JP2007246942A - Method for making body having film formed by aerosol deposition method - Google Patents

Method for making body having film formed by aerosol deposition method Download PDF

Info

Publication number
JP2007246942A
JP2007246942A JP2006068414A JP2006068414A JP2007246942A JP 2007246942 A JP2007246942 A JP 2007246942A JP 2006068414 A JP2006068414 A JP 2006068414A JP 2006068414 A JP2006068414 A JP 2006068414A JP 2007246942 A JP2007246942 A JP 2007246942A
Authority
JP
Japan
Prior art keywords
fine particles
film
raw material
material fine
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006068414A
Other languages
Japanese (ja)
Inventor
Yoshitsugu Miura
義從 三浦
Yoshitaka Yoneda
嘉隆 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hoya Corp
Original Assignee
Hoya Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corp filed Critical Hoya Corp
Priority to JP2006068414A priority Critical patent/JP2007246942A/en
Publication of JP2007246942A publication Critical patent/JP2007246942A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Other Surface Treatments For Metallic Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for making a film formed body consisting of oxides of high optical transmittance by an aerosol deposition method. <P>SOLUTION: Surface layers of raw fine particles consisting of oxides are turned to be in an oxygen-want state, and a carrier gas having the oxidizing property is used to promote the cohesion between particles generated at the time of substrate collision/cracking of the raw fine particles. Thereby, generation of voids is suppressed, the denseness of a film deposition body is enhanced, and its transmittance is enhanced. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、エアロゾルデポジション法を用いて、光学的に透明な酸化物成膜体を形成する方法に関する。   The present invention relates to a method of forming an optically transparent oxide film using an aerosol deposition method.

エアロゾルデポジション法(以下、AD法と記す)は、粒径が数十nm〜数μmのセラミックスあるいは金属の微粒子から成る原料をガスと混合してエアロゾル化し、ノズルを通して基板に噴射して、被膜を形成する技術である。近年、AD法は、低基板温度で、かつ高成膜速度で、原料である微粒子と同様の結晶構造を有する緻密な被膜が形成できる方法として着目されている。   In the aerosol deposition method (hereinafter referred to as AD method), a raw material composed of ceramic or metal fine particles having a particle size of several tens of nanometers to several μm is mixed with gas to form an aerosol, which is sprayed onto a substrate through a nozzle. Is a technology to form In recent years, the AD method has attracted attention as a method capable of forming a dense film having a crystal structure similar to that of fine particles as a raw material at a low substrate temperature and at a high film formation rate.

AD法を用いた成膜装置について図2を用いて説明する。図2は、成膜装置の基本構成を示した概略図である。図中、21は被成膜基板、22は被成膜基板21を移動せしめるXYステージ、23はノズル、24は成膜チャンバ、25は分級器、26はエアロゾル発生器、27は高圧ガス供給源、28はマスフロー制御器、29はパイプライン、図中矢印は基板走査方向を模式的に示したものである。セラミックスあるいは金属からなる原料微粒子は、エアロゾル発生器26の内部でマスフロー制御器28を介して供給される搬送ガス(図示せず)と混合されてエアロゾル化される。成膜チャンバ24の内部は、真空ポンプ(図示せず)で〜50Pa程度に減圧されており、この圧力とエアロゾル発生器26内部の圧力との差圧によって生じるガス流によってエアロゾル化された原料微粒子は、分級器25を介して成膜チャンバ24内に導かれ、ノズル23を通して加速、被成膜基板21に噴射される。ガスによって搬送された原料微粒子は、1mm以下の微小開口のノズルを通すことで数百m/sまでに加速される。   A film forming apparatus using the AD method will be described with reference to FIG. FIG. 2 is a schematic diagram showing the basic configuration of the film forming apparatus. In the figure, 21 is a deposition substrate, 22 is an XY stage for moving the deposition substrate 21, 23 is a nozzle, 24 is a deposition chamber, 25 is a classifier, 26 is an aerosol generator, and 27 is a high-pressure gas supply source. , 28 is a mass flow controller, 29 is a pipeline, and arrows in the figure schematically show the substrate scanning direction. Raw material fine particles made of ceramics or metal are mixed with a carrier gas (not shown) supplied via a mass flow controller 28 in the aerosol generator 26 to be aerosolized. The inside of the film forming chamber 24 is depressurized to about 50 Pa by a vacuum pump (not shown), and the raw material fine particles aerosolized by the gas flow generated by the differential pressure between this pressure and the pressure inside the aerosol generator 26. Is introduced into the film forming chamber 24 through the classifier 25, accelerated through the nozzle 23, and sprayed onto the film formation substrate 21. The raw material fine particles conveyed by the gas are accelerated up to several hundred m / s by passing through a nozzle having a minute opening of 1 mm or less.

加速された原料微粒子は被成膜基板21に衝突し、その運動エネルギーは一気に解放され、皮膜が形成されることになる。しかし、加速された原料微粒子が有する運動エネルギーが全て基板に衝突した原料微粒子の温度上昇に費やされたとしても、その温度は、例えばセラミックスの焼結に必要な温度等と比べると一桁程度低く、緻密な成膜体が得られるメカニズムについては不明な点が多い。しかし、その成膜過程には、原料微粒子の基板衝突時に発生する破砕が重要な役割担っていると考えられている。なお、“原料微粒子の破砕”とは、基板に飛来した原料微粒子自体の破砕と、既に基板表面に付着している原料微粒子の破砕の両者を意味する。   The accelerated raw material fine particles collide with the deposition target substrate 21, and the kinetic energy is released at a stretch, so that a film is formed. However, even if all the kinetic energy of the accelerated raw material fine particles is spent on raising the temperature of the raw material fine particles that have collided with the substrate, the temperature is about an order of magnitude compared to the temperature necessary for sintering ceramics, for example. There are many unclear points about the mechanism by which a low and dense film body can be obtained. However, it is considered that the crushing generated at the time of substrate collision of raw material fine particles plays an important role in the film forming process. Note that “crushing of raw material fine particles” means both crushing of raw material fine particles that have come to the substrate and crushing of raw material fine particles that have already adhered to the substrate surface.

すなわち、特開2003−73855号公報においては、脆性材料から成る原料微粒子の場合、その微粒子の平均粒径が50nm以上で、かつその形状が非球形の不定形形状で、少なくとも一カ所以上、角を持つ形状とすることにより、当該角の部分に基板衝突時の衝撃力が集中し、原料微粒子の破砕が促進される結果、緻密な成膜体が得られることが開示されている。   That is, in Japanese Patent Application Laid-Open No. 2003-73855, in the case of raw material fine particles made of a brittle material, the average particle diameter of the fine particles is 50 nm or more, and the shape thereof is an aspherical irregular shape, at least at one or more corners. It is disclosed that a dense film-formed body can be obtained as a result of having a shape having, because the impact force at the time of substrate collision is concentrated on the corner portion and the crushing of the raw material fine particles is promoted.

また、“Influence of Carrier Gas Conditions on Electrical and Optical Properties of Pb(Zr,Ti)O Thin Films Prepared by Aerosol Deposition Method.”、Jpn.J.Appl.Phys.Vol.40、5528〜5532頁(2001)には搬送ガスの種類を適当に選定することにより、光学的にほぼ透明な10μm厚のPZT(PbZrTiO)成膜体が形成されることも報告されている。
特開2003−73855号公報 Jpn.J.Appl.Phys.Vol.40、5528〜5532頁(2001)
Also, “Influence of Carrier Gas Conditions on Electrical and Optical Properties of Pb (Zr, Ti) O 3 Thin Films Prepared by Aerosol Deposition.” J. et al. Appl. Phys. Vol. 40, 5528-5532 (2001), it is also reported that an optically transparent 10 μm thick PZT (PbZrTiO 3 ) film is formed by appropriately selecting the type of carrier gas. .
JP 2003-73855 A Jpn. J. et al. Appl. Phys. Vol. 40, 5528-5532 (2001)

しかし、我々のAD法による膜厚の大きい酸化物成膜体を形成するための系統的な検討の結果、〜10μm程度の成膜体においては、比較的良好な光透過性を示すものでも、それ以上の膜厚では徐々に光透過性が損なわれ、例えば〜50μm程度を超える膜厚の成膜体においては、殆ど光を透過しない、と云う問題点があることが判明した。   However, as a result of systematic examination for forming an oxide film with a large film thickness by our AD method, a film with a thickness of about 10 μm shows a relatively good light transmittance. When the film thickness is larger than that, the light transmittance is gradually impaired. For example, it has been found that there is a problem that almost no light is transmitted in a film-formed body having a film thickness exceeding about 50 μm.

上記課題を解決するために、
本発明により提供される第1の手段は、
酸化物から成る原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子をノズルを通して加速して被堆積基板表面に向けて噴射せしめることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であって、該原料微粒子の表面が酸素不足の状態にあり、かつ該搬送ガスが酸化性を有することを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
To solve the above problem,
The first means provided by the present invention include:
The raw material fine particles made of oxide are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a nozzle and jetted toward the surface of the deposition substrate to form a film-formed body in a reduced pressure chamber. An aerosol deposition method, in which the surface of the raw material fine particles is in an oxygen-deficient state, and the carrier gas has an oxidizing property.

また、本発明により提供される第2の手段は、
前記第1の手段において、該原料微粒子の表面における酸素不足の状態は、該原料微粒子を還元性雰囲気中で熱処理することによって形成されることを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
The second means provided by the present invention includes
In the first means, the oxygen-deficient state on the surface of the raw material fine particles is formed by heat-treating the raw material fine particles in a reducing atmosphere. Is the method.

また、本発明により提供される第3の手段は、
前記第1又は第2の手段において、該搬送ガスが酸素を含むことを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
The third means provided by the present invention includes
In the first or second means, the carrier gas contains oxygen, and is a method of forming a film formation by an aerosol deposition method.

更に、本発明により提供される第4の手段は、
前記第1乃至第3いずれかの手段において、該成膜体が可視光領域、若しくは近赤外光領域において光透過性を有することを特徴とするエアロゾルデポジション法による成膜体の形成方法である。
Furthermore, the fourth means provided by the present invention includes:
In any one of the first to third means, the film forming body has a light transmission property in a visible light region or a near infrared light region. is there.

AD法で形成された膜であって、比較的膜厚の薄い段階(〜7μm)においては、良好な光透過性を示すが、膜厚が厚くなるにつれて光透過性が低くなる酸化物成膜体の組織を電子顕微鏡で観察した結果、膜厚の薄い段階では、緻密な成膜体が形成されており、結晶粒界に気孔の存在が殆ど認められないが、膜厚の増加と共に、結晶粒界に気孔の存在が認められる傾向にあることが明らかとなった。   An oxide film formed by the AD method, which exhibits good light transmission at a relatively thin stage (˜7 μm), but the light transmission decreases as the film thickness increases. As a result of observing the structure of the body with an electron microscope, a dense film was formed at the stage where the film thickness was thin. Almost no pores were observed at the crystal grain boundaries. It became clear that the presence of pores at the grain boundaries tended to be observed.

すなわち、本発明は、酸化物から成る原料微粒子の表面を酸素不足の状態にすることにより、その化学的活性度を増加せしめ、当該原料微粒子の基板衝突時に解放されるエネルギー(原料微粒子の有する運動エネルギーのみならず、原料微粒子の破砕によって解放されるエネルギーも含む)によって誘発される粒間結合を促進し、気孔の発生を阻止せんとするものである。   That is, the present invention increases the chemical activity by making the surface of the raw material fine particles made of oxide in an oxygen-deficient state, and releases the energy (movement of the raw material fine particles) when the raw material fine particles collide with the substrate. It promotes intergranular bonding induced by not only energy but also energy released by crushing raw material fine particles), and prevents the generation of pores.

本発明により、AD法を用いて超50μm厚で光透過性の良好な酸化物から成る成膜体を安定して形成することが可能となる。   According to the present invention, it is possible to stably form a film-formed body made of an oxide having an ultra-thickness of 50 μm and good light transmittance using the AD method.

以下、本発明の実施の形態について、実施例を用いて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail using examples.

原料微粒子として平均粒径が0.8μmのPZT(PbZr0.52Ti0.48)粒子を用いた。当該原料微粒子を、まず1000℃の酸素雰囲気下で6時間熱処理を行った後、後述する条件下で、水素雰囲気下で熱処理を行った。水素雰囲気下での熱処理後、搬送ガスとして酸素を用いて、50μm厚のPZTから成る成膜体を形成した。ノズルのノズル開口は、5nm×0.3nmで、用いた基板は石英ガラスである。搬送ガス流量は、4l/minで、このときノズルから噴射されたPZT微粒子の基板衝突速度は、240m/sで、その堆積速度は10μm/minであった。 PZT (PbZr 0.52 Ti 0.48 O 3 ) particles having an average particle diameter of 0.8 μm were used as the raw material fine particles. The raw material fine particles were first heat-treated in an oxygen atmosphere at 1000 ° C. for 6 hours, and then heat-treated in a hydrogen atmosphere under the conditions described later. After heat treatment in a hydrogen atmosphere, a film-formed body made of PZT having a thickness of 50 μm was formed using oxygen as a carrier gas. The nozzle opening of the nozzle is 5 nm × 0.3 nm, and the substrate used is quartz glass. The carrier gas flow rate was 4 l / min. At this time, the substrate collision speed of the PZT fine particles ejected from the nozzle was 240 m / s, and the deposition speed was 10 μm / min.

図1に、PZT原料微粒子の水素雰囲気下での熱処理条件(熱処理温度と熱処理時間)と形成された50μm厚のPZT成膜体の光透過率との関係を示す。測定波長は800nmとした。図中、〇(白丸)印は透過率が50%以上のPZT成膜体が得られた熱処理時間と熱処理温度を示し、●(黒丸)印は、透過率が50%以下のPZT成膜体が得られた熱処理温度と熱処理時間を示す。また、図中破線は、それ等の境界を概略的に示した線である。   FIG. 1 shows the relationship between the heat treatment conditions (heat treatment temperature and heat treatment time) of the PZT raw material fine particles in a hydrogen atmosphere and the light transmittance of the formed PZT film having a thickness of 50 μm. The measurement wavelength was 800 nm. In the figure, ◯ (white circle) indicates the heat treatment time and heat treatment temperature at which a PZT film having a transmittance of 50% or more was obtained, and ● (black circle) indicates a PZT film having a transmittance of 50% or less. Shows the heat treatment temperature and heat treatment time obtained. Moreover, the broken line in the figure is a line schematically showing the boundaries thereof.

なお、図中、原点における●(黒丸)印は、水素雰囲気中で熱処理を施さなかった場合である。   In the figure, the ● (black circle) mark at the origin is the case where heat treatment was not performed in a hydrogen atmosphere.

原料微粒子として平均粒径が0.7μmのYIG(YFe12)粒子を用いた。実施例1と同様に、当該原料微粒子を、まず1000℃の酸素雰囲気下で6時間熱処理を行った後、後述する条件下で、水素雰囲気下で熱処理を行った。水素雰囲気下での熱処理後、実施例1と同様の条件で、50μm厚のYIGから成る成膜体を形成した。 YIG (Y 3 Fe 5 O 12 ) particles having an average particle diameter of 0.7 μm were used as the raw material fine particles. As in Example 1, the raw material fine particles were first heat-treated in an oxygen atmosphere at 1000 ° C. for 6 hours, and then heat-treated in a hydrogen atmosphere under the conditions described later. After heat treatment under a hydrogen atmosphere, a film-formed body made of YIG having a thickness of 50 μm was formed under the same conditions as in Example 1.

YIGの場合、元来可視光領域では光を透過しないため、波長:1.55μmの赤外光を用いて、成膜した50μm厚のYIG成膜体の光透過率を測定し、水素雰囲気下での熱処理条件との関係求めた。その結果、材料が異なっているにも拘わらず、ほぼ図1に示した熱処理条件と同様の条件で、透過率が50%以上のYIG成膜体が得られた。   In the case of YIG, since light is not originally transmitted in the visible light region, the light transmittance of the deposited YIG film with a thickness of 50 μm is measured using infrared light having a wavelength of 1.55 μm. The relationship with the heat treatment conditions was obtained. As a result, a YIG film having a transmittance of 50% or more was obtained under substantially the same conditions as the heat treatment conditions shown in FIG.

以上、本発明について実施例を用いて詳細に説明したが、本発明は実施例に記載した原料微粒子、あるいは成膜体材料に限られず、その属性として光透過性を有する酸化物材料に対して適用可能なものである。また、原料微粒子の表面に酸素不足層を形成するための還元性雰囲気として、実施例においては水素を用いる場合を記載したが、本発明は何等水素を用いる場合に限定されず、原料微粒子の材料との関係において、その熱処理温度で還元性を示す雰囲気、例えば窒素雰囲気等を適宜選定可能である。更に、本実施例では、酸化性雰囲気として、酸素の場合についてのみ説明したが、当該雰囲気についても、何等酸素に限定されるものではなく、原料微粒子、あるいは成膜体材料との関係によって、空気、あるいは空気と酸素との混合雰囲気等適宜選定可能である。   As mentioned above, although this invention was demonstrated in detail using the Example, this invention is not restricted to the raw material microparticles | fine-particles described in the Example, or the film-forming body material, It is with respect to the oxide material which has a light transmittance as the attribute. Applicable. Moreover, although the case where hydrogen is used in the examples as the reducing atmosphere for forming the oxygen-deficient layer on the surface of the raw material fine particles has been described, the present invention is not limited to the case where hydrogen is used at all. Therefore, an atmosphere exhibiting reducibility at the heat treatment temperature, such as a nitrogen atmosphere, can be appropriately selected. Furthermore, in the present embodiment, only the case of oxygen was described as the oxidizing atmosphere, but the atmosphere is not limited to oxygen at all, and the air may vary depending on the relationship between the raw material fine particles or the film forming material. Alternatively, a mixed atmosphere of air and oxygen can be selected as appropriate.

本発明により成る成膜方法は、AD法を用いて、光透過性を有する膜厚の厚い成膜体を形成する上で有用であり、係る成膜体を用いた部品、材料に係る産業分野において利用可能である。   The film forming method according to the present invention is useful for forming a light-transmitting thick film forming body using the AD method, and industrial fields related to parts and materials using the film forming body. Is available in

熱処理条件と光透過率との関係を示す図である。It is a figure which shows the relationship between heat processing conditions and light transmittance. AD法を用いた成膜装置の基本構成を示した概略図である。It is the schematic which showed the basic composition of the film-forming apparatus using AD method.

符号の説明Explanation of symbols

21 被成膜基板
22 XYステージ
23 ノズル
24 成膜チャンバ
25 分級器
26 エアロゾル発生器
27 高圧ガス供給源
28 マスフロー制御器
29 パイプライン
21 Deposition substrate 22 XY stage 23 Nozzle 24 Deposition chamber 25 Classifier 26 Aerosol generator 27 High pressure gas supply source 28 Mass flow controller 29 Pipeline

Claims (4)

酸化物から成る原料微粒子を搬送ガスと混合してエアロゾル化し、該搬送ガスと共に、原料微粒子をノズルを通して加速して被堆積基板表面に向けて噴射せしめることにより減圧チャンバ内で成膜体を形成するエアロゾルデポジション法であって、該原料微粒子の表面が酸素不足の状態にあり、かつ該搬送ガスが酸化性を有することを特徴とするエアロゾルデポジション法による成膜体の形成方法。   The raw material fine particles made of oxide are mixed with a carrier gas to form an aerosol, and together with the carrier gas, the raw material fine particles are accelerated through a nozzle and jetted toward the surface of the substrate to be deposited to form a film-formed body in the reduced pressure chamber. A method for forming a film-forming body by an aerosol deposition method, wherein the surface of the raw material fine particles is in an oxygen-deficient state and the carrier gas has oxidizing properties. 該原料微粒子の表面における酸素不足の状態は、該原料微粒子を還元性雰囲気中で熱処理することによって形成されることを特徴とする請求項1記載のエアロゾルデポジション法による成膜体の形成方法。   The method for forming a film-forming body by an aerosol deposition method according to claim 1, wherein the oxygen-deficient state on the surface of the raw material fine particles is formed by heat-treating the raw material fine particles in a reducing atmosphere. 該搬送ガスが酸素を含むことを特徴とする請求項1又は2に記載のエアロゾルデポジション法による成膜体の形成方法。   The method for forming a film-forming body by the aerosol deposition method according to claim 1, wherein the carrier gas contains oxygen. 該成膜体が可視光領域、若しくは近赤外光領域において光透過性を有することを特徴
請求項1乃至3いずれかに記載のエアロゾルデポジション法による成膜体の形成方法。
The method for forming a film-forming body by the aerosol deposition method according to claim 1, wherein the film-forming body has light transmittance in a visible light region or a near infrared light region.
JP2006068414A 2006-03-13 2006-03-13 Method for making body having film formed by aerosol deposition method Pending JP2007246942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006068414A JP2007246942A (en) 2006-03-13 2006-03-13 Method for making body having film formed by aerosol deposition method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006068414A JP2007246942A (en) 2006-03-13 2006-03-13 Method for making body having film formed by aerosol deposition method

Publications (1)

Publication Number Publication Date
JP2007246942A true JP2007246942A (en) 2007-09-27

Family

ID=38591560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006068414A Pending JP2007246942A (en) 2006-03-13 2006-03-13 Method for making body having film formed by aerosol deposition method

Country Status (1)

Country Link
JP (1) JP2007246942A (en)

Similar Documents

Publication Publication Date Title
Iwasawa et al. Plasma‐resistant dense yttrium oxide film prepared by aerosol deposition process
CN106029948B (en) Method for forming ceramic coating with improved plasma resistance and ceramic coating formed thereby
Kim et al. Effects of interlayer roughness on deposition rate and morphology of aerosol-deposited Al2O3 thick films
JP2005240171A (en) Corrosion resistant member and its production method
TW201326463A (en) Thermal spray powder and coating containing rare earth element and member with the coating
TW201329287A (en) Thermal spray powder and coating containing rare earth element and member with the coating
JP2007258634A5 (en)
TWI375734B (en) Ceramic coating material for thermal spray on the parts of semiconductor processing devices and fabrication method and coating method thereof
JP2005158933A (en) Member of manufacturing apparatus of semiconductor or liquid crystal, and manufacturing method thereof
KR102499540B1 (en) Member for semiconductor manufacturing device and semiconductor manufacturing device with member for semiconductor manufacturing device and display manufacturing device
JP2008081775A (en) Method for forming alumina coating film
JP2008291291A (en) Brittle material film structure
JP5057457B2 (en) Magneto-optical material and manufacturing method thereof
JP3897631B2 (en) Composite structure and manufacturing method thereof
JP2021077900A (en) Member for semiconductor manufacturing device, semiconductor manufacturing device including the member, and display manufacturing device
JP2007246942A (en) Method for making body having film formed by aerosol deposition method
TWI496950B (en) A blackening method of white fluorides thermal spray coating film and fluorides thermal spray coating film coated member having black layer on the surface
JP2009132945A (en) Method for forming film-formed body by aerosol deposition process
JP2008111154A (en) Method for forming coating film
JP2003213451A (en) Method of fabricating composite structure
JP2007320797A (en) Composite structure and its manufacturing method
Choi et al. Plasma resistant glass (PRG) for reducing particulate contamination during plasma etching in semiconductor manufacturing: A review
Lebedev et al. Optically transparent, dense α-Al2O3 thick films deposited on glass at room temperature
JP2007246943A (en) Method for making body having formed from brittle material by aerosol deposition method
CN110465203A (en) The method for improving the adhesive force of anti-pollution film