripheral portion of the high-breakdown-voltage diffusion region and the substrate are removed. The concentration of the electric field generated near the interface with the semiconductor device can be suppressed, and a semiconductor device with excellent withstand voltage characteristics can be provided.

【0044】また、本発明の半導体装置によれば、LO
COS酸化膜と前記ドレイン領域との一番深い界面領域
より深い位置に、一導電型の高耐圧用拡散領域となる一
導電型の不純物注入後のの濃度ピークを設定し、且つ、
拡散後の高耐圧用拡散領域とドレイン領域とのトップ濃
度を略同一に設定することにより、高耐圧用拡散領域の
不純物濃度の低下又は、増加する度合いが著しく減少す
るために耐圧特性を均一化させることができる。
According to the semiconductor device of the present invention, the LO
At a position deeper than the deepest interface region between the COS oxide film and the drain region, a concentration peak after impurity implantation of one conductivity type to be a diffusion region for high breakdown voltage of one conductivity type is set, and
By setting the top concentration of the diffusion region for high breakdown voltage and the drain region after diffusion to be approximately the same, the reduction or increase in the impurity concentration of the diffusion region for high breakdown voltage is significantly reduced, so that the breakdown voltage characteristics are made uniform. Can be done.

【0045】さらに、本発明の半導体装置の製造方法に
よれば、高濃度不純物が注入された領域を露出し、且
つ、高濃度不純物領域のチャネル側の周辺領域と実質的
に一致するか又は部分的に重畳するように選択的にシリ
コン窒化膜を形成し、前記高濃度不純物領域上に形成さ
れた前記酸化膜を熱酸化しLOCOS酸化膜を形成する
と共に、前記高濃度不純物を拡散してチャネル側の周辺
領域の濃度がその中央部分の濃度より高濃度となる高耐
圧用拡散領域を形成することにより、高耐圧用拡散領域
の周辺部と基板との界面付近に生じる電界集中を抑制す
る高濃度領域をLOCOS酸化膜形成と同時形成するこ
とができる。
Further, according to the method of manufacturing a semiconductor device of the present invention, the region into which the high concentration impurity is implanted is exposed and substantially coincides with or partially coincides with the peripheral region on the channel side of the high concentration impurity region. Forming a LOCOS oxide film by thermally oxidizing the oxide film formed on the high-concentration impurity region to form a LOCOS oxide film and diffusing the high-concentration impurity to form a channel. By forming a high-breakdown-voltage diffusion region in which the concentration of the peripheral region on the side is higher than the concentration of the central portion, electric field concentration occurring near the interface between the periphery of the high-breakdown-voltage diffusion region and the substrate is reduced. The concentration region can be formed simultaneously with the formation of the LOCOS oxide film.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の高耐圧MOSFETの構
造を説明する断面図。
FIG. 1 is a cross-sectional view illustrating a structure of a high breakdown voltage MOSFET according to an embodiment of the present invention.

【図2】高耐圧MOSFETの高耐圧用拡散領域を形成
する工程を説明する断面図。
FIG. 2 is a cross-sectional view illustrating a step of forming a high breakdown voltage diffusion region of the high breakdown voltage MOSFET.

【図3】高耐圧MOSFETの高耐圧用拡散領域を形成
する工程を説明する断面図。
FIG. 3 is a cross-sectional view illustrating a step of forming a high breakdown voltage diffusion region of the high breakdown voltage MOSFET.

【図4】高耐圧MOSFETの高耐圧用拡散領域を形成
する工程を説明する断面図。
FIG. 4 is a cross-sectional view illustrating a step of forming a high breakdown voltage diffusion region of the high breakdown voltage MOSFET.

【図5】本発明の実施形態に係る高耐圧用拡散領域の不
純物注入後の不純物濃度のプロファイルを示す図。
FIG. 5 is a view showing a profile of an impurity concentration after impurity implantation in a high breakdown voltage diffusion region according to the embodiment of the present invention.

【図6】本発明の実施形態に係る拡散後の高耐圧用拡散
領域とドレイン領域のトップ濃度の不純物濃度プロファ
イルを示す図。
FIG. 6 is a view showing an impurity concentration profile of a top concentration of a diffusion region for high breakdown voltage and a drain region after diffusion according to the embodiment of the present invention.

【図7】他の実施形態の高耐圧MOSFETの構造を説
明する断面図。
FIG. 7 is a sectional view illustrating the structure of a high-breakdown-voltage MOSFET according to another embodiment.

【図8】従来の高耐圧MOSFETの構造を説明する断
面図。
FIG. 8 is a cross-sectional view illustrating the structure of a conventional high breakdown voltage MOSFET.

【図9】従来の高耐圧MOSFETの製造工程を説明す
る断面図。
FIG. 9 is a cross-sectional view illustrating a manufacturing process of a conventional high breakdown voltage MOSFET.

【図10】従来の高耐圧MOSFETの製造工程を説明
する断面図。
FIG. 10 is a cross-sectional view illustrating a manufacturing process of a conventional high breakdown voltage MOSFET.

【図11】従来の高耐圧用拡散領域の不純物注入後の不
純物濃度のプロファイルを示す図。
FIG. 11 is a view showing a profile of impurity concentration after impurity implantation in a conventional high breakdown voltage diffusion region.

【図12】本発明を説明するための電界分布図。FIG. 12 is an electric field distribution diagram for explaining the present invention.

【図13】本発明を説明するための電界分布図。FIG. 13 is an electric field distribution diagram for explaining the present invention.

【図14】本発明を説明するための電界分布図。FIG. 14 is an electric field distribution diagram for explaining the present invention.

【図15】本発明を説明するための図。FIG. 15 is a diagram illustrating the invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平6−53490(JP,A) 特開 平8−23091(JP,A) 特開 平8−18041(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 H01L 21/336 H01L 21/761 H01L 21/8234 H01L 27/088 ────────────────────────────────────────────────── ─── Continuation of the front page (56) References JP-A-6-53490 (JP, A) JP-A-8-23091 (JP, A) JP-A 8-18041 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01L 29/78 H01L 21/336 H01L 21/761 H01L 21/8234 H01L 27/088

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】一導電型の半導体基板と、前記半導体基板
に形成された逆導電型のドレイン領域と、前記ドレイン
領域表面に形成されたLOCOS酸化膜と、前記LOC
OS酸化膜の直下に所定の幅を有し、前記ドレイン領域
に形成される空乏層の広がりを抑制する一導電型の高耐
圧用拡散領域と、前記ドレイン領域に形成された逆導電
型の高濃度ドレイン領域と、チャネルを形成する一導電
型の高濃度チャネル領域と、前記高濃度チャネル領域に
形成された逆導電型の高濃度ソース領域と、前記LOC
OS酸化膜上に形成され前記高濃度チャネル領域にチャ
ネルを形成するゲート電極とを有し、前記高耐圧用拡散
領域は、前記ドレイン領域のチャネル形成側の前記LO
COS酸化膜の周辺領域で前記高耐圧用拡散領域の不純
物濃度をその中央部分の濃度より高濃度化され、また、
前記LOCOS酸化膜と前記ドレイン領域との一番深い
界面領域より深い位置に、前記一導電型の高耐圧用拡散
領域の濃度ピークが設定され、前記高耐圧用拡散領域と
前記ドレイン領域とのトップ濃度が略同一であること特
徴とする半導体装置。
A semiconductor substrate of one conductivity type; a drain region of opposite conductivity type formed on the semiconductor substrate; a LOCOS oxide film formed on a surface of the drain region;
A one-conductivity-type high-breakdown-voltage diffusion region having a predetermined width immediately below the OS oxide film and suppressing the spread of a depletion layer formed in the drain region; A high-concentration drain region, a high-concentration channel region of one conductivity type forming a channel, a high-concentration source region of opposite conductivity type formed in the high-concentration channel region, and the LOC.
A gate electrode formed on an OS oxide film to form a channel in the high-concentration channel region; and the high-breakdown-voltage diffusion region is provided on the channel formation side of the drain region.
In the peripheral region of the COS oxide film, the impurity concentration of the high breakdown voltage diffusion region is made higher than that of the central portion thereof,
A concentration peak of the one-conductivity-type high-breakdown-voltage diffusion region is set at a position deeper than the deepest interface region between the LOCOS oxide film and the drain region, and a top of the high-breakdown-voltage diffusion region and the drain region is formed. A semiconductor device characterized by having substantially the same concentration.
【請求項2】一導電型の半導体基板の所定領域に逆導電
型のドレイン領域を形成する工程と、 前記ドレイン領域の表面に形成した酸化膜を介してLO
COS酸化膜を形成する領域に、前記LOCOS酸化膜
を形成した時の前記ドレイン領域との一番深い界面領域
より深い領域で濃度ピークを有するように一導電型の高
濃度不純物を注入する工程と、 前記高濃度不純物が注入された領域を露出し、且つ、前
記高濃度不純物領域のチャネル側の周辺領域と実質的に
一致するか又は部分的に重畳するように選択的にシリコ
ン窒化膜を形成する工程と、 前記高濃度不純物領域上に形成された前記酸化膜を熱酸
化しLOCOS酸化膜を形成すると共に、前記高濃度不
純物を拡散してチャネル側の周辺領域の濃度がその中央
部分の濃度より高濃度となる高耐圧用拡散領域を形成す
る工程とを具備したことを特徴とする半導体装置の製造
方法。
2. A method according to claim 1 , wherein a predetermined region of the semiconductor substrate of one conductivity type has a reverse conductivity.
Forming a drain region of a mold type; and forming an LO film through an oxide film formed on the surface of the drain region.
The LOCOS oxide film is formed in a region where a COS oxide film is to be formed.
Deepest interface region with the drain region when forming
One conductivity type high so as to have a concentration peak in a deeper region
Implanting a high concentration impurity, exposing the region into which the high concentration impurity has been implanted, and
Substantially with the peripheral region on the channel side of the high concentration impurity region
Selective silicon to match or partially overlap
Forming a nitrided film; and thermally etching the oxide film formed on the high-concentration impurity region.
To form a LOCOS oxide film,
Diffuses the pure substance and the concentration in the peripheral area on the channel side is
Forming a high-breakdown-voltage diffusion region with a higher concentration than that of the portion
Manufacturing a semiconductor device, comprising the steps of:
Method.
【請求項3】前記シリコン窒化膜のドレイン側の終端辺
は前記高濃度不純物領域の終端辺より外側に形成するこ
とを特徴とする請求項2記載の半導体装置の 製造方法。
3. A terminal side on the drain side of the silicon nitride film.
Is formed outside the terminal side of the high concentration impurity region.
3. The method of manufacturing a semiconductor device according to claim 2, wherein :
JP02933597A 1997-02-13 1997-02-13 Semiconductor device and method of manufacturing semiconductor device Expired - Fee Related JP3276872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02933597A JP3276872B2 (en) 1997-02-13 1997-02-13 Semiconductor device and method of manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02933597A JP3276872B2 (en) 1997-02-13 1997-02-13 Semiconductor device and method of manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH10229189A JPH10229189A (en) 1998-08-25
JP3276872B2 true JP3276872B2 (en) 2002-04-22

Family

ID=12273375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02933597A Expired - Fee Related JP3276872B2 (en) 1997-02-13 1997-02-13 Semiconductor device and method of manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3276872B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001274390A (en) * 2000-01-18 2001-10-05 Fuji Electric Co Ltd High breakdown voltage device, manufacturing method thereof, and method for forming impurity diffusion region
JP5191132B2 (en) * 2007-01-29 2013-04-24 三菱電機株式会社 Semiconductor device
JP4616856B2 (en) * 2007-03-27 2011-01-19 株式会社日立製作所 Semiconductor device and manufacturing method of semiconductor device
JP2009239096A (en) * 2008-03-27 2009-10-15 Renesas Technology Corp Semiconductor device

Also Published As

Publication number Publication date
JPH10229189A (en) 1998-08-25

Similar Documents

Publication Publication Date Title
JP3221766B2 (en) Method for manufacturing field effect transistor
JP3049492B2 (en) MOSFET and manufacturing method thereof
JP3474589B2 (en) Complementary MIS transistor device
US4737471A (en) Method for fabricating an insulated-gate FET having a narrow channel width
JP3443355B2 (en) Method for manufacturing semiconductor device
JPH0575115A (en) Semiconductor device and manufacture thereof
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
JP3075225B2 (en) Method for manufacturing semiconductor device
US6713331B2 (en) Semiconductor device manufacturing using one element separation film
JP3276872B2 (en) Semiconductor device and method of manufacturing semiconductor device
US6350641B1 (en) Method of increasing the depth of lightly doping in a high voltage device
JP3363811B2 (en) Semiconductor device and manufacturing method thereof
US6153910A (en) Semiconductor device with nitrogen implanted channel region
JP3397999B2 (en) Method for manufacturing semiconductor device
JP2849199B2 (en) Method for manufacturing semiconductor device
JP3363810B2 (en) Semiconductor device and manufacturing method thereof
JP3213560B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JPH05275693A (en) Manufacture of mosfet
JP3061157B2 (en) Method for forming semiconductor device
KR100549941B1 (en) gate electrode structure for semiconductor device
JP3423230B2 (en) Method for manufacturing semiconductor device
JP2917301B2 (en) Semiconductor device and manufacturing method thereof
JP3223125B2 (en) Semiconductor device and method of manufacturing semiconductor device
JPH04255233A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees