JP2009132944A - Method for forming film-deposited body by aerosol deposition method - Google Patents

Method for forming film-deposited body by aerosol deposition method Download PDF

Info

Publication number
JP2009132944A
JP2009132944A JP2006068420A JP2006068420A JP2009132944A JP 2009132944 A JP2009132944 A JP 2009132944A JP 2006068420 A JP2006068420 A JP 2006068420A JP 2006068420 A JP2006068420 A JP 2006068420A JP 2009132944 A JP2009132944 A JP 2009132944A
Authority
JP
Japan
Prior art keywords
substrate
film
fine particles
raw material
material fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006068420A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Miura
義從 三浦
Seiichi Yokoyama
精一 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006068420A priority Critical patent/JP2009132944A/en
Priority to PCT/JP2007/054789 priority patent/WO2007105674A1/en
Priority to TW096108518A priority patent/TW200741032A/en
Publication of JP2009132944A publication Critical patent/JP2009132944A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/02Coating starting from inorganic powder by application of pressure only
    • C23C24/04Impact or kinetic deposition of particles
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/22Surface treatment of glass, not in the form of fibres or filaments, by coating with other inorganic material
    • C03C17/23Oxides
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2217/00Coatings on glass
    • C03C2217/20Materials for coating a single layer on glass
    • C03C2217/21Oxides
    • C03C2217/214Al2O3
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/10Deposition methods
    • C03C2218/17Deposition methods from a solid phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C2218/00Methods for coating glass
    • C03C2218/30Aspects of methods for coating glass not covered above
    • C03C2218/32After-treatment
    • C03C2218/328Partly or completely removing a coating
    • C03C2218/33Partly or completely removing a coating by etching

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a dense film-deposited body which does not form any green compact even at the thickness exceeding 100 μm by an aerosol deposition method. <P>SOLUTION: Raw fine particles such as alumina are mixed with carrier gas to form aerosol, which is jetted from a nozzle 11 to a substrate 21 for deposition such as a quartz glass to perform the film deposition. The aerosol is jetted while changing the angle of incidence of the raw fine particles 13 in the aerosol when being jetted to the substrate 21 for deposition by a method of turning the substrate 21 or the like. Formation of any green compact is prevented, and a dense film-deposited body is formed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、エアロゾルデポジション法を用いて膜厚の厚い成膜体を形成する方法に関する。   The present invention relates to a method for forming a thick film-formed body using an aerosol deposition method.

エアロゾルデポジション法(以下、AD法と記す)は、粒径が数十nm〜数μmのセラミックスあるいは金属の微粒子から成る原料をガスと混合してエアロゾル化し、ノズルを通して基板に噴射して、被膜を形成する技術である。近年、AD法は、低基板温度で、かつ高成膜速度で、原料である微粒子と同様の結晶構造を有する緻密な被膜が形成できる方法として着目されている。   In the aerosol deposition method (hereinafter referred to as AD method), a raw material composed of ceramic or metal fine particles having a particle size of several tens of nanometers to several μm is mixed with gas to form an aerosol, which is sprayed onto a substrate through a nozzle. Is a technology to form In recent years, the AD method has attracted attention as a method capable of forming a dense film having a crystal structure similar to that of fine particles as a raw material at a low substrate temperature and at a high film formation rate.

AD法を用いた成膜装置について図6を用いて説明する。図6は、成膜装置の基本構成を示した概略図である。図中、61は被成膜基板、62は被成膜基板61を移動せしめるXYステージ、63はノズル、64は成膜チャンバ、65は分級器、66はエアロゾル発生器、67は高圧ガス供給源、68はマスフロー制御器、69はパイプライン、図中矢印は基板走査方向を模式的に示したものである。セラミックスあるいは金属からなる原料微粒子は、エアロゾル発生器66の内部でマスフロー制御器68を介して供給される搬送ガス(図示せず)と混合されてエアロゾル化される。成膜チャンバ64の内部は、真空ポンプ(図示せず)で〜50Pa程度に減圧されており、この圧力とエアロゾル発生器66内部の圧力との差圧によって生じるガス流によってエアロゾル化された原料微粒子は、分級器65を介して成膜チャンバ64内に導かれ、ノズル63を通して加速、被成膜基板61に噴射される。ガスによって搬送された原料微粒子は、1mm以下の微小開口のノズルを通すことで数百m/sまでに加速される。   A film forming apparatus using the AD method will be described with reference to FIG. FIG. 6 is a schematic diagram showing the basic configuration of the film forming apparatus. In the figure, 61 is a deposition substrate, 62 is an XY stage for moving the deposition substrate 61, 63 is a nozzle, 64 is a deposition chamber, 65 is a classifier, 66 is an aerosol generator, and 67 is a high-pressure gas supply source. , 68 is a mass flow controller, 69 is a pipeline, and arrows in the figure schematically show the substrate scanning direction. Raw material fine particles made of ceramics or metal are mixed with a carrier gas (not shown) supplied via a mass flow controller 68 inside the aerosol generator 66 to be aerosolized. The inside of the film forming chamber 64 is decompressed to about 50 Pa by a vacuum pump (not shown), and the raw material fine particles aerosolized by the gas flow generated by the differential pressure between this pressure and the pressure inside the aerosol generator 66. Is introduced into the film forming chamber 64 through the classifier 65, accelerated through the nozzle 63, and sprayed onto the film formation substrate 61. The raw material fine particles conveyed by the gas are accelerated to several hundred m / s by passing through a nozzle having a minute opening of 1 mm or less.

加速された原料微粒子は被成膜基板61に衝突し、その運動エネルギーは一気に解放され、皮膜が形成されることになる。しかし、加速された原料微粒子が有する運動エネルギーが全て基板に衝突した原料微粒子の温度上昇に費やされたとしても、その温度は、例えばセラミックスの焼結に必要な温度等と比べると一桁程度低く、緻密な成膜体が得られるメカニズムについては不明な点が多い。しかし、その成膜過程には、原料微粒子の基板衝突時に発生する破砕が重要な役割担っていると考えられている。なお、“原料微粒子の破砕”とは、基板に飛来した原料微粒子自体の破砕と、既に基板表面に付着している原料微粒子の破砕の両者を意味する。   The accelerated raw material fine particles collide with the deposition target substrate 61, and the kinetic energy is released at a stretch, so that a film is formed. However, even if all the kinetic energy of the accelerated raw material fine particles is spent on raising the temperature of the raw material fine particles that have collided with the substrate, the temperature is about an order of magnitude compared to the temperature necessary for sintering ceramics, for example. There are many unclear points about the mechanism by which a low and dense film body can be obtained. However, it is considered that the crushing generated at the time of substrate collision of raw material fine particles plays an important role in the film forming process. Note that “crushing of raw material fine particles” means both crushing of raw material fine particles that have come to the substrate and crushing of raw material fine particles that have already adhered to the substrate surface.

すなわち、特開2003−73855号公報においては、脆性材料から成る原料微粒子の場合、その微粒子の平均粒径が50nm以上で、かつその形状が非球形の不定形形状で、少なくとも一カ所以上、角を持つ形状とすることにより、当該角の部分に基板衝突時の衝撃力が集中し、原料微粒子の破砕が促進される結果、緻密な成膜体が得られることが開示されている。
特開2003−73855号公報
That is, in Japanese Patent Application Laid-Open No. 2003-73855, in the case of raw material fine particles made of a brittle material, the average particle diameter of the fine particles is 50 nm or more, and the shape thereof is an aspherical irregular shape, at least at one or more corners. It is disclosed that a dense film-formed body can be obtained as a result of having a shape having, because the impact force at the time of substrate collision is concentrated on the corner portion and the crushing of the raw material fine particles is promoted.
JP 2003-73855 A

しかし、我々のAD法による膜厚の大きい成膜体を形成するための系統的な検討の結果、10〜20μm程度の成膜体は比較的容易に形成されるものの、それ以上の膜厚、例えば100μmを超える膜厚の成膜体を安定に形成することが困難であることが判明した。すなわち、成膜初期過程、換言すると膜厚が20μm程度以下と薄い状態においては、緻密な成膜体が得られるものの、膜厚が増大するにつれ緻密な成膜体は形成されず、圧粉体のみが形成される、と云う問題があることが明らかとなった。   However, as a result of systematic examination for forming a film-forming body having a large film thickness by our AD method, although a film-forming body of about 10 to 20 μm is relatively easily formed, For example, it has been found that it is difficult to stably form a film-forming body having a film thickness exceeding 100 μm. That is, in the initial stage of film formation, in other words, in a state where the film thickness is as thin as about 20 μm or less, a dense film body is obtained, but as the film thickness increases, a dense film body is not formed, and the green compact is formed. It became clear that there was a problem that only

上記課題を解決するために、
本発明により提供される第1の手段は、
原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子をノズルを通して加速して被堆積基板表面に向けて噴射せしめることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であって、該ノズルから噴射された原料微粒子の該被堆積基板の被堆積表面への入射角度を変化させつつ成膜することを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
また、本発明により提供される第2の手段は、
前記第1の手段において、該入射角度の変化が連続的かつ周期的であることを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
To solve the above problem,
The first means provided by the present invention include:
An aerosol deposition method in which raw material fine particles are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a nozzle and sprayed toward the deposition target substrate surface to form a film-deposited body in a decompression chamber. A method of forming a film-forming body by an aerosol deposition method, wherein film formation is performed while changing an incident angle of raw material fine particles ejected from the nozzle onto a deposition surface of the deposition substrate. .
The second means provided by the present invention includes
In the first means, the change in the incident angle is continuous and periodic, and is a method of forming a film formation by an aerosol deposition method.

更に、本発明により提供される第3の手段は、
前記第1の手段において、該入射角度の変化が間歇的かつ周期的であることを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
Furthermore, the third means provided by the present invention includes:
In the first means, the change in the incident angle is intermittent and periodic, and is a method of forming a film formation by an aerosol deposition method.

AD法で形成された膜であって、成膜初期段階では緻密な成膜体で、膜厚の増加と共に圧粉体となった膜の組織を電子顕微鏡で観察した結果、例えば図7に模式的に示すような組織を有していることが明らかとなった。図7は、搬送ガス流量が一定の条件下で形成した膜の断面組織を模式的に示した概略図であり、図中71は基板、72は成膜体層、73は圧粉体層である。すなわち、搬送ガス流量が一定で、原料微粒子の基板入射角度が基板71の表面の法線方向と略一致する条件下で作成した膜の組織は、同図に示したように、成膜体層72では緻密な膜が形成されており、かつ成膜体層72を構成する粒子の径は原料微粒子の粒径の約1/10〜1/5であった。一方、圧粉体層73においては、基板71からの距離が大きくなるにつれ(膜厚が増加するにつれ)、空隙部の数、大きさ共に増大し、かつ圧粉体層を構成する粒子の径も増大し、最終的には原料微粒子の粒径と同程度になることが明らかとなった。また、成膜体層72と圧粉体層73との境界は明瞭に区別できるものではなく、成膜体層から圧粉体層への組織変化は連続的に発生していることも明らかとなった。   As a result of observing the structure of the film formed by the AD method, which is a dense film formation in the initial stage of film formation and becomes a green compact as the film thickness increases, using an electron microscope, for example, as schematically illustrated in FIG. It became clear that it has an organization as shown. FIG. 7 is a schematic view schematically showing a cross-sectional structure of a film formed under a condition in which the carrier gas flow rate is constant, in which 71 is a substrate, 72 is a film-forming body layer, and 73 is a green compact layer. is there. That is, the structure of the film prepared under the condition that the carrier gas flow rate is constant and the substrate incident angle of the raw material fine particles substantially coincides with the normal direction of the surface of the substrate 71 is as shown in FIG. In 72, a dense film was formed, and the diameter of the particles constituting the film-forming body layer 72 was about 1/10 to 1/5 of the diameter of the raw material fine particles. On the other hand, in the green compact layer 73, as the distance from the substrate 71 increases (as the film thickness increases), the number and size of the voids increase, and the diameter of the particles constituting the green compact layer As a result, it was clarified that the particle size of the raw material fine particles finally became approximately the same. Further, the boundary between the film formation layer 72 and the green compact layer 73 is not clearly distinguishable, and it is also clear that the structural change from the film formation body layer to the green compact layer occurs continuously. became.

この観察結果より、圧粉体層73が形成される原因は、膜厚の増加につれて原料微粒子の破砕(前述したように、“原料微粒子の破砕”とは基板に飛来した原料微粒子自体の破砕と既に基板表面に付着した原料微粒子の破砕の両者を意味する。)が発生し難くなっていることにあることが判る。   From this observation result, the cause of the formation of the green compact layer 73 is that the raw material fine particles are crushed as the film thickness is increased (as described above, “crushing the raw material fine particles” is the crushing of the raw material fine particles themselves that have come to the substrate). It means that both the raw material fine particles already adhered to the substrate surface are not easily generated).

一方、原料微粒子が破砕される原因は、その基板衝突時における原料微粒子の有する運動エネルギーの解放に伴う衝撃力であり、係る原料微粒子の有する運動エネルギーは基板衝突速度によって決定される。ところで、原料微粒子の基板衝突速度は、搬送ガスの流量によって決定されることから、搬送ガス流量が一定の条件下で成膜する場合には、原料微粒子の基板衝突速度は常に一定であり、衝突時に解法される運動エネルギーも一定になる。従って、理想的には、形成された膜厚の如何を問わず、原料微粒子の破砕は同様に発生して然るべきである。   On the other hand, the cause of the crushing of the raw material fine particles is an impact force accompanying the release of the kinetic energy of the raw material fine particles at the time of the substrate collision, and the kinetic energy of the raw material fine particles is determined by the substrate collision speed. By the way, since the substrate collision speed of the raw material fine particles is determined by the flow rate of the carrier gas, the substrate collision speed of the raw material fine particles is always constant when the film is formed under a condition where the carrier gas flow rate is constant. Sometimes the kinetic energy solved is also constant. Therefore, ideally, crushing of the raw material fine particles should occur regardless of the formed film thickness.

しかし、前述したように、AD法で形成した膜の断面組織を電子顕微鏡で観察した結果、膜厚の増加と共に、空隙部の数及びその大きさ、共に増大していることから、以下に述べるような現象が発生してものと想定される。   However, as described above, as a result of observing the cross-sectional structure of the film formed by the AD method with an electron microscope, as the film thickness increases, the number and size of the voids both increase. It is assumed that such a phenomenon occurs.

図8は、原料微粒子の基板衝突によって発生する圧力と成膜体層及び圧粉体層に発生する歪みとの関係を模式的に示した図である。一般的に、圧力(応力)と歪みとは、同図に示したように、圧力が小さい領域では、圧力に応じて歪みは線形的に増加するが(図中、弾性変形領域)、その後圧力の上昇に歪み量は追従しなくなり、最終的には破砕に至る(図中破砕発生点)。圧粉体層においては、空隙部が多数存在するため、緻密な成膜体層に比べて変形し易く、弾性変形領域が広いと考えられ、結果として破砕が発生するために要する圧力(以下、臨界圧力と記す)も大きくなっていると推定される。すなわち、原料微粒子の基板衝突によって発生する圧力が、成膜体層における臨界圧力は超えるが、圧粉体層の臨界圧力を下回る場合には、一旦圧粉体層が形成されると、最早基板に付着した原料微粒子の破砕は発生せず、圧粉体層が形成され続けることになる。   FIG. 8 is a diagram schematically showing the relationship between the pressure generated by the substrate collision of the raw material fine particles and the strain generated in the film forming body layer and the green compact layer. In general, pressure (stress) and strain, as shown in the figure, in a region where the pressure is small, the strain increases linearly with the pressure (in the figure, elastic deformation region), but then the pressure The amount of strain does not follow the rise, and eventually crushes (the crushing point in the figure). In the green compact layer, since there are many voids, it is easier to deform than a dense film-formed body layer, and it is considered that the elastic deformation region is wide. It is estimated that the critical pressure is also increasing. That is, if the pressure generated by the substrate collision of the raw material fine particles exceeds the critical pressure in the film formation layer, but lower than the critical pressure of the green compact layer, once the green compact layer is formed, the substrate is no longer The raw material fine particles adhering to the surface are not crushed, and the green compact layer continues to be formed.

このような圧粉体層の形成を阻止するためには、圧粉体層の形成の源となる、基板表面に付着している未破砕の原料微粒子、若しくは破砕が不充分な微粒子を除去することが必要となる。また、未破砕原料微粒子、若しくは破砕が不充分な微粒子は、基板表面、あるいは基板に既に形成されている成膜体との密着力が低いと考えられ、比較的容易に除去され得るものと考えられる。   In order to prevent the formation of the green compact layer, the raw material fine particles adhering to the substrate surface or the fine particles that are not sufficiently crushed are removed. It will be necessary. In addition, uncrushed raw material fine particles or fine particles that are not sufficiently crushed are considered to have a low adhesion force to the substrate surface or a film formed on the substrate, and can be removed relatively easily. It is done.

すなわち、本発明は、以下に説明する基板に入射する原料微粒子のエッチング効果に着目し、未破砕原料微粒子、若しくは破砕が不充分な微粒子を除去しつつ緻密な成膜体を形成せんとするものである。   That is, the present invention focuses on the etching effect of raw material fine particles incident on the substrate described below, and forms a dense film formation while removing uncrushed raw material fine particles or fine particles that are not sufficiently crushed. It is.

図3〜5に原料微粒子の入射方向、換言すると入射角度の影響を示す。   3 to 5 show the influence of the incident direction of the raw material fine particles, in other words, the incident angle.

図3aは原料微粒子の入射方向と入射角度との関係を示す模式図で、図中31は基板、32は成膜された膜、33はノズル、34はノズル開口部、35はノズル開口部34から噴射された原料微粒子である。図3bは基板位置を固定して一定時間形成された成膜体の形状を模式的に示したものである。図中、36は成膜体の形状、37は等膜厚線、Pは最も膜厚の厚い点を基板に投影した点である。基板31を固定し、一定時間原料微粒子を基板表面に向けて噴射せしめた場合、原料微粒子35は、ある程度の方向分布を持って基板に入射するため、形成された成膜体は成膜体36に示すような山型の形状となる。ここで云う、原料微粒子の入射方向とは点Pとノズル開口部34の中心と結ぶ直線に平行で、かつノズル開口部34から点Pに向かう方向の意である。大略的には、図3aに示した矢印、及びブロック矢印で示した方向と理解される。また、ここで云う基板入射角度とは、図3aに示すように、基板表面法線方向と入射方向とのなす角度、Θの意である。   FIG. 3 a is a schematic diagram showing the relationship between the incident direction and the incident angle of the raw material fine particles, in which 31 is a substrate, 32 is a film formed, 33 is a nozzle, 34 is a nozzle opening, and 35 is a nozzle opening 34. It is the raw material fine particle injected from. FIG. 3b schematically shows the shape of the film-formed body formed for a fixed time with the substrate position fixed. In the figure, 36 is the shape of the film-forming body, 37 is a uniform film thickness line, and P is the point where the thickest point is projected onto the substrate. When the substrate 31 is fixed and the raw material fine particles are sprayed toward the substrate surface for a certain period of time, the raw material fine particles 35 are incident on the substrate with a certain degree of directional distribution. It becomes a mountain shape as shown in FIG. Here, the incident direction of the raw material fine particles means a direction parallel to a straight line connecting the point P and the center of the nozzle opening 34 and toward the point P from the nozzle opening 34. In general, it is understood as the direction shown by the arrow shown in FIG. 3a and the block arrow. Further, the substrate incident angle referred to here means the angle Θ formed by the normal direction of the substrate surface and the incident direction, as shown in FIG. 3A.

図4は基板入射角度と一定時間成膜した成膜体の膜厚との関係を示す。図中●印は、搬送ガス流量が小さい場合、□印は搬送ガス流量が大きい場合に対応する。いずれの場合も、基板入射角度が0度で成膜した場合に得られる膜厚で規格化されている。同図に示したように、基板入射角度が20度を超えた辺りから、成膜体の膜厚は急激に減少しはじめ、搬送ガス流量が小さい場合の減少量は、同流量が大きい場合に比べて小さい。この原因は、基板入射角度の増大と共に、基板に入射する粒子のエッチング効果が顕在化することにあると推定される。   FIG. 4 shows the relationship between the substrate incident angle and the film thickness of the film-formed body formed for a certain time. In the figure, the mark ● corresponds to the case where the carrier gas flow rate is small, and the symbol □ corresponds to the case where the carrier gas flow rate is large. In any case, the film thickness is standardized by the film thickness obtained when the film is formed at a substrate incident angle of 0 degree. As shown in the figure, when the substrate incident angle exceeds 20 degrees, the film thickness of the film-deposited body starts to decrease sharply, and when the carrier gas flow rate is small, the decrease amount is when the flow rate is large. Smaller than that. It is estimated that this is because the etching effect of particles incident on the substrate becomes obvious as the substrate incident angle increases.

図5は、一定の膜厚の成膜体を形成した後、一定時間、原料微粒子を基板に入射せしめた後の膜厚減少量と入射角度との関係を示したものである。図5と同様に、図中●印は、搬送ガス流量が小さい場合、□印は搬送ガス流量が大きい場合に対応する。また、同図において、膜厚減少量が0とは、膜厚の減少が発生しない場合、及び基板に入射された原料微粒子が堆積されて膜厚が増加した場合の両者を意味する。   FIG. 5 shows the relationship between the amount of decrease in film thickness and the incident angle after the raw material fine particles are allowed to enter the substrate for a certain period of time after the film formation body having a constant film thickness is formed. As in FIG. 5, the mark ● corresponds to the case where the carrier gas flow rate is small, and the symbol □ corresponds to the case where the carrier gas flow rate is large. In the same figure, the film thickness reduction amount of 0 means both when the film thickness does not decrease and when the material fine particles incident on the substrate are deposited and the film thickness increases.

同図に示したように、搬送ガス流量が大きい場合、入射角度が25度を超えた辺りから、膜厚減少が顕在化するのに対し、搬送ガス流量が小さい場合には入射角度が40度を超えた辺りから膜厚減少が顕在化する。   As shown in the figure, when the carrier gas flow rate is large, the decrease in film thickness becomes apparent from the vicinity where the incident angle exceeds 25 degrees, whereas when the carrier gas flow rate is small, the incident angle is 40 degrees. The decrease in film thickness becomes apparent from around this point.

以上の結果から、AD法においては、原料微粒子の基板入射角度、及び搬送ガス流量を適当に選定することにより、原料微粒子のエッチング効果を制御できることが理解される。   From the above results, it is understood that in the AD method, the etching effect of the raw material fine particles can be controlled by appropriately selecting the substrate incident angle of the raw material fine particles and the carrier gas flow rate.

すなわち、本発明は、ノズルから噴射された原料微粒子の基板入射角度を変化させつつ成膜することにより、前述したエッチング効果と堆積効果とを調和させ、圧粉体層の形成の源となる、基板表面に付着している未破砕の原料微粒子、若しくは破砕が不充分な微粒子を除去しつつ、膜厚が厚く、かつ緻密性に優れた成膜体を形成せんとするものである。   That is, the present invention harmonizes the above-mentioned etching effect and deposition effect by forming the film while changing the substrate incident angle of the raw material fine particles ejected from the nozzle, and becomes a source of forming the green compact layer. While removing uncrushed raw material fine particles adhering to the substrate surface, or fine particles that are not sufficiently crushed, a film having a large film thickness and excellent denseness is formed.

本発明により、AD法を用いて超100μm厚の膜厚の厚い成膜体を安定して形成することが可能となる。   According to the present invention, it is possible to stably form a thick film-formed body having a thickness of ultra 100 μm using the AD method.

以下、本発明の実施の形態について説明する。
図1及び図2は本発明の実施の形態を示す模式図である。
Embodiments of the present invention will be described below.
1 and 2 are schematic views showing an embodiment of the present invention.

図1は、成膜時におけるノズルと基板とのなす角度が変化する様子を模式的に示した図である。図中、11はノズル、13は第1のノズルから噴射される原料微粒子である。また、図中の矢印、及びブロック矢印は、原料微粒子13の基板入射方向を、またブロック矢印に(1)(2)(3)(4)と付したのは、基板が回転する順序を示したものである。すなわち、成膜開始時には、図1aに示すように、原料微粒子13は、基板21の被成膜面と略直交する方向から入射し、一定の時間、成膜が行われる。その後、基板21が時計方向に回転して、所望の角度に達した時に静止し、その状態で一定の時間、成膜が行われる(図1bに対応)。その後、再び基板21は反時計方向に回転して、図1aに示す状態で静止して、また一定の時間、成膜が行われる。その後、基板21は反時計方向に回転し、所望の角度に達した時に静止し、その状態で一定の時間、成膜が行われる(図1cに対応)。その後、再び基板21は時計方向に回転して、図1aに示す状態で静止して、また一定の時間、成膜が行われる。以上のサイクルを繰り返すことにより、成膜体の形成が行われる。図2には、その様子を、成膜時間と原料微粒子13の入射角度との関係として示す。図中、“0”は、原料微粒子が基板表面に直交する方向から基板に入射する図1aの場合に対応し、また正負の極大は、例えば、図1b、図1cの場合に対応する。図2aは前述した、間歇的に基板入射角度が変化する場合、図2bは連続的に同角度が変化する場合を示している。特に図2aの場合には、基板が回転する間、成膜を持続しても、また中断してもどちらでも構わない。   FIG. 1 is a diagram schematically showing how the angle between the nozzle and the substrate changes during film formation. In the figure, 11 is a nozzle, and 13 is raw material fine particles ejected from the first nozzle. In addition, the arrows and block arrows in the figure indicate the incident direction of the raw material fine particles 13 to the substrate, and (1), (2), (3), and (4) are added to the block arrows to indicate the order in which the substrates rotate. It is a thing. That is, at the start of film formation, as shown in FIG. 1a, the raw material fine particles 13 are incident from a direction substantially orthogonal to the film formation surface of the substrate 21, and film formation is performed for a certain time. Thereafter, the substrate 21 rotates clockwise and stops when a desired angle is reached, and film formation is performed for a certain time in this state (corresponding to FIG. 1b). After that, the substrate 21 is rotated again counterclockwise, is stationary in the state shown in FIG. 1a, and film formation is performed for a certain time. Thereafter, the substrate 21 rotates counterclockwise, stops when reaching a desired angle, and film formation is performed for a certain time in this state (corresponding to FIG. 1c). Thereafter, the substrate 21 rotates again in the clockwise direction, stops in the state shown in FIG. 1a, and film formation is performed for a certain time. By repeating the above cycle, the film formation is formed. FIG. 2 shows the state as the relationship between the film formation time and the incident angle of the raw material fine particles 13. In the figure, “0” corresponds to the case of FIG. 1 a in which the raw material fine particles are incident on the substrate from the direction orthogonal to the substrate surface, and the positive and negative maximum corresponds to, for example, the cases of FIG. 1 b and FIG. FIG. 2a shows the case where the substrate incident angle changes intermittently, and FIG. 2b shows the case where the same angle changes continuously. In particular, in the case of FIG. 2a, the film formation may be continued or interrupted while the substrate rotates.

このように、成膜中に基板を回転させることにより、原料微粒子13の基板入射角度を変化せしめ、膜の堆積が優先的に行われる状態と、エッチング効果が顕在化する状態を交互に繰り返すことにより、成膜体表面に付着した未破砕原料微粒子、あるいは破砕が不充分な粒子を除去しつつ、膜が形成されるため、圧粉体の形成は阻止され、緻密な成膜体が形成されることになる。なお、ここで云う“エッチング効果が顕在化する”とは、必ずしも膜が全く堆積が全く堆積されず、エッチングのみが発生する場合のみならず、堆積速度が減少しはじめる場合をも意味する。基板入射角度の極大、あるいは極小値としてどの領域を選定するか、換言すると、膜の堆積は全く行われず、エッチングのみが発生する角度を選定するか、あるいはエッチングは発生しているが、なお膜の堆積も生じている角度を選定するかは、原料微粒子の種類、あるいは圧粉体の生じ易さによって適宜選定されるべきものである。   Thus, by rotating the substrate during the film formation, the substrate incident angle of the raw material fine particles 13 is changed, and the state in which the film is preferentially deposited and the state in which the etching effect is manifested are alternately repeated. As a result, a film is formed while removing uncrushed raw material fine particles adhering to the surface of the film formation body or particles that are not sufficiently crushed, so that formation of a green compact is prevented and a dense film formation body is formed. Will be. Here, “the etching effect is manifested” means not only the case where the film is not deposited at all, but only the case where etching occurs, but also the case where the deposition rate starts to decrease. Which region is selected as the maximum or minimum value of the substrate incident angle, in other words, the film is not deposited at all, and the angle at which only etching occurs is selected, or etching occurs, but the film is still Whether to select the angle at which the deposition is also generated should be selected as appropriate depending on the kind of raw material fine particles or the ease of generation of the green compact.

以下、実施例を用いて、本発明の実施の形態について、更に詳細に説明する。   Hereinafter, embodiments of the present invention will be described in more detail using examples.

比較例Comparative example

原料微粒子として平均粒径が0.7μmのアルミナ粒子を用い、搬送ガスとして空気を用いて成膜した。ノズルのノズル開口は、5nm×0.3nmで、用いた基板は石英ガラスである。搬送ガス流量は、4l/minで、このときノズルから噴射されたアルミナ微粒子の基板衝突速度は、共に240m/sで、アルミナ微粒子の基板入射角度が0度の場合、その堆積速度は10μm/minであった。
同条件下で成膜した結果、膜厚が30μmを超えた辺りから圧粉体の形成が顕著に認められ、100μmを超える膜厚の成膜体は形成できなかった。
Film formation was performed using alumina particles having an average particle size of 0.7 μm as raw material fine particles and air as a carrier gas. The nozzle opening of the nozzle is 5 nm × 0.3 nm, and the substrate used is quartz glass. When the carrier gas flow rate is 4 l / min, the substrate collision speed of the alumina fine particles injected from the nozzle at this time is 240 m / s, and when the substrate incident angle of the alumina fine particles is 0 degree, the deposition speed is 10 μm / min. Met.
As a result of film formation under the same conditions, the formation of a green compact was remarkably observed around the film thickness exceeding 30 μm, and a film formed with a film thickness exceeding 100 μm could not be formed.

比較例と同様、原料微粒子として平均粒径が0.7μmのアルミナ粒子を用い、搬送ガスとして空気を用いて成膜した。ノズルのノズル開口は、5nm×0.3nmで、用いた基板は石英ガラスである。搬送ガス流量は、4l/minで、このときノズルから噴射されたアルミナ微粒子の基板衝突速度は、共に240m/sで、アルミナ微粒子の基板入射角度が0度の場合、その堆積速度は10μm/minで、同角度が25度の場合は7μm/minであった。   As in the comparative example, film formation was performed using alumina particles having an average particle diameter of 0.7 μm as raw material fine particles and air as a carrier gas. The nozzle opening of the nozzle is 5 nm × 0.3 nm, and the substrate used is quartz glass. The carrier gas flow rate is 4 l / min. At this time, the substrate collision speed of the alumina fine particles injected from the nozzle is 240 m / s, and when the substrate incident angle of the alumina fine particles is 0 degree, the deposition speed is 10 μm / min. When the angle was 25 degrees, it was 7 μm / min.

成膜開始時の基板入射角度を0度に設定し、図2aに示した態様で基板入射角度を変化させた。すなわち、基板入射角度を0度に保持して、2分間成膜した後、基板入射角度を25度に設定して同様に2分間成膜し、その後基板入射角度を再び0度に設定して2分間成膜する、と云うサイクルを繰り返して、130μm厚のアルミナ成膜体を形成した。なお、入射角度を変化させるのに要した時間は約10秒であった。   The substrate incident angle at the start of film formation was set to 0 degree, and the substrate incident angle was changed in the manner shown in FIG. 2a. That is, the substrate incident angle is kept at 0 degree, the film is formed for 2 minutes, the substrate incident angle is set to 25 degrees, the film is similarly formed for 2 minutes, and then the substrate incident angle is set to 0 degree again. A cycle of film formation for 2 minutes was repeated to form a 130 μm thick alumina film. The time required for changing the incident angle was about 10 seconds.

実施例1と同様の条件で110μm厚のアルミナ成膜体を形成した。ただし、基板入射角度は、図2bに示したように、正弦波状に変化させた。振幅は30度(この場合の堆積速度は5μm/minであった)で周期は3分であった。   A 110 μm-thick alumina film was formed under the same conditions as in Example 1. However, the substrate incident angle was changed to a sine wave shape as shown in FIG. The amplitude was 30 degrees (in this case the deposition rate was 5 μm / min) and the period was 3 minutes.

本発明により成る成膜方法は、AD法を用いて、100μmを超える厚さの成膜体を形成する上で有用であり、係る成膜体を用いた部品、材料に係る産業分野において利用可能である。   The film-forming method according to the present invention is useful for forming a film-forming body having a thickness exceeding 100 μm using the AD method, and can be used in the industrial field related to parts and materials using the film-forming body. It is.

成膜時の基板入射角度の変化の様子を模式的に示した図である。It is the figure which showed typically the mode of the change of the substrate incident angle at the time of film-forming. 成膜時間と基板入射角度との関係を示す模式図である。It is a schematic diagram which shows the relationship between film-forming time and a substrate incident angle. 基板入射角度を説明するための模式図である。It is a schematic diagram for demonstrating a substrate incident angle. 成膜体の膜厚と基板入射角度との関係を示す図である。It is a figure which shows the relationship between the film thickness of a film-forming body, and a substrate incident angle. 膜厚減少量と基板入射角度との関係を示す図である。It is a figure which shows the relationship between a film thickness reduction amount and a substrate incident angle. AD法を用いた成膜装置の基本構成を示した概略図である。It is the schematic which showed the basic composition of the film-forming apparatus using AD method. AD法で形成した試料の断面組織を模式的に示した概略図である。It is the schematic which showed typically the cross-sectional structure | tissue of the sample formed by AD method. 原料微粒子の基板衝突によって発生する圧力と成膜体層及び圧粉体層に発生する歪みとの関係を模式的に示した図であるIt is the figure which showed typically the relationship between the pressure which generate | occur | produces by the board | substrate collision of raw material fine particles, and the distortion which generate | occur | produces in a film-forming body layer and a green compact layer.

符号の説明Explanation of symbols

11 ノズル
13 ノズルから噴射される原料微粒子
31 基板
32 成膜された膜
33 ノズル
34 ノズル開口部
35 ノズル開口部44が噴射された原料微粒子
36 成膜体の形状
37 等膜厚線
61 被成膜基板
62 XYステージ
63 ノズル
64 成膜チャンバ
65 分級器
66 エアロゾル発生器
67 高圧ガス供給源
68 マスフロー制御器
69 パイプライン
71 基板
72 成膜体層
73 圧粉体層
P 最も膜厚の厚い点を基板に投影した点
DESCRIPTION OF SYMBOLS 11 Nozzle 13 Raw material fine particle ejected from nozzle 31 Substrate 32 Film formed 33 Nozzle 34 Nozzle opening 35 Raw material fine particle ejected from nozzle opening 44 36 Form of film forming body 37 Equivalent film thickness 61 Deposited film Substrate 62 XY stage 63 Nozzle 64 Deposition chamber 65 Classifier 66 Aerosol generator 67 High-pressure gas supply source 68 Mass flow controller 69 Pipeline 71 Substrate 72 Deposition body layer 73 Green compact layer P Projected point

Claims (3)

原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子をノズルを通して加速して被堆積基板表面に向けて噴射せしめることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であって、該ノズルから噴射された原料微粒子の該被堆積基板の被堆積表面への入射角度を変化させつつ成膜することを特徴とするエアロゾルデポジション法による成膜体の形成方法。   An aerosol deposition method in which raw material fine particles are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a nozzle and sprayed toward the surface of the substrate to be deposited to form a film formation in a decompression chamber. A method for forming a film-forming body by an aerosol deposition method, wherein film formation is performed while changing an incident angle of raw material fine particles ejected from the nozzle onto a deposition surface of the deposition substrate. 該入射角度の変化が連続的かつ周期的であることを特徴とする請求項1記載のエアロゾルデポジション法による成膜体の形成方法。   2. The method of forming a film-forming body by an aerosol deposition method according to claim 1, wherein the change in the incident angle is continuous and periodic. 該入射角度の変化が間歇的かつ周期的であることを特徴とする請求項1記載のエアロゾルデポジション法による成膜体の形成方法。   2. The method of forming a film-forming body by an aerosol deposition method according to claim 1, wherein the change in the incident angle is intermittent and periodic.
JP2006068420A 2006-03-13 2006-03-13 Method for forming film-deposited body by aerosol deposition method Pending JP2009132944A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2006068420A JP2009132944A (en) 2006-03-13 2006-03-13 Method for forming film-deposited body by aerosol deposition method
PCT/JP2007/054789 WO2007105674A1 (en) 2006-03-13 2007-03-12 Method for fabricating film-formed body by aerosol deposition
TW096108518A TW200741032A (en) 2006-03-13 2007-03-13 Method for fabricating film-formed body by aerosol deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068420A JP2009132944A (en) 2006-03-13 2006-03-13 Method for forming film-deposited body by aerosol deposition method

Publications (1)

Publication Number Publication Date
JP2009132944A true JP2009132944A (en) 2009-06-18

Family

ID=38509495

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068420A Pending JP2009132944A (en) 2006-03-13 2006-03-13 Method for forming film-deposited body by aerosol deposition method

Country Status (3)

Country Link
JP (1) JP2009132944A (en)
TW (1) TW200741032A (en)
WO (1) WO2007105674A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060309A1 (en) 2010-11-02 2012-05-10 日本碍子株式会社 Crystal production method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3265481B2 (en) * 1999-04-23 2002-03-11 独立行政法人産業技術総合研究所 Low temperature molding of brittle material ultrafine particles
JP3740523B2 (en) * 1999-05-21 2006-02-01 独立行政法人産業技術総合研究所 Ultrafine particle material flattening method
JP4075745B2 (en) * 2003-09-02 2008-04-16 Toto株式会社 Composite structure manufacturing equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012060309A1 (en) 2010-11-02 2012-05-10 日本碍子株式会社 Crystal production method
US9663871B2 (en) 2010-11-02 2017-05-30 Ngk Insulators, Ltd. Method for forming a single crystal by spraying the raw material onto a seed substrate

Also Published As

Publication number Publication date
WO2007105674A1 (en) 2007-09-20
TW200741032A (en) 2007-11-01

Similar Documents

Publication Publication Date Title
Lee et al. Growth process of α‐Al2O3 ceramic films on metal substrates fabricated at room temperature by aerosol deposition
US9180519B2 (en) Three-dimensional nanostructures and method for fabricating the same
KR101110371B1 (en) Plasma resistant crystal ceramic coating film and manufacturing method of the same
CN102105621B (en) Ceramic coating with plasma resistance
JP2010145158A (en) Method for confirming micro phase separation structure
CN1837406A (en) Applying bond coat to engine components using cold spray
TW200949013A (en) Ceramic sprayed member, making method, abrasive medium for use therewith
Lee et al. Thin film coatings of WO 3 by cold gas dynamic spray: A technical note
JP2005217350A (en) Member for semiconductor production system having plasma resistance and its production process
JP2009132945A (en) Method for forming film-formed body by aerosol deposition process
JP2009132944A (en) Method for forming film-deposited body by aerosol deposition method
JP2008111154A (en) Method for forming coating film
JP3897623B2 (en) Composite structure manufacturing method
JP2007246943A (en) Method for making body having formed from brittle material by aerosol deposition method
JP2007320797A (en) Composite structure and its manufacturing method
Jeon et al. Fabrication of complex 3-dimensional patterned structures on a∼ 10 nm scale from a single master pattern by secondary sputtering lithography
JP2005279953A (en) Ceramic structure and its manufacturing method
Choi et al. Nanoscale patterning and welding by solvent-free dry particle spray and focused ion beam
KR101336755B1 (en) Thin film coating method of hard metal
JP2008029977A (en) Aerosol discharge nozzle and coating-film forming device
CN112366127B (en) Atmospheric pressure low-temperature plasma jet processing method with solid mask focusing and application
Shinoda et al. Aerosol Deposition Method
JP2003073855A (en) Method for making body having film formed from fine particle of brittle material at low temperature
JP2008069399A (en) Film deposition method
JP2007246942A (en) Method for making body having film formed by aerosol deposition method