JP3265481B2 - Low temperature molding of brittle material ultrafine particles - Google Patents

Low temperature molding of brittle material ultrafine particles

Info

Publication number
JP3265481B2
JP3265481B2 JP2000123047A JP2000123047A JP3265481B2 JP 3265481 B2 JP3265481 B2 JP 3265481B2 JP 2000123047 A JP2000123047 A JP 2000123047A JP 2000123047 A JP2000123047 A JP 2000123047A JP 3265481 B2 JP3265481 B2 JP 3265481B2
Authority
JP
Japan
Prior art keywords
ultrafine
brittle material
substrate
particles
particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000123047A
Other languages
Japanese (ja)
Other versions
JP2001003180A (en
Inventor
純 明渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2000123047A priority Critical patent/JP3265481B2/en
Publication of JP2001003180A publication Critical patent/JP2001003180A/en
Application granted granted Critical
Publication of JP3265481B2 publication Critical patent/JP3265481B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明はセラミックス材料
などの脆性材料の超微粒子を基板上に供給して、成膜ま
たは造形する技術に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a technology for supplying ultrafine particles of a brittle material such as a ceramic material onto a substrate and forming or forming a film.

【0002】[0002]

【従来の技術】セラミック材料などの脆性材料の微粒子
を用いて、基板上に成膜や微細構造物等の造形物を成形
する技術としては、これまでも、超微粒子材料をガスと
混合し細いノズルから吹き付け成形する方法が提案され
ている。この成形された膜や造形物が所望の物理的特性
を持つためには、超微粒子材料がその膜内や造形物内で
所望の接合強度を持つことが必要である。
2. Description of the Related Art As a technique for forming a molded article such as a film or a fine structure on a substrate by using fine particles of a brittle material such as a ceramic material, there has hitherto been known a technique in which an ultrafine particle material is mixed with a gas to form a thin material. A method of spray molding from a nozzle has been proposed. In order for the formed film or shaped article to have desired physical properties, the ultrafine particle material needs to have a desired bonding strength in the film or the shaped article.

【0003】しかし、実際のところ、これら超微粒子材
料を熱的なアシスト無しに室温で高密度かつ高強度に接
合し、成形できるかは、使用する超微粒子材料の物質的
性質に大きく依存し、また、その原因も明らかになって
いなかった。このため、従来の成形(成膜)方法で十分
な物理的特性(機械的強度、電気特性など)を得るため
には、通常、基板を数百度以上に加熱し、また、その
後、セラミックス(脆性材料)の焼結温度に近い高温で
焼くことが必要であった。もちろん通常のセラミックス
材料の焼結技術の場合も、固相あるいは固相−液相反応
など熱的な拡散現象を利用して粒子同士の結合を実現す
るため、高温(少なくとも900℃以上)で焼くことが
不可欠である。
However, in fact, whether these ultrafine particles can be bonded and molded at a high density and a high strength at room temperature without thermal assistance greatly depends on the material properties of the ultrafine particles used. Also, the cause was not clear. For this reason, in order to obtain sufficient physical properties (mechanical strength, electrical properties, etc.) by the conventional molding (film forming) method, the substrate is usually heated to several hundred degrees or more, and then the ceramic (brittleness) It was necessary to bake at a high temperature close to the sintering temperature of the material). Of course, in the case of ordinary ceramic material sintering technology, baking is performed at a high temperature (at least 900 ° C. or higher) in order to realize bonding between particles by utilizing a thermal diffusion phenomenon such as a solid phase or a solid-liquid phase reaction. It is essential.

【0004】しかしこのような加熱処理を必要とするた
め、耐熱温度の低いプラスティック基板上などにセラミ
ックス材料を直接成形することはできず、さらに加熱炉
も必要となるため処理工程も複雑になる。また、このよ
うな加熱処理が成形された膜や造形物の形状精度や物理
的性質を変えてしまうこともある。
[0004] However, since such a heat treatment is required, a ceramic material cannot be directly formed on a plastic substrate or the like having a low heat-resistant temperature, and a heating furnace is also required. In addition, such heat treatment may change the shape accuracy and physical properties of a formed film or molded article.

【0005】このようなことから熱を加えることなく、
高密度高強度の膜または造形物を成形することができる
成形法の開発が望まれている。
[0005] Therefore, without applying heat,
Development of a molding method capable of molding a high-density and high-strength film or molded article is desired.

【0006】この発明は上記の如き事情に鑑みてなされ
たものであって、超微粒子相互の接合を実現し、熱を加
えることなく、高密度、高強度その他の所望の条件の膜
または造形物を成形することができる成形法を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made in view of the above circumstances, and realizes bonding of ultrafine particles to each other, and does not apply heat to a film or a shaped article having high density, high strength and other desired conditions. It is an object of the present invention to provide a molding method capable of molding a resin.

【0007】[0007]

【課題を解決するための手段】この目的に対応してこの
発明の脆性材料超微粒子成形体の低温成形法は、基板上
に供給した粒径範囲50nm〜5μmの超微粒子脆性材
料に前記超微粒子脆性材料の破壊強度以上の大きさの
械的衝撃力を負荷して粉砕して前記超微粒子脆性材料同
を接合させるかまたは前記超微粒子脆性材料同士を接
合させると共に前記超微粒子脆性材料と前記基板を接合
させて理論密度の95%以上で結晶サイズで100nm
以下の微結晶を含む脆性材料超微粒子成形体を成形する
ことを特徴としている。
In accordance with this object, a low-temperature molding method for a molded article of brittle material ultrafine particles according to the present invention is characterized in that the ultrafine brittle material having a particle size range of 50 nm to 5 μm supplied to a substrate is treated with the ultrafine particles. A mechanical impact force having a strength equal to or greater than the breaking strength of the brittle material is applied to grind the ultrafine brittle materials to join each other or to connect the ultrafine brittle materials to each other .
At the same time, the ultrafine brittle material and the substrate are joined together to form a crystal having a crystal size of 100 nm at 95% or more of the theoretical density.
The present invention is characterized in that a brittle material ultrafine particle formed body containing the following microcrystal is formed .

【0008】[0008]

【実施例一】以下この発明の詳細を一実施例を示す図面
について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described below with reference to the drawings showing one embodiment.

【0009】図1において、1aは微細成膜装置であ
る。微細成膜装置1aはチャンバー2内に基板3と超微
粒子供給装置の一例としてノズル4とを配設している。
基板3は形成された膜を支持するためのものである。さ
らに必要に応じて機械的衝撃力負荷装置5を基板の移動
経路に沿って配設している。
In FIG. 1, reference numeral 1a denotes a fine film forming apparatus. In the fine film forming apparatus 1a, a substrate 3 and a nozzle 4 as an example of an ultrafine particle supply device are provided in a chamber 2.
The substrate 3 is for supporting the formed film. Further, if necessary, a mechanical impact load device 5 is provided along the movement path of the substrate.

【0010】ノズル4は超微粒子材料を基板3上に供給
し超微粒子堆積体11または超微粒子圧粉体16を形成
するものである。超微粒子堆積体11はノズル4から超
微粒子が供給されて、超微粒子間には接合されておら
ず、単に基板3上に堆積した状態のものである。超微粒
子圧粉体16はノズル4から超微粒子が基板3上に吹き
付けられ、この吹き付けによって超微粒子に機械的衝撃
力が作用して超微粒子間に接合状態が生起されている状
態のものである。基板3は基板駆動装置6に取り付けら
れ、基板駆動装置に駆動されてチャンバー2内で変位可
能である。ノズル4もチャンバー内で変位可能に構成し
てもよい。
The nozzle 4 supplies an ultra-fine particle material onto the substrate 3 to form an ultra-fine particle deposit 11 or an ultra-fine green compact 16. The ultrafine particle deposit body 11 is a state in which ultrafine particles are supplied from the nozzle 4, are not bonded between the ultrafine particles, and are simply deposited on the substrate 3. The ultra-fine particle compact 16 is a state in which ultra-fine particles are sprayed onto the substrate 3 from the nozzle 4, and a mechanical impact force acts on the ultra-fine particles by this spraying, so that a bonding state is generated between the ultra-fine particles. . The substrate 3 is attached to a substrate driving device 6 and is displaceable in the chamber 2 by being driven by the substrate driving device. The nozzle 4 may also be configured to be displaceable in the chamber.

【0011】機械的衝撃力負荷装置5は基板3上の超微
粒子堆積体11に機械的衝撃力を負荷して超微粒子材料
7を破砕して超微粒子膜12を形成するものである。
The mechanical impact load device 5 applies a mechanical impact to the ultrafine particle deposit 11 on the substrate 3 to crush the ultrafine particle material 7 to form an ultrafine particle film 12.

【0012】次に成膜する動作について説明する。超微
粒子材料7をノズルを通して搬送ガスと混合し、ノズル
4に対して基板3を相対変位させつつ、基板3上に吹き
付け、超微粒子を破砕して接合させ、超微粒子堆積体1
1または超微粒子圧粉体16を形成する。この超微粒子
圧粉体16が目的物である超微粒子膜として十分な物性
を備えている場合にはこの超微粒子圧粉体16を超微粒
子膜12として、成膜操作を終了してもよいし、また、
必要に応じて基板3上に形成された超微粒子圧粉体16
に機械的衝撃力を負荷して超微粒子圧粉体16の超微粒
子を衝撃粉砕して接合強度の大きい超微粒子膜12を形
成してもよい。超微粒子堆積体11に対しては必ず機械
的衝撃力を作用させなければ超微粒子膜には形成されな
い。
Next, the operation of forming a film will be described. The ultra-fine particle material 7 is mixed with a carrier gas through a nozzle, sprayed onto the substrate 3 while relatively displacing the substrate 3 with respect to the nozzle 4 to crush and join ultra-fine particles, and
1 or ultrafine green compact 16 is formed. When the ultrafine particle compact 16 has sufficient physical properties as the target ultrafine particle film, the ultrafine particle compact 16 may be used as the ultrafine film 12 and the film forming operation may be terminated. ,Also,
The ultrafine green compact 16 formed on the substrate 3 if necessary
The ultrafine particles of the ultrafine particle compact 16 may be subjected to impact pulverization by applying a mechanical impact force to the ultrafine particle film 12 to form the ultrafine particle film 12 having high bonding strength. Unless a mechanical impact force is applied to the ultrafine particle deposit 11, the ultrafine particle film is not formed on the ultrafine particle film.

【0013】超微粒子堆積体11または超微粒子圧粉体
16に機械的衝撃力を加える方法として、静電界やガス
搬送により微粒子材料を加速し、適当な基板に吹き付け
るか、高速回転する高強度のブラシやローラー、高速に
上下運動する圧針や爆発の圧縮力を利用した高速に移動
するピストンなどを用いて基板上におかれた薄い圧粉体
状の超微粒子層に機械的衝撃を加え、または超音波を作
用させて機械的衝撃を加えて、微細な粉砕を実現する。
この時搬送ガスは、不活性ガスなどの必要はなく乾燥し
た空気を用いても同様の結果が得られる。
As a method for applying a mechanical impact force to the ultrafine particle deposit 11 or the ultrafine particle compact 16, a fine particle material is accelerated by an electrostatic field or gas conveyance and sprayed onto a suitable substrate, or a high-speed rotating high-strength material. Using a brush or roller, a needle that moves up and down at a high speed, a piston that moves at a high speed using the compressive force of an explosion, etc., to apply a mechanical impact to a thin compacted ultrafine particle layer placed on a substrate, or Ultrasonic waves are applied to apply mechanical shock to achieve fine grinding.
At this time, the carrier gas does not need to be an inert gas or the like, and the same result can be obtained even if dry air is used.

【0014】また、本発明では、上述した超微粒子材料
に加えるノズル4からの吹き付けによる衝撃力または機
械的衝撃力負荷装置5による機械的衝撃力に応じて、使
用する微粒子材料の機械的強度(脆性破壊強度)などの
破壊強度を上述の衝撃力で粉砕が容易に起こるように、
例えば原料微粒子の仮焼き温度を変えて調整するか、ア
ルコキシド法やコロイド法、熱分解法などの化学的手法
や、ガス中蒸発法やスパッタリング法などの物理的手法
を用いて作製された数十nm以下の微細な超微粒子を加
熱し、粒径で数100nm程度の2次粒子に凝集させた
ものを用いるか、或いは使用する超微粒子材料に粉砕が
容易に生じるように長時間ボールミルやジェットミルな
どの粉砕機にかけ、クラックなどを予め形成しておく方
法が考えられる。この様な微粒子材料を使用し機械的衝
撃力を与えてやることで、微粒子を少なくとも100n
m以下に粉砕し、清浄な新生表面を形成し、低温接合を
生じさせ、室温で微粒子同士の接合を実現し、高密度、
高強度の成形を行う。この時、使用する元の微粒子径
が、50nm以下の場合は、これまでの実験の結果から
上述した衝撃粉砕は生じにくいと考えられる。また、基
板に吹き付ける方法の場合、粒子径が大きすぎると、粉
砕に必要な衝撃力を与えることが困難になる。従って、
上述したそれぞれの成形方法に対して、適切な粒径範囲
(おおよそ、50nm〜5μm)が存在するものと考え
られる。
Further, in the present invention, the mechanical strength of the fine particle material to be used (in accordance with the impact force by the blowing from the nozzle 4 or the mechanical impact force by the mechanical impact load device 5 added to the above-mentioned ultrafine particle material). Brittle fracture strength) so that the crushing easily occurs with the above-mentioned impact force.
For example, it is adjusted by changing the calcining temperature of the raw material fine particles, or it is prepared by using a chemical method such as an alkoxide method, a colloid method, or a thermal decomposition method, or a physical method such as a gas evaporation method or a sputtering method. Heat the ultrafine particles of less than nm and aggregate them into secondary particles with a particle size of about several hundreds nm, or use a ball mill or jet mill for a long time so that the ultrafine particles used can be easily crushed. A method is conceivable in which cracks and the like are formed in advance by using a pulverizer such as this. By using such a fine particle material and giving a mechanical impact force, the fine particles can be reduced to at least 100n.
m, forming a clean new surface, causing low-temperature bonding, realizing bonding between particles at room temperature,
Perform high strength molding. At this time, when the original fine particle diameter used is 50 nm or less, it is considered from the results of the experiments so far that the above-described impact pulverization hardly occurs. In the case of the method of spraying on a substrate, if the particle diameter is too large, it becomes difficult to give an impact force necessary for pulverization. Therefore,
It is believed that there is an appropriate particle size range (approximately 50 nm-5 μm) for each of the molding methods described above.

【0015】この様に調整されたチタン酸ジルコン酸鉛
(PZT)や二酸化チタン(TiO2)の超微粒子原料
粉を用いて、成膜を行ったところ、共に理論密度の95
%以上の緻密な膜が得られ、Si、ステンレス基板への
密着力も50MPa以上のものが得られた。
When the film was formed using the raw material powder of ultrafine particles of lead zirconate titanate (PZT) or titanium dioxide (TiO2) adjusted as described above, both had a theoretical density of 95%.
% Or more and a film having an adhesion to Si and a stainless steel substrate of 50 MPa or more was obtained.

【0016】一例として、ガスと混合、基板に噴射して
粉砕成形する場合の超微粒子脆性材料の成形過程を述べ
る。基板に衝突した超微粒子脆性材料は、まず、基板に
食い込み(アンカーリング効果)下地層を形成する。こ
のとき下地層との材質の組み合わせによっては、一部接
合が生じる場合もあるが、必ずしも接合を起こしている
必要はなく、後から超微粒子が衝突しても脱離しない程
度の付着力を維持していればよい。その後、形成された
下地層に衝突する超微粒子脆性材料は、下地層表面の超
微粒子を粉砕、自らも粉砕し、相互に低温接合をし強固
な堆積が行われる。この場合は、超微粒子の噴射により
超微粒子材料が基板に置かれると同時に、粉砕、接合が
進行することになる。また、このとき基板上に置く超微
粒子層の厚みは、粉砕のために加える衝撃力が届く範囲
に応じて決めてやればよい。
As an example, a molding process of an ultrafine brittle material in the case of mixing with a gas, spraying the mixture onto a substrate, and performing pulverization molding will be described. The ultrafine brittle material that has collided with the substrate first penetrates the substrate (anchor effect) to form an underlayer. At this time, depending on the combination of materials with the underlayer, partial bonding may occur, but the bonding does not necessarily have to occur, and the adhesive force is maintained so that it will not be detached even if the ultrafine particles collide later. Just do it. Thereafter, the ultrafine particle brittle material that collides with the formed underlayer crushes the ultrafine particles on the surface of the underlayer, crushes itself, and performs low-temperature bonding with each other to perform strong deposition. In this case, the ultrafine particles are sprayed and the ultrafine particles material is placed on the substrate, and at the same time, the pulverization and bonding proceed. Further, the thickness of the ultrafine particle layer placed on the substrate at this time may be determined according to the range in which the impact force applied for pulverization reaches.

【0017】機械的衝撃力を作用させる方法としては、
ノズルから超微粒子を基板上に吹き付ける方法の他に、
高速回転するブラシやローラー、圧針などを用いて機械
的衝撃力を与える方法の場合、基板上に超微粒子を薄く
置く(展開する)のは、必ずしもノズルを用いる必要は
なく、ローラーなどで超微粒子を基板に押しつけ、粉砕
無く押し固められた状態にすればよい。場合によって
は、ただ降り積もらせるだけでも可能である。
As a method of applying a mechanical impact force,
In addition to the method of spraying ultra fine particles from the nozzle onto the substrate,
In the case of applying a mechanical impact force using a high-speed rotating brush, roller, or indenter, it is not always necessary to use a nozzle to place (develop) the ultrafine particles thinly on the substrate. May be pressed against the substrate to be in a state of being compacted without pulverization. In some cases, it is possible to just drop them.

【0018】また、超微粒子脆性材料の機械的粉砕法と
して、接触あるいは非接触で強力な超音波を照射する方
法もある。この超音波を用いる方法では、基板上に薄く
展開された、あるいは機械的にプレスされた超微粒子脆
性材料の圧粉体に、微粒子が粉砕できる程度の強力な超
音波を照射し、音波により圧粉体内部に誘起される衝撃
圧により超音波の照射は、接触、非接触の何れも可能で
あるが、超音波発生源を粉体に直接接触させるかインピ
ーダンス整合をとるための媒質を介在した方がより効率
的にエネルギーを伝えることができる。超音波の強度
は、超音波レンズなどを用いて、空間的に収束させある
一点だけを粉砕する強度に調節することもできる。従っ
て、この方法を用いた場合、圧粉体内の特定の一点だけ
を低温接合することも可能となる。また、この様な超音
波を、圧粉体を形成するためのプレス型やローラーに直
接加えるとより簡便なプロセスになる。図2に示す他の
実施例の微細成膜装置1bでは微粒子供給量調整ブレー
ド17と機械的衝撃力負荷装置5とを備えている。
As a method for mechanically pulverizing the ultrafine particle brittle material, there is a method of irradiating strong ultrasonic waves in contact or non-contact. In this method using ultrasonic waves, a compact that is thinly spread on a substrate or mechanically pressed is irradiated with a powerful ultrasonic wave capable of crushing fine particles, and the ultrasonic wave is applied to the compact. Irradiation of ultrasonic waves by the impact pressure induced inside the powder can be either contact or non-contact, but the ultrasonic source is directly contacted with the powder or a medium for impedance matching is interposed. Energy can be transmitted more efficiently. The intensity of the ultrasonic wave can also be adjusted to the intensity at which only one point is converged spatially and ground using an ultrasonic lens or the like. Therefore, when this method is used, it is possible to perform low-temperature bonding only at a specific point in the green compact. Further, if such an ultrasonic wave is directly applied to a press die or a roller for forming a green compact, a simpler process can be achieved. A fine film forming apparatus 1b according to another embodiment shown in FIG. 2 includes a fine particle supply amount adjusting blade 17 and a mechanical impact load device 5.

【0019】微粒子供給量調整ブレード17は基板3上
に供給された超微粒子材料7からなる超微粒子堆積体1
1または超微粒子圧粉体16の表面をならして超微粒子
材料7の供給量を調整するものであり、供給量は微粒子
供給量調整ブレード17の上下方向の位置を調節して調
整する。
The fine particle supply amount adjusting blade 17 is a fine particle deposit 1 made of the fine particle material 7 supplied on the substrate 3.
The supply amount of the ultrafine particle material 7 is adjusted by leveling the surface of the ultrafine particle compact 1 or the ultrafine particle compact 16, and the supply amount is adjusted by adjusting the position of the fine particle supply amount adjusting blade 17 in the vertical direction.

【0020】機械的衝撃力負荷装置5は図2に示すよう
に衝撃力印加ローラー13と強力超音波印加装置14と
を備えている。
As shown in FIG. 2, the mechanical impact load device 5 includes an impact force roller 13 and a strong ultrasonic wave application device 14.

【0021】衝撃力印加ローラー13は基板3上の供給
量を調節された超微粒子圧粉体11に直接に機械的衝撃
力を印加して超微粒子膜12を形成するものであり、一
方、強力超音波印加装置14は衝撃力印加ローラー13
を駆動するものである。衝撃力印加ローラー13は超微
粒子膜12に機械的衝撃力を与えることができる部材で
あればローラー以外の他の形態の部材でも採用すること
ができ、例えばさらに他の実施例の微細成膜装置1cを
示す図3に示すように、多数の衝撃力印加圧力針15を
もつものでもよい。以上説明した本願発明の方法で得ら
れる膜は、緻密な膜だけでなく、成膜に使う原料粉の調
整や、粒子速度などの成膜条件を調整することで、多孔
質の膜も得ることができる。これらの膜は、膜に大きな
比表面積が必要な用途、例えば、燃料電池やスーパーキ
ャパシターの電極形成などには有効である。 (実験例一) (1)はじめに 圧電材料をマイクロアクチュエータなどへ応用する場合
には、20μm前後の厚膜を基板上へ形成、微細パター
ニングすることが重要になる。このため粒径0.1μm
前後の代表的な圧電材料であるチタン酸ジルコン酸鉛
(PZT)をガスと混合してエアロゾル化し、ノズルか
ら高速のジェットにして基板に吹き付け成膜することを
試みた。この領域の厚膜形成においてこの手法は、スク
リーン印刷法などに比べ乾式、バインダーレスで緻密な
厚膜を基板上に形成することができ、微細なパターニン
グも容易に行えるなどの利点がある。この手法の場合、
通常の成膜技術と異なりPZT超微粒子等の超微粒子が
基板に衝突する際に生じる微粒子の構造変化や熱処理条
件が膜の電気特性に与える影響が大きいものと考えられ
る。そこで、ここでは成膜メカニズムの解明と膜特性の
向上を目的として作製された膜の微細構造を検討した。 (2)実験方法 成膜は、PZT超微粒子をエアロゾル式ガスデポジショ
ン法により数Torrの減圧下で、開口サイズ5mm×
0.3mmのノズルを通して、SiウェハやSUS30
4、PT/Ti/SiO2Si基板上に噴射、堆積させ
た。PZT粉末は、Zr/Ti:52/48,比表面
積:2.8m2/g,平均粒径0.3μmで、10-2
orrの減圧下、加熱乾燥処理して使用し、搬送ガスに
はHeと乾燥高純度空気を用い、粒子速度は搬送ガス流
量で制御した。この様にして作製された厚さ20μmの
PZT厚膜の微細構造を、TEM及び電子線回折像など
により観察した。 (3)結果及び考察 図4に室温でSi基板上に成膜した場合の断面TEM観
察像を示す。Si基板とPZT層の界面にPZT超微粒
子の基板への衝突による厚さ0.15μm程度のダメー
ジ層が見られる。このことから成膜中には、PZT超微
粒子の衝突によってSiの塑性流動圧力(ビッカース硬
度:5〜12GPa)を越える機械的衝撃力が生じてい
ると推察される。一方、PZT超微粒子の破壊強度は
2.3〜4GPaであるから、このような大きな機械的
衝動力によってPZT超微粒子の破壊と新生表面の発生
も充分に行われていることを推察することができる。E
DXによる組成分析によると、Si基板への熱的な拡散
は殆ど見られなかった。さらに膜内及び界面にボイドは
殆ど認められず、室温で緻密な膜が形成されていること
が判る。図5、6は、原料粉末と室温でPt/Ti/S
iO2/Si基板上堆積された膜の平面TEM観察像で
ある。原料粉末は、部分的に凝集を生じ内部に歪みや欠
陥を持っている。SEMで観察された粒径に近いものに
着目し電子線回折像から検討するとほぼ単結晶になって
おり、その結晶子サイズは約0.1〜0.5μmの範囲
に集まっている。これに対して室温で作製されアズデポ
膜は、断面方向、面内方向ともに組織に大きな変化はな
く、所々に元の粒子径に近い0.1〜0.2μm程度の
大きな結晶子が見られるが、その間を約10〜40nm
の小さな結晶子が埋めたような多結晶構造になってい
る。また、歪みが原因と思われる細かいコントラストも
多く見られる。以上の様な検討から、原料粉末であるP
ZT超微粒子は、成膜中に基板への衝突により、一部が
細かく粉砕され数十nmの微結晶を形成する。
The impact force applying roller 13 applies a mechanical impact force directly to the ultrafine particle compact 11 whose supply amount is adjusted on the substrate 3 to form the ultrafine particle film 12. The ultrasonic wave applying device 14 is an impact force applying roller 13
Is to be driven. The impact force applying roller 13 can be a member other than a roller as long as it can apply a mechanical impact force to the ultrafine particle film 12. For example, a fine film forming apparatus of still another embodiment can be used. As shown in FIG. 3 showing 1c, it may have a number of impact force applying pressure needles 15. The film obtained by the method of the present invention described above can obtain not only a dense film, but also a porous film by adjusting the raw material powder used for the film formation and adjusting the film formation conditions such as the particle velocity. Can be. These membranes are effective for applications requiring a large specific surface area of the membrane, for example, for forming electrodes of fuel cells and supercapacitors. (Experimental Example 1) (1) Introduction When a piezoelectric material is applied to a microactuator or the like, it is important to form a thick film of about 20 μm on a substrate and finely pattern it. Therefore, the particle size is 0.1 μm
An attempt was made to mix a gas with lead zirconate titanate (PZT), which is a typical piezoelectric material before and after, to form an aerosol, and to spray a high-speed jet from a nozzle onto a substrate to form a film. In the formation of a thick film in this region, this method has the advantages that a dry, binderless, dense thick film can be formed on a substrate and fine patterning can be easily performed as compared with a screen printing method or the like. In this case,
Unlike ordinary film-forming techniques, it is considered that a change in the structure of fine particles and heat treatment conditions that occur when ultrafine particles such as PZT ultrafine particles collide with the substrate greatly affect the electrical characteristics of the film. Therefore, here, the fine structure of the film manufactured for the purpose of elucidating the film formation mechanism and improving the film characteristics was examined. (2) Experimental method The PZT ultrafine particles were formed by aerosol gas deposition under reduced pressure of several Torr, with an opening size of 5 mm ×
Si wafer or SUS30 through 0.3mm nozzle
4. Sprayed and deposited on PT / Ti / SiO2Si substrate. PZT powder has a Zr / Ti: 52/48, a specific surface area of 2.8 m 2 / g, an average particle diameter of 0.3 μm, and 10 −2 T.
The heating and drying treatment was performed under reduced pressure of orr, and He and dry high-purity air were used as the carrier gas, and the particle velocity was controlled by the flow rate of the carrier gas. The fine structure of the PZT thick film having a thickness of 20 μm produced in this manner was observed by using a TEM, an electron diffraction image, and the like. (3) Results and Discussion FIG. 4 shows a cross-sectional TEM observation image when a film is formed on a Si substrate at room temperature. At the interface between the Si substrate and the PZT layer, a damage layer having a thickness of about 0.15 μm due to the collision of PZT ultrafine particles against the substrate is observed. From this, it is inferred that a mechanical impact force exceeding the plastic flow pressure of Si (Vickers hardness: 5 to 12 GPa) is generated during the film formation due to the collision of PZT ultrafine particles. On the other hand, since the breaking strength of PZT ultrafine particles is 2.3 to 4 GPa, it can be inferred that the destruction of PZT ultrafine particles and generation of a new surface are sufficiently performed by such a large mechanical impulse. it can. E
According to the composition analysis by DX, almost no thermal diffusion to the Si substrate was observed. Furthermore, almost no voids were found in the film and at the interface, indicating that a dense film was formed at room temperature. 5 and 6 show the relationship between the raw material powder and Pt / Ti / S at room temperature.
5 is a planar TEM observation image of a film deposited on an iO2 / Si substrate. The raw material powder partially agglomerates and has distortion and defects inside. Focusing on a particle close to the particle size observed by SEM and examining from an electron beam diffraction image, it is almost a single crystal, and its crystallite size is concentrated in a range of about 0.1 to 0.5 μm. On the other hand, in the as-deposited film produced at room temperature, there is no significant change in the structure in both the cross-sectional direction and the in-plane direction, and large crystallites of about 0.1 to 0.2 μm close to the original particle diameter are observed in some places. About 10 to 40 nm
It has a polycrystalline structure that is filled with small crystallites. In addition, many fine contrasts caused by distortion are also observed. From the above examination, the raw material powder P
The ZT ultrafine particles are partially pulverized finely by collision with the substrate during film formation to form microcrystals of several tens of nm.

【0022】[0022]

【実施例二】この発明の脆性材料超微粒子成形体の低温
成形法は、超微粒子脆性材料を基板上で脆性破壊を伴っ
て微粒子化することにより、その場で粉砕された粒子が
再結合を起こし、熱的なアシストなしに低温で厚膜その
他の成形体を形成する成膜法または成形法である。この
時、成形される膜等の成形体の成形に使用する原料微粒
子つまり超微粒子脆性材料が比重が小さく硬度が高い場
合、それを静電界やガスによる加速を用いた基板への衝
突だけでは、超微粒子脆性材料の粉砕に十分な機械的衝
撃力を与えることは困難な場合があり、基板への衝突に
よる粉砕効果が十分に進まず、緻密な膜を形成すること
が困難な場合がある。
Embodiment 2 In the low-temperature molding method of a brittle material ultrafine particle molded article according to the present invention, the ultrafine brittle material is micronized with brittle fracture on a substrate, so that the pulverized particles are recombined in situ. This is a film forming method or a forming method in which a thick film or other formed body is formed at a low temperature without causing thermal assistance. At this time, if the raw material fine particles used for forming a formed body such as a film to be formed, that is, the ultrafine brittle material has a small specific gravity and a high hardness, it is only necessary to collide with the substrate using an electrostatic field or gas acceleration. In some cases, it is difficult to apply a sufficient mechanical impact force to the crushing of the ultrafine particle brittle material. In some cases, the crushing effect due to collision with the substrate does not sufficiently advance, and it is difficult to form a dense film.

【0023】そこで、そのような場合には、基板上に到
達した原料微粒子である超微粒子脆性材料の効率的な粉
砕方法として、基板上に原料微粒子を供給する際に、原
料微粒子である超微粒子脆性材料の他に、基板上に供給
された、または基板上に供給されて堆積した超微粒子堆
積体または超微粒子圧粉体を粉砕するための粉砕用微粒
子を使用することを考える。すなわち超微粒子脆性材料
より大きな粒径の微粒子または硬度の高い微粒子を搬送
ガスを用いてノズルを通して基板または基板上に供給さ
れた超微粒子脆性材料に吹き付けるか、静電界で加速し
て基板または基板上に供給された超微粒子脆性材料に吹
き付ける。この様にすることで、原料超微粒子である超
微粒子脆性材料は基板上で、後方から飛来する粒径の大
きな、または、硬度の高い粉砕用微粒子に叩かれ(ハン
マリング効果と呼ぶ)、粉砕に十分な機械的衝撃力を得
て基板上で容易に粉砕を起こす。粉砕用に用いた大きな
粒径の微粒子あるいは硬度の高い粉砕用微粒子は、基板
で反射され排気系を通して回収される。超微粒子脆性材
料と粉砕用微粒子とは混合して一緒に基板に吹き付ける
かまたは超微粒子脆性材料が基板上に供給された後に、
その基板上の超微粒子脆性材料の堆積体または圧粉体の
上に粉砕用微粒子を吹き付け、若しくは超微粒子脆性材
料と粉砕用微粒子を交互に基板上に吹き付ける。
Therefore, in such a case, as a method for efficiently pulverizing the ultrafine brittle material which is the raw material fine particles that have reached the substrate, the ultrafine fine particles which are the raw material fine particles when supplying the raw material fine particles onto the substrate are used. In addition to brittle materials, consider the use of fine particles for pulverizing ultrafine particle deposits or ultrafine particle compacts supplied on or deposited on a substrate. That is, fine particles having a larger particle size or higher hardness than the ultrafine brittle material are sprayed onto the substrate or the ultrafine brittle material supplied onto the substrate through a nozzle using a carrier gas, or accelerated by an electrostatic field to be applied to the substrate or the substrate. Is sprayed on the ultrafine brittle material supplied. In this way, the ultrafine brittle material, which is the raw material ultrafine particles, is hit on the substrate by the fine particles having a large particle diameter or high hardness coming from behind (called hammering effect), and Crushing easily on the substrate by obtaining a sufficient mechanical impact force. Fine particles having a large particle size or fine particles having a high hardness used for the pulverization are reflected by the substrate and collected through an exhaust system. After the ultrafine brittle material and the crushing microparticles are mixed and sprayed together on the substrate or after the ultrafine brittle material is supplied on the substrate,
Fine particles for pulverization are sprayed onto the deposit or compact of the ultrafine particle brittle material on the substrate, or the ultrafine brittle material and the fine particles for pulverization are alternately sprayed onto the substrate.

【0024】また、粉砕用微粒子の粒径としては、大き
すぎるとブラスト効果により形成された膜がエッチング
され、また小さすぎると十分な衝撃力を与えることがで
きない。従って、使用する粉砕用微粒子の粒径は、おお
よそ0.5〜5μmの範囲にあることが望ましい。
When the particle size of the fine particles for grinding is too large, the film formed by the blast effect is etched, and when the particle size is too small, sufficient impact force cannot be given. Therefore, it is desirable that the particle size of the fine particles for grinding be in the range of about 0.5 to 5 μm.

【0025】さらに、この時粉砕に用いる粉砕用微粒子
の組成を成膜に用いる超微粒子脆性材料の組成と一致さ
せておけば、不純物などの混入を最小限に抑えられる。
また、成膜用の前記超微粒子脆性材料と粉砕用微粒子を
混合して、基板に吹き付けても同様の効果が得られる。
つまり、上記基板に吹き付ける材料として、その粒径分
布に少なくとも2つの粒径分布ピークがある超微粒子材
料を用いても良い。
Furthermore, if the composition of the fine particles for pulverization used in the pulverization is made to match the composition of the ultrafine particle brittle material used for film formation, contamination of impurities and the like can be minimized.
The same effect can be obtained by mixing the ultrafine brittle material for film formation and the fine particles for pulverization and spraying the mixture on a substrate.
That is, as the material to be sprayed on the substrate, an ultrafine particle material having at least two particle size distribution peaks in the particle size distribution may be used.

【0026】この様に、原料微粒子と搬送ガスを混合し
たエアロゾル中に粉砕用の粒径の大きな微粒子や硬度の
高い微粒子を混入することで、原料超微粒子である超微
粒子脆性材料が、硬度の割に比重が軽い場合でも、粉砕
に十分な機械的衝撃力を超微粒子脆性材料に与えること
が可能となり、超微粒子脆性材料を基板上で効率的に粉
砕し、低温で緻密な膜を基板上に形成することができ
る。
As described above, by mixing fine particles having a large particle size for grinding and fine particles having a high hardness into an aerosol in which the raw material fine particles and a carrier gas are mixed, the ultrafine brittle material, which is the raw material ultrafine particles, has a high hardness. Even if the specific gravity is relatively light, it is possible to apply sufficient mechanical impact force to the ultrafine brittle material for pulverization, efficiently pulverize the ultrafine brittle material on the substrate, and form a dense film at low temperature on the substrate. Can be formed.

【0027】尚、上記成膜用の超微粒子脆性材料に上記
粉砕用微粒子を混合する方法は、上記超微粒子脆性材料
および粉砕用微粒子を上記搬送ガスと混合する前でも後
でも可能で、上記成膜用の超微粒子脆性材料と粉砕用微
粒子を粉体の状態で混合して用いても、また、上記成膜
用の超微粒子脆性材料と粉砕用微粒子を各々別々に搬送
ガスと混合後、エアロゾル状態で両者を混合、あるいは
基板上で2つのノズルから噴射して混合しても良い。
The method of mixing the fine particles for grinding with the ultrafine brittle material for film formation can be performed before or after mixing the fine brittle materials and fine particles with the carrier gas. Even if the ultrafine brittle material for the film and the fine particles for pulverization are mixed and used in a powder state, the ultrafine brittle material for the film and the fine particles for pulverization are separately mixed with a carrier gas, and then the aerosol is used. The two may be mixed in this state, or they may be mixed by spraying them from two nozzles on the substrate.

【0028】さらに、この場合、前記基板上に上記成膜
用の超微粒子脆性材料を供給するための吹き付け装置
(ノズルや静電加速銃)と上記粉砕用微粒子を吹き付け
る装置(ノズルや静電加速銃)とを別々に配置し、成膜
に用いる超微粒子脆性材料に応じて、各々の吹き付け装
置から噴射される成膜用の前記超微粒子脆性材料と粉砕
用微粒子をビーム状にし、基板に対する入射角度や噴射
速度、噴射場所、噴射濃度、噴射時間、噴射タイミング
などを調整すれば、衝撃力と基板上の超微粒子脆性材料
に対するエッチング作用のバランスを制御でき、より高
い成膜速度を容易に設定でき、また、僅かな研磨、研削
効果も生じるため、より平坦かつ滑らかな膜を形成でき
る。
Further, in this case, a spraying device (a nozzle or an electrostatic accelerating gun) for supplying the ultrafine brittle material for film formation onto the substrate and an apparatus (a nozzle or an electrostatic accelerating device) for spraying the pulverizing fine particles. Gun) are separately arranged, and the ultrafine brittle material for film formation and the fine particles for pulverization, which are sprayed from each spraying device, are formed in a beam shape according to the ultrafine brittle material used for film formation, and incident on the substrate. By adjusting the angle, spray speed, spray location, spray concentration, spray time, spray timing, etc., it is possible to control the balance between the impact force and the etching action on the ultrafine brittle material on the substrate, and easily set a higher deposition rate. In addition, since a slight polishing and grinding effect is generated, a more flat and smooth film can be formed.

【0029】図7に超微粒子脆性材料と粉砕用微粒子を
使用する成形装置を示す。成形装置1dはチャンバー2
内に基板3と超微粒子脆性材料供給ノズル4aと粉砕用
微粒子供給ノズル4bとを備えている。チャンバー2は
真空ポンプ21によって減圧される。
FIG. 7 shows a molding apparatus using an ultrafine brittle material and fine particles for grinding. The molding device 1d is a chamber 2
A substrate 3, an ultrafine brittle material supply nozzle 4a, and a crushing fine particle supply nozzle 4b are provided therein. The pressure in the chamber 2 is reduced by a vacuum pump 21.

【0030】超微粒子脆性材料供給ノズル4aはバルブ
22を介して材料粒子エアロゾル発生装置23に接続
し、粉砕用微粒子供給ノズル4bはバルブ24を介して
粉砕用粒子エアロゾル発生装置25に接続している。バ
ルブ21、24は制御装置26によって制御される。
The ultrafine brittle material supply nozzle 4a is connected to a material particle aerosol generator 23 via a valve 22, and the fine particle supply nozzle 4b is connected to a fine particle aerosol generator 25 via a valve 24. . The valves 21 and 24 are controlled by a control device 26.

【0031】このように構成された成形装置1dにおい
て、粉砕用微粒子は超微粒子脆性材料が基板上に供給さ
れた後に基板上の微粒子堆積体または微粒子圧粉体の上
に供給され、または、超微粒子脆性材料と粉砕用微粒子
が交互に基板上に供給される。この実施例の装置では基
板3を走査しつつ、バルブ22、24を制御して、超微
粒子脆性材料供給ノズル23から超微粒子脆性材料のエ
アロゾル流27を基板3に吹きつけ、また粉砕用微粒子
供給ノズル4bから粉砕用微粒子のエアロゾル流28を
基板3に吹き付けて、超微粒子堆積体または超微粒子圧
粉体の形成及び粉砕を行い、超微粒子堆積体中または超
微粒子圧粉体中の超微粒子脆性材料を粉砕再接合させ
て、成形体を成形する。 (実験例二)比重の軽い酸化チタン(TiO2、比重:
4.45g/cm3)について、異なる粒径分布の原料
超微粒子を用いて成膜する実験をした。成膜条件として
は、両方の場合とも、搬送ガスHeを用い、開口面積
0.6mm×5mmの成膜用ノズルを用いていた。成膜
時の真空度は2Torrで、基板加熱などの熱的アシス
トの無い状態で各々の粒径分布を持つ原料超微粒子を厚
さ約100μmのステンレス基板に吹き付け成膜を行っ
た。また、図8に記載した原料微粒子の粒径分布は、実
際にノズルから噴射される原料超微粒子の粒径を光散乱
式の粒径測定器(PLAS社製、PCS−2000)で
測定した。この場合、測定される粒子径は、1次粒子が
凝集した2次粒子径をも含めて測定することになる。
In the molding apparatus 1d configured as described above, the fine particles for grinding are supplied onto the fine particle deposit or the fine particle compact on the substrate after the ultrafine brittle material is supplied onto the substrate, or Fine particle brittle material and fine particles for grinding are alternately supplied onto the substrate. In the apparatus of this embodiment, while scanning the substrate 3, the valves 22 and 24 are controlled to blow the aerosol flow 27 of the ultrafine brittle material onto the substrate 3 from the ultrafine brittle material supply nozzle 23, and to supply the fine particles for grinding. An aerosol stream 28 of fine particles for pulverization is sprayed onto the substrate 3 from the nozzle 4b to form and pulverize the ultrafine particle deposit or the ultrafine powder compact, and to remove the ultrafine brittleness in the ultrafine particle deposit or the ultrafine powder compact. The material is pulverized and rejoined to form a molded body. (Experimental example 2) Titanium oxide (TiO2, specific gravity:
4.45 g / cm3), an experiment was conducted in which a film was formed using raw material ultrafine particles having different particle size distributions. As the film forming conditions, in both cases, the carrier gas He was used, and a film forming nozzle having an opening area of 0.6 mm × 5 mm was used. The degree of vacuum at the time of film formation was 2 Torr, and the raw material ultrafine particles having the respective particle size distributions were sprayed onto a stainless steel substrate having a thickness of about 100 μm without thermal assistance such as substrate heating to form a film. The particle size distribution of the raw material fine particles shown in FIG. 8 was obtained by measuring the particle size of the raw material ultra fine particles actually injected from the nozzle with a light scattering type particle size measuring device (PCS-2000, manufactured by PLAS). In this case, the measured particle diameter includes the secondary particle diameter in which the primary particles are aggregated.

【0032】その結果、図8の左図に示すように、ノズ
ルから噴射される原料微粒子の粒径分布が平均に対し
て、約0.4μmのシャープな分布をもつ場合は、酸化
チタン超微粒子の機械的硬度に対して、十分粉砕可能な
運動エネルギーを得ることができないため、図9の左図
に示すように、基板に衝突した酸化チタン超微粒子は粉
砕されず、単に衝突圧力で押し固められた圧粉体にな
り、この様な圧粉体は、その後、堆積物の表面に飛来す
る上記酸化チタン超微粒子に対して衝突による衝撃力を
吸収するクッションの役割を果たすため、益々、酸化チ
タンの原料微粒子の粉砕が困難になり、その結果、基板
に対して強固な付着力をもつ緻密な膜を形成することが
出来なかった。
As a result, as shown in the left diagram of FIG. 8, when the particle diameter distribution of the raw material fine particles injected from the nozzle has a sharp distribution of about 0.4 μm with respect to the average, the ultrafine titanium oxide particles Since the kinetic energy that can be sufficiently pulverized cannot be obtained with respect to the mechanical hardness of the titanium oxide, the ultrafine titanium oxide particles that collided with the substrate are not pulverized as shown in the left diagram of FIG. The green compact becomes a cushion that absorbs the impact force of the collision with the titanium oxide ultra-fine particles flying on the surface of the sediment. It became difficult to grind the titanium raw material fine particles, and as a result, it was not possible to form a dense film having a strong adhesion to the substrate.

【0033】これに対し、図8右図に示すように、超微
粒子脆性材料として平均粒径で約0.4μmの酸化チタ
ン超微粒子と、粉砕用微粒子の平均粒径で約1.5μ
m、最大粒径で約5μmの粒径分布を持つ酸化チタン微
粒子とを混合して吹き付けると、上記粉砕用微粒子によ
る原料微粒子の粉砕効果の向上と同時に、堆積物表面に
圧粉体として強固に凝着した微粒子が除去され、凝着微
粒子によるクッション効果が除去されるため、図9右図
に示すように、緻密で基板に対して強固に付着した膜が
形成できた。
On the other hand, as shown in the right side of FIG. 8, as the ultrafine brittle material, titanium oxide ultrafine particles having an average particle size of about 0.4 μm and pulverization fine particles having an average particle size of about 1.5 μm were used.
m, when mixed with titanium oxide fine particles having a particle size distribution of about 5 μm at the maximum particle size and sprayed, simultaneously with the improvement of the pulverizing effect of the raw material fine particles by the fine particles for pulverization, the powder is firmly formed on the surface of the sediment as a compact. Since the adhered fine particles are removed and the cushion effect of the adhered fine particles is removed, a dense film firmly adhered to the substrate can be formed as shown in the right diagram of FIG.

【0034】尚、レーザ回折法などで液体に分散して粒
径分布を測定した上記超微粒子脆性材料と粉砕用微粒子
を用いた場合でも、同様の粒径分布の組み合わせで同じ
効果が得られた。さらに、粉砕用微粒子として、平均粒
径が10μm以上の微粒子を用いた場合、同様の効果が
得られるものの、サンドブラストと同じ原理で堆積体が
磨耗されたりエッチングされることにより、実用的な成
膜速度や表面粗さが得られなかった。
Even when the ultrafine brittle material whose particle size distribution was measured by dispersing in a liquid by a laser diffraction method or the like and the fine particles for pulverization were used, the same effect was obtained by a similar combination of particle size distribution. . Further, when fine particles having an average particle diameter of 10 μm or more are used as the fine particles for pulverization, the same effect can be obtained, but the deposited film is worn or etched by the same principle as sandblasting, so that a practical film is formed. No speed or surface roughness was obtained.

【0035】[0035]

【効果】このように、本発明では、上述した超微粒子材
料に加える機械的衝撃力に応じて、使用する微粒子材料
の機械的強度(脆性破壊強度)を衝撃粉砕が起こるよう
に調整し、或いは使用する微粒子材料の機械的強度に応
じた衝撃力を与えてやることで清浄な新生表面を形成
し、接合を生じさせることで、室温で高密度、高強度の
成形を行うものである。粉砕によって形成された新生表
面は、微粒体に加えられている圧力により、非常に短時
間のうちにその場で再び接合し成形される。この再接合
までの時間は短いため成形を行う雰囲気は、不活性ガス
のような環境でなくてもよく大気中でも可能である。粉
砕により微粒子の粒径サイズが数十nm程度になるとそ
の表面エネルギーも増大し接合を助け、また、粒子形状
が不定形であることによるボイドの発生も防ぐことがで
き、数十nmオーダの微細な組織を持った緻密な成形体
が得られる。
As described above, according to the present invention, the mechanical strength (brittle fracture strength) of the fine particle material used is adjusted according to the mechanical impact force applied to the above-mentioned ultrafine particle material so that impact pulverization occurs, or A high-density, high-strength molding is performed at room temperature by forming a clean new surface by applying an impact force according to the mechanical strength of the fine particle material to be used, and by causing bonding. The new surface formed by the pulverization is rejoined and formed in situ within a very short time by the pressure applied to the fine particles. Since the time until this re-joining is short, the atmosphere in which the molding is performed may not be an environment such as an inert gas, but may be an atmosphere. When the particle size of the fine particles is reduced to about several tens of nanometers by pulverization, the surface energy increases and the bonding is assisted. Also, the generation of voids due to the irregular shape of the fine particles can be prevented. A compact body having a fine structure can be obtained.

【0036】こうして室温で高融点材料であるセラミッ
クスなどの脆性材料を基板上に成形できるため、基板と
してプラステック等の低融点材料の表面にセラミックス
コーティングを行うことが可能になる。実際にステンレ
ス基板に、ビニールテープを貼り付け、その表面に上記
方法で超微粒子脆性材料であるPZTを吹き付けたとこ
ろ、室温で密度97%、付着力15MPa以上の非常に
強固な成形体を形成することができた。また粉砕破壊に
より原料超微粒子より細かなナノメータサイズの結晶構
造のセラミックス材料が得られる。さらに成形体の密度
が理論密度の95%以上と緻密になるため、粒成長を行
うために熱処理を行ったとしても、その温度は、例えば
チタン酸ジルコン酸鉛(PZT)の場合、通常の焼結温
度に比べ、約300℃程度下げることができた(粒成長
温度低下の確認)。
Since a brittle material such as ceramics, which is a high melting point material at room temperature, can be formed on a substrate in this manner, it becomes possible to perform ceramic coating on the surface of a low melting point material such as plastic as a substrate. Actually, a vinyl tape was attached to a stainless steel substrate, and PZT, which is an ultrafine brittle material, was sprayed on the surface by the above-described method. I was able to. In addition, a ceramic material having a crystal structure with a nanometer size finer than that of the raw material ultrafine particles can be obtained by crushing and breaking. Further, since the density of the compact becomes 95% or more of the theoretical density, even if heat treatment is performed to perform grain growth, the temperature is, for example, normal firing in the case of lead zirconate titanate (PZT). The temperature could be lowered by about 300 ° C. compared to the sintering temperature (confirmation of a drop in grain growth temperature).

【0037】以上の説明から明らかなように、この発明
によればセラミックス材料などの脆性材料の超微粒子
を、機械的な力を加えて数十nm程度に粉砕すること
で、汚染のない清浄な表面をその場で形成し、これを利
用して、超微粒子相互の接合を実現することにより、熱
を加えることなく高密度、高強度な膜や造形物等の成形
体を成形することができる。
As is apparent from the above description, according to the present invention, ultrafine particles of a brittle material such as a ceramic material are crushed to about several tens of nanometers by applying a mechanical force, thereby providing a clean and clean product. By forming the surface in-situ and using this to realize bonding between ultrafine particles, it is possible to mold a high-density, high-strength film or molded article without applying heat. .

【0038】[0038]

【図面の簡単な説明】[Brief description of the drawings]

【図1】微細成膜装置の構成説明図FIG. 1 is an explanatory diagram of a configuration of a fine film forming apparatus.

【図2】他の微細成膜装置の構成説明図FIG. 2 is a configuration explanatory view of another fine film forming apparatus.

【図3】他の微細成膜装置の構成説明図FIG. 3 is an explanatory view of a configuration of another fine film forming apparatus.

【図4】室温堆積膜の基板(Si)界面の断面TEM像FIG. 4 is a cross-sectional TEM image of a substrate (Si) interface of a film deposited at room temperature.

【図5】原料粉末の断面TEM像FIG. 5 is a cross-sectional TEM image of a raw material powder.

【図6】室温堆積膜のTEM像FIG. 6 is a TEM image of a room-temperature deposited film

【図7】他の微細成膜装置の構成説明図FIG. 7 is an explanatory view of a configuration of another fine film forming apparatus.

【図8】2種類の原料微粒子の粒径分布を示すグラフFIG. 8 is a graph showing the particle size distribution of two types of raw material fine particles.

【図9】超微粒子脆性材料と粉破用微粒子を用いた成膜
の実験結果を示す図
FIG. 9 is a view showing experimental results of film formation using an ultrafine brittle material and fine particles for powder breakage.

【符号の説明】[Explanation of symbols]

1a,1b,1c,1d 微細成膜装置 2 チャンバー 3 基板 4 ノズル 4a 超微粒子脆性材料供給ノズル 4b 粉砕用微粒子供給ノズル 5 機械的衝撃力負荷装置 6 基板駆動装置 7 超微粒子材料 11 超微粒子堆積体 12 超微粒子膜 13 衝撃力印加ローラー 14 強力超音波印加装置 15 衝撃力印加圧力針 16 超微粒子圧粉体 17 超微粒子供給量調整ブレード 21 真空ポンプ 22 バルブ 23 材料粒子エアロゾル発生装置 24 バルブ 25 粉砕用粒子エアロゾル発生装
置 26 制御装置 27 エアロゾル流 28 エアロゾル
1a, 1b, 1c, 1d Fine film forming device 2 Chamber 3 Substrate 4 Nozzle 4a Ultrafine brittle material supply nozzle 4b Grinding fine particle supply nozzle 5 Mechanical impact load device 6 Substrate drive 7 Ultrafine material 11 Ultrafine particle deposit 12 Ultrafine particle film 13 Impact force applying roller 14 Strong ultrasonic application device 15 Impact force applying pressure needle 16 Ultrafine particle compact 17 Ultrafine particle supply amount adjusting blade 21 Vacuum pump 22 Valve 23 Material particle aerosol generator 24 Valve 25 For crushing Particle aerosol generator 26 Controller 27 Aerosol flow 28 Aerosol

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板上に供給した粒径範囲50nm〜5
μmの超微粒子脆性材料に前記超微粒子脆性材料の破壊
強度以上の大きさの機械的衝撃力を負荷して粉砕して前
記超微粒子脆性材料同士を接合させるかまたは前記超微
粒子脆性材料同士を接合させると共に前記超微粒子脆性
材料と前記基板を接合させて理論密度の95%以上で結
晶サイズで100nm以下の微結晶を含む脆性材料超微
粒子成形体を成形することを特徴とする脆性材料超微粒
成形体の低温成形法。
1. A particle size range of 50 nm to 5 provided on a substrate.
Destruction of the ultrafine brittle material to the ultrafine brittle material of μm
Wherein by bonding the substrate and the nanoparticle brittle material with bonding the or the nanoparticle brittle material between joining the ultrafine particle brittle material together by crushing mechanical impact strength or size and load Concluded at 95% or more of theoretical density
Ultra-fine brittle material containing crystallites with a crystal size of 100 nm or less
Cold molding of the brittle material ultra-fine particles formed body, which comprises molding a grain compact.
【請求項2】 前記機械的衝撃力の負荷は、静電界やガ
ス搬送により超微粒子脆性材料を加速して前記基板上の
超微粒子脆性材料に吹き付けて衝突させるか、高速回転
する高強度のブラシやローラー或いは高速に上下運動す
る圧針や爆発の圧縮力を利用した高速に移動するピスト
ンなどを用いてまたは超音波を作用させて前記基板上に
おかれた薄い超微粒子脆性材料層に機械的衝撃を加える
ことを特徴とする請求項1記載の脆性材料超微粒子成形
体の低温成形法。
2. The method according to claim 1, wherein the mechanical impact force is applied by accelerating an ultrafine brittle material by electrostatic field or gas transfer and spraying the ultrafine brittle material on the substrate to collide with the ultrafine brittle material , or a high-speed rotating high-strength brush. Mechanical impact on the thin ultrafine brittle material layer placed on the substrate by using a high-speed moving piston utilizing the compressive force of the explosion or the pressure needle moving up and down at high speed, or by applying ultrasonic waves. 2. The ultrafine particle molding of a brittle material according to claim 1, further comprising:
Low temperature molding of the body .
【請求項3】 前記超微粒子脆性材料に加える機械的衝
撃力に応じて、使用する微粒子脆性材料の破壊強度を
上述の機械的衝撃力で粉砕が容易に起こるように、前記
微粒子脆性材料を処理することを特徴とする請求項1
記載の脆性材料超微粒子成形体の低温成形法。
3. Depending on the mechanical impact force applied the ultrafine particles brittle material, the breaking strength of the ultrafine brittle material to be used as easily happen pulverized by mechanical impact force described above, the
2. The method according to claim 1, wherein the ultrafine brittle material is treated.
A low-temperature molding method of the ultrafine particle molding of a brittle material according to the above.
【請求項4】 前記処理は原料微粒子脆性材料の仮焼
き温度を変えて調整するか、数十nm程度の粒径に調整
された微細な超微粒子脆性材料を加熱し、粒径で数50
nm〜1μm程度の2次粒子に凝集させるか、或いは使
用する微粒子脆性材料に粉砕が容易に生じるように長
時間ボールミルやジェットミルなどの粉砕機にかけてク
ラックなどを予め形成しておくことを特徴とする請求項
3記載の脆性材料超微粒子成形体の低温成形法。
4. The treatment is carried out by changing the calcining temperature of the raw material ultrafine particle brittle material , or by heating a fine ultrafine particle brittle material adjusted to a particle size of about several tens of nanometers,
or are aggregated into secondary particles of about Nm~1myuemu, or characterized in that previously formed the cracks subjected pulverizer such as long ball mill or jet mill as grinding the ultrafine particle brittle material readily occur to use The low-temperature molding method of a molded article of ultrafine particles of a brittle material according to claim 3, wherein
【請求項5】 基板上に供給した粒径範囲50nm〜5
μmの超微粒子脆性材料に前記超微粒子脆性材料の破壊
強度以上の大きさの機械的衝撃力を負荷して粉砕して前
記超微粒子脆性材料同士を接合させて理論密度の95%
以上で結晶サイズで100nm以下の微結晶を含む脆性
材料超微粒子成形体を成形することを特徴とする脆性材
料超微粒子低温成形法。
5. A particle size range supplied from 50 nm to 5 nm on a substrate.
Destruction of the ultrafine brittle material to the ultrafine brittle material of μm
95% of the theoretical density by applying a mechanical impact force greater than the strength and pulverizing to bond the ultrafine brittle materials to each other.
Brittleness containing crystallites with a crystal size of 100 nm or less
A low-temperature forming method for brittle material ultrafine particles, characterized by forming a material ultrafine particle molded body .
【請求項6】 前記基板に供給される微粒子として、主
として前記成形体の材料となる前記超微粒子脆性材料と
主として前記基板上に供給された超微粒子脆性材料に機
械的衝撃力を負荷して粉砕するための粉砕用微粒子とを
用いることを特徴とする請求項5記載の脆性材料超微粒
子低温成形法。
6. A method in which a mechanical impact force is applied to the ultrafine brittle material mainly serving as the material of the compact and the ultrafine brittle material mainly provided on the substrate as fine particles supplied to the substrate, and the fine particles are pulverized. 6. A method for forming ultrafine particles of a brittle material at low temperature according to claim 5, wherein said particles are used for grinding.
【請求項7】 前記超微粒子脆性材料と前記粉砕用微粒
子とを混合して一緒に前記基板に供給することを特徴と
する請求項5記載の脆性材料超微粒子低温成形法。
7. The low-temperature molding method for brittle material ultrafine particles according to claim 5, wherein the ultrafine brittle material and the fine particles for grinding are mixed and supplied to the substrate together.
【請求項8】 前記粉砕用微粒子は前記超微粒子脆性材
料が前記基板上に供給された後に前記基板上に供給さ
れ、または前記超微粒子脆性材料と前記粉砕用微粒子が
交互に前記基板上に供給されることを特徴とする請求項
5記載の脆性材料超微粒子低温成形法。
8. The fine particles for pulverization are supplied onto the substrate after the ultrafine brittle material is supplied onto the substrate, or the ultrafine brittle materials and the fine particles for pulverization are alternately supplied onto the substrate. 6. The method for forming ultra-fine particles of a brittle material at low temperature according to claim 5, wherein
【請求項9】 前記基板に供給される微粒子はその粒径
分布として前記超微粒子脆性材料が形成する粒径分布ピ
ークと前記粉砕用微粒子が形成する粒径分布ピークとの
少なくとも2つの粒径分布ピークをもつことを特徴とす
る請求項7記載の脆性材料超微粒子低温成形法。
9. The particle supplied to the substrate has at least two particle size distributions, a particle size distribution peak formed by the ultrafine particle brittle material and a particle size distribution peak formed by the pulverizing particles. 8. The low-temperature molding method for brittle material ultrafine particles according to claim 7, wherein the method has a peak.
【請求項10】 前記粉砕用微粒子は前記超微粒子脆性
材料よりも平均粒径が大きいことを特徴とする請求項7
または8記載の脆性材料超微粒子低温成形法。
10. The fine particles for pulverization have an average particle size larger than that of the brittle material having ultrafine particles.
Or the brittle material ultrafine particle low-temperature molding method according to 8.
【請求項11】 前記粉砕用微粒子は前記超微粒子脆性
材料よりも平均硬度が高いことを特徴とする請求項7ま
たは8記載の脆性材料超微粒子低温成形法。
11. The low-temperature molding method for brittle material ultrafine particles according to claim 7, wherein the fine particles for grinding have an average hardness higher than that of the ultrafine particle brittle material.
【請求項12】 前記粉砕用微粒子は平均粒径が0.5
〜5μmであり、前記超微粒子脆性材料は平均粒径が1
0nm〜1μmであることを特徴とする請求項7または
8記載の脆性材料超微粒子低温成形法。
12. The fine particles for pulverization have an average particle diameter of 0.5.
5 μm, and the ultrafine brittle material has an average particle size of 1
The low-temperature forming method for ultrafine particles of a brittle material according to claim 7, wherein the thickness is from 0 nm to 1 μm.
【請求項13】 前記粉砕用微粒子と前記超微粒子脆性
材料は同じ組成であることを特徴とする請求項7または
8記載の脆性材料超微粒子低温成形法。
13. The low-temperature molding method for brittle material ultrafine particles according to claim 7, wherein the fine particles for grinding and the ultrafine brittle material have the same composition.
JP2000123047A 1999-04-23 2000-04-24 Low temperature molding of brittle material ultrafine particles Expired - Lifetime JP3265481B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000123047A JP3265481B2 (en) 1999-04-23 2000-04-24 Low temperature molding of brittle material ultrafine particles

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP11-117328 1999-04-23
JP11732899 1999-04-23
JP2000123047A JP3265481B2 (en) 1999-04-23 2000-04-24 Low temperature molding of brittle material ultrafine particles

Publications (2)

Publication Number Publication Date
JP2001003180A JP2001003180A (en) 2001-01-09
JP3265481B2 true JP3265481B2 (en) 2002-03-11

Family

ID=26455466

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000123047A Expired - Lifetime JP3265481B2 (en) 1999-04-23 2000-04-24 Low temperature molding of brittle material ultrafine particles

Country Status (1)

Country Link
JP (1) JP3265481B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068258A (en) * 2007-11-15 2008-03-27 Toto Ltd Method for producing porous combined structure and porous fine particle to be used for the production
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
KR100974435B1 (en) * 2008-03-24 2010-08-05 한국기계연구원 A Things having A Chemical resistance ceramics film
US7897268B2 (en) 2005-10-12 2011-03-01 Toto Ltd. Composite structure
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2012161161A1 (en) 2011-05-20 2012-11-29 独立行政法人産業技術総合研究所 Film forming method, body having film formed thereon, and dye-sensitized solar cell
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3874682B2 (en) * 2001-03-22 2007-01-31 独立行政法人産業技術総合研究所 Sliding member and manufacturing method thereof
JP3716913B2 (en) * 2001-04-12 2005-11-16 独立行政法人産業技術総合研究所 Brittle material composite structure and manufacturing method thereof
JP3897631B2 (en) * 2001-04-12 2007-03-28 独立行政法人産業技術総合研究所 Composite structure and manufacturing method thereof
JP5066682B2 (en) * 2001-08-27 2012-11-07 独立行政法人産業技術総合研究所 Low temperature molding method for brittle material fine particle film
JP2003112975A (en) * 2001-09-28 2003-04-18 National Institute Of Advanced Industrial & Technology Structure and method for manufacturing the same, particle for forming structure and method for manufacturing the same
JP3893513B2 (en) * 2001-10-11 2007-03-14 独立行政法人産業技術総合研究所 COMPOSITE STRUCTURE, PROCESS FOR PRODUCING THE SAME, AND BRITICAL MATERIAL PARTICLE FOR FORMING COMPOSITE STRUCTURE
JP3812660B2 (en) * 2001-10-11 2006-08-23 独立行政法人産業技術総合研究所 Composite structure manufacturing method and composite structure manufacturing apparatus
JP3893512B2 (en) * 2001-10-11 2007-03-14 独立行政法人産業技術総合研究所 Composite structure manufacturing equipment
JP4029321B2 (en) * 2002-01-16 2008-01-09 日産自動車株式会社 Porous oxide film, method for producing the same, and fuel cell using the same
TWI334408B (en) 2002-05-28 2010-12-11 Nat Inst Of Advanced Ind Scien Brittle material formed of ultrafine particles
JP4103470B2 (en) * 2002-06-28 2008-06-18 Toto株式会社 Method for producing porous composite structure
JP4258188B2 (en) * 2002-08-30 2009-04-30 Toto株式会社 Manufacturing method of composite structure and composite structure
JP2005147941A (en) * 2003-11-18 2005-06-09 Seiko Epson Corp Manufacturing method for machine part, machine part and clock equipped with the same
JP4736019B2 (en) * 2003-11-27 2011-07-27 独立行政法人産業技術総合研究所 Manufacturing method of molded body
JP4656834B2 (en) * 2003-12-11 2011-03-23 茂樹 遠山 Method and apparatus for producing fine particles
JP2005317952A (en) * 2004-03-30 2005-11-10 Brother Ind Ltd Piezoelectric actuator, ink-jet head and manufacturing method of them
JP2005314801A (en) * 2004-03-31 2005-11-10 Toto Ltd Method for producing coating film with the use of aerosol, particulate mixture therefor, coating film and composite material
JP2005314800A (en) * 2004-03-31 2005-11-10 Toto Ltd Method for producing coating film with the use of aerosol, particulate mixture therefor, coating film and composite material
CN1938452A (en) * 2004-03-31 2007-03-28 东陶机器株式会社 Method for producing coating film with use of aerosol, particulate therefor, coating film and composite material
JP4553630B2 (en) * 2004-05-14 2010-09-29 富士フイルム株式会社 Film forming apparatus and film forming method
JP4662140B2 (en) * 2004-07-15 2011-03-30 日本碍子株式会社 Electron emitter
JP4794227B2 (en) * 2004-07-15 2011-10-19 日本碍子株式会社 Electron emitter
KR100802329B1 (en) * 2005-04-15 2008-02-13 주식회사 솔믹스 Method of preparing metal matrix composite and coating layer and bulk prepared by using the same
JP4826188B2 (en) * 2005-09-26 2011-11-30 Toto株式会社 Method for producing transparent composite structure
JP2007109827A (en) * 2005-10-12 2007-04-26 Toto Ltd Electrostatic chuck
US7920769B2 (en) 2006-01-20 2011-04-05 Nec Corporation Optical element, integrated optic device and optical information transmission system
JP2009132945A (en) * 2006-03-13 2009-06-18 Hoya Corp Method for forming film-formed body by aerosol deposition process
JP2009132944A (en) * 2006-03-13 2009-06-18 Hoya Corp Method for forming film-deposited body by aerosol deposition method
JP5159634B2 (en) * 2006-12-07 2013-03-06 独立行政法人物質・材料研究機構 Warm spray coating method and its particles
JP5030147B2 (en) * 2007-02-20 2012-09-19 独立行政法人産業技術総合研究所 Laminated body
JP5246632B2 (en) * 2007-03-05 2013-07-24 富士通株式会社 Film forming method and film forming apparatus
US8114473B2 (en) 2007-04-27 2012-02-14 Toto Ltd. Composite structure and production method thereof
WO2009016972A1 (en) 2007-08-01 2009-02-05 Nec Corporation Optical device, optical integrated device and its manufacturing method
JP5395345B2 (en) * 2007-10-03 2014-01-22 関西ペイント株式会社 Method for producing aluminum-doped zinc oxide transparent conductive film using aerosol
JP5060262B2 (en) * 2007-12-03 2012-10-31 株式会社井上製作所 Roll mill and dispersion or grinding method using the same
JP5664075B2 (en) * 2010-07-26 2015-02-04 富士通株式会社 Film forming apparatus and film forming method
US9575216B2 (en) 2011-05-24 2017-02-21 National Institute Of Advanced Industrial Science And Technology Infrared-transmitting film, method for producing infrared-transmitting film, infrared optical component, and infrared device
JP5674043B2 (en) * 2011-09-16 2015-02-18 独立行政法人産業技術総合研究所 Method for manufacturing a laminate of brittle materials
JP6134106B2 (en) * 2012-08-20 2017-05-24 積水化学工業株式会社 Method for producing porous membrane
JP6255222B2 (en) * 2013-11-27 2017-12-27 日東電工株式会社 Metal oxide-polymer laminate and method for producing the same
JP6461687B2 (en) * 2015-04-08 2019-01-30 株式会社東芝 Zirconium oxide material, film forming method using the same, and film formed by the film forming method
JP6964003B2 (en) * 2015-05-20 2021-11-10 シオン・パワー・コーポレーション Protective layer for electrodes
WO2017199968A1 (en) * 2016-05-16 2017-11-23 国立研究開発法人産業技術総合研究所 Multilayer structure and method for producing same
JP6778863B2 (en) * 2017-09-21 2020-11-04 国立研究開発法人産業技術総合研究所 Allophane membrane complex, sheet using it, and method for producing allophane membrane complex
EP3843888A4 (en) * 2018-08-30 2022-05-18 Ranganathan Gopalakrishnan System and methods for dispersion of dry powders

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7897268B2 (en) 2005-10-12 2011-03-01 Toto Ltd. Composite structure
JP2008068258A (en) * 2007-11-15 2008-03-27 Toto Ltd Method for producing porous combined structure and porous fine particle to be used for the production
JP4626829B2 (en) * 2007-11-15 2011-02-09 Toto株式会社 Method for producing porous composite structure and porous fine particles used for the production
KR100974435B1 (en) * 2008-03-24 2010-08-05 한국기계연구원 A Things having A Chemical resistance ceramics film
WO2010050575A1 (en) 2008-10-29 2010-05-06 富士フイルム株式会社 Dye, photoelectric conversion element and photoelectrochemical cell each comprising the dye, and process for producing dye
EP2845882A2 (en) 2008-10-29 2015-03-11 Fujifilm Corporation Dye, Photoelectric Conversion Element and Photoelectrochemical Cell
EP2302650A2 (en) 2009-09-28 2011-03-30 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
EP2306479A2 (en) 2009-09-28 2011-04-06 Fujifilm Corporation Method of producing photoelectric conversion element, photoelectric conversion element, and photoelectrochemical cell
WO2012161161A1 (en) 2011-05-20 2012-11-29 独立行政法人産業技術総合研究所 Film forming method, body having film formed thereon, and dye-sensitized solar cell
US9721733B1 (en) 2011-05-20 2017-08-01 National Institute Of Advanced Industrial Science And Technology Method for forming a dye-sensitized solar cell having a porous film of an inorganic substance on a base material by spraying dry fine particles of an inorganic substance on the base material
WO2014129575A1 (en) 2013-02-22 2014-08-28 富士フイルム株式会社 Photoelectric conversion element, method for manufacturing photoelectric conversion element and dye-sensitized solar cell

Also Published As

Publication number Publication date
JP2001003180A (en) 2001-01-09

Similar Documents

Publication Publication Date Title
JP3265481B2 (en) Low temperature molding of brittle material ultrafine particles
US6531187B2 (en) Method of forming a shaped body of brittle ultra fine particles with mechanical impact force and without heating
KR100724070B1 (en) Composite structured material and method for preparation thereof and apparatus for preparation thereof
US6991515B2 (en) Ultra fine particle film forming method and apparatus
JP3554735B2 (en) Composite structure, method of manufacturing the same, and manufacturing apparatus
JP2002235181A (en) Composite structure, its manufacturing method and fabricating device
JP2007023379A (en) Film formation method, and structure
JP3338422B2 (en) Ultrafine particle spraying method
JP2001181859A (en) Method and apparatus for manufacturing composite structure
JP3740523B2 (en) Ultrafine particle material flattening method
JP4075745B2 (en) Composite structure manufacturing equipment
JP2005089826A (en) Composite structure production device
JP3850257B2 (en) Low temperature forming method for brittle material structures
JP4086627B2 (en) Deposition method
JP2004256920A (en) Composite structure, and method and device for producing the same
US8986829B2 (en) Layered body
US7179718B2 (en) Structure and method of manufacturing the same
JP5561743B2 (en) Brittle material fine particle film
JP2003073855A (en) Method for making body having film formed from fine particle of brittle material at low temperature
JP2007185572A (en) Powder, method for preparing same, film deposition method, and structure
JP2008001968A (en) Fine particle aggregate crushing device and film formation apparatus
JP2018059145A (en) Aerosol film deposition device, and aerosol film deposition method

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
R150 Certificate of patent or registration of utility model

Ref document number: 3265481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term