JP3897631B2 - Composite structure and manufacturing method thereof - Google Patents
Composite structure and manufacturing method thereof Download PDFInfo
- Publication number
- JP3897631B2 JP3897631B2 JP2002108799A JP2002108799A JP3897631B2 JP 3897631 B2 JP3897631 B2 JP 3897631B2 JP 2002108799 A JP2002108799 A JP 2002108799A JP 2002108799 A JP2002108799 A JP 2002108799A JP 3897631 B2 JP3897631 B2 JP 3897631B2
- Authority
- JP
- Japan
- Prior art keywords
- transparent
- gas
- fine particles
- film
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Other Surface Treatments For Metallic Materials (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、基材表面に脆性材料からなる透明な多結晶構造物を形成した複合構造物に関し、具体的には光学素子などの透光性部材に関する。
【0002】
【従来の技術】
酸化物などの脆性材料は、その特有のエネルギーバンド構造により、可視光の波長領域(ここでは380〜760nmと規定する)の光を透過する特徴を有している。
【0003】
しかしながら、単結晶やアモルファスの場合はその特徴が発現することが多いが、多結晶体の場合は結晶同士の界面や気泡の存在、不純物その他の理由で、入射した光が吸収、散乱、反射されて透明性を確保することが難しい。
【0004】
また、基板上に多結晶膜を形成するには、数十〜数百nmの多結晶薄膜についてはCVDやゾルゲル法が用いられ、数μm以上の厚膜になると、溶射法が一般に用いられ、更に溶射法の他に、最近ではガスデポジション法(加集誠一郎:金属 1989年1月号)や静電微粒子コーティング法(井川 他:昭和52年度精密機械学会秋季大会学術講演会前刷)も被膜形成法として提案されている。
【0005】
ガスデポジション法は金属やセラミックス等の超微粒子をガス攪拌にてエアロゾル化し、微小なノズルを通して加速せしめ、基材表面に超微粒子の圧粉体層を形成させ、これを加熱して焼成させることにより被膜を形成する。静電微粒子コーティング法は微粒子を帯電させ電場勾配を用いて加速せしめ、この後はガスデポジション法と同様の基本原理で被膜形成を行う。
【0006】
また、上記のガスデポジション法あるいは静電微粒子コーティング法を改良した先行技術として、特開平8−81774号公報、特開平10−202171号公報、特開平11−21677号公報或いは特開2000−212766号公報に開示されるものが知られている。
【0007】
特開平8−81774号公報に開示される技術は、融点の異なる2種類の金属または有機物を、抵抗線加熱、電子ビーム加熱、高周波誘導加熱、スパッタリング、アークプラズマ等で加熱蒸発させ、この加熱蒸発により粒子径が0.1μm以下の表面が非常に活性な超微粒子とし、この超微粒子を融点の異なる金属ごとにノズルを用い、3次元立体形状の断面CADデータに基づいて基板に吹き付け、これを繰り返すことで融点の異なる2種類の金属からなる3次元立体形状物を形成し、この後、2種類の金属の融点の中間温度で3次元立体形状物を加熱することで低融点金属部分を溶融除去し、高融点金属部分のみを残すようにしている。
【0008】
特開平10−202171号公報に開示される技術は、前記した抵抗線加熱、電子ビーム加熱、高周波誘導加熱、スパッタリング、アークプラズマ等で加熱蒸発することで得た超微粒子を基板に向けて噴射するにあたり、マスクの開口を通して行うことで、肩だれのない3次元立体形状物を得るようにしている。
【0009】
特開平11−21677号公報に開示される技術は、前記した超微粒子を含むエアロゾルを搬送する際あるいは金属やセラミックスを加熱蒸発させる際に、超微粒子同士が凝集して大きな粒子となるのを防止するために、中間の経路に分級装置を配置するようにしている。
【0010】
特開2000−212766号公報は、本発明者らが提案したものであり、この公報には加熱手段による加熱なくして超微粒子の膜を形成する方法が開示されている。具体的には、粒径が10nm〜5μmの超微粒子(前記先行技術と異なり加熱蒸発させて得たものではない)に、イオンビーム、原子ビーム、分子ビーム或いは低温プラズマなどを照射することにより、超微粒子を溶融せしめることなく活性化し、この状態のまま基板に3m/sec〜300m/secの速度で吹き付けることで、超微粒子相互の結合を促進して摺接層を形成するようにしたものである。
【0011】
【発明が解決しようとする課題】
CVDやゾルゲル法などで厚みが厚い構造物を形成するのは製膜に長時間を要し且つ膜にクラックが生じる。更に、溶射法による場合は膜中に数μm程度以上の比較的大きな気泡が残存してしまうこと、溶射ガンの電極からの銅やタングステンなどの電極材が膜中に微量に添加され、不純物となることなどから透光率の高い膜を形成することは困難である。
【0012】
また、ガスデポジション法あるいは静電微粒子コーティング法、特開平8−81774号公報、特開平10−202171号公報、特開平11−21677号公報或いは特開2000−212766号公報に開示される技術によっても、透明度の高い多結晶構造物を得ることができず且つ多結晶構造物の透光性を自在にコントロールすることができない。
【0013】
【課題を解決するための手段】
本発明は以下の知見に基づいてなされた。
即ち、延展性を持たない脆性材料(セラミックス)に機械的衝撃力を付加すると、結晶子同士の界面などの壁開面に沿って結晶格子のずれを生じたり、あるいは破砕される。そして、これらの現象が起こると、ずれ面や破面には、もともと内部に存在し別の原子と結合していた原子が剥き出しの状態となった新生面が形成される。この新生面の原子一層の部分は、もともと安定した原子結合状態から外力により強制的に不安定な表面状態に晒され、表面エネルギーが高い状態となる。この活性面が隣接した脆性材料表面や同じく隣接した脆性材料の新生面あるいは基板表面と接合して安定状態に移行する。外部からの連続した機械的衝撃力の付加は、この現象を継続的に発生させ、微粒子の変形、破砕などの繰り返しにより接合の進展、緻密化が行われ、脆性材料の透明層が形成される。
そして、更に上記機械的衝撃を搬送ガスにて脆性材料を基材に衝突させるようにした本発明の一態様を以後、微粒子ビーム堆積法と称する。またこの方法はエアロゾルデポジション法とも呼ばれる。この微粒子ビーム堆積法を用いて適当なガス種とガス流量条件、また使用する脆性材料微粒子の粒径などの各条件を組み合わせることによって、構造物の緻密化ひいては透明化が行われることを本発明者らは知見した。
【0014】
またヘリウムなどの放電を生じやすいガスを用いて構造物形成を行った場合には、形成中に放電現象が観察されることがあるが、このような場合で構造物の透明度が著しく劣化する例が見られた。従って放電を起こしにくいガスを用いて構造物形成を行うことは好ましい方法といえる。微粒子ビーム堆積法における構造物形成時の圧力は数〜数百kPaにあるが、この範囲ではガス種による火花電圧の大きさ関係はほぼ等しく、この電圧値の高低で気中放電が生じやすいか否かが論じられる。酸素や窒素、乾燥空気、炭酸ガスなどは気中放電が生じにくく、ヘリウムやネオン、アルゴンなどの希ガスは気中放電を生じやすいと言える。
本件でいう気中放電の生じにくいガスとは、多結晶脆性材料構造物の形成時にその近傍で放電現象が観察されない組成のガスのことを呼び、工業利用上では実質的に酸素、窒素をその主成分とするガスのことをいう。
【0015】
ここで、本発明を理解する上で重要となる語句の解釈を以下に行う。
(多結晶)
本件では結晶子が接合・集積してなる構造体を指す。結晶子は実質的にそれひとつで結晶を構成しその径は通常5nm以上である。ただし、微粒子が破砕されずに透明な構造物中に取り込まれるなどの場合がまれに生じるが、実質的には多結晶である。
(結晶配向性)
本件では多結晶である透明な構造物中での結晶軸の配向具合を指し、配向性があるかないかは、一般には実質的に配向性のないと考えられる粉末X線回折などによって標準データとされたJCPDS(ASTM)データを指標として判断する。
透明な構造物中の脆性材料結晶を構成する物質をあげたこの指標における主要な回折3ピークのピーク強度を100%として、透明な構造物の同物質測定データ中、最も主要なピークのピーク強度をこれに揃えた場合に、他の2ピークのピーク強度が指標の値と比較して30%以内にそのずれが収まっている状態を、本件では実質的に配向性がないとする。
(界面)
本件では結晶子同士の境界を構成する領域を指す。
(粒界層)
界面あるいは焼結体でいう粒界に位置するある厚み(通常数nm〜数μm)を持つ層で、通常結晶粒内の結晶構造とは異なるアモルファス構造をとり、また場合によっては不純物の偏析を伴う。
(アンカー部)
本件の場合には、基材と透明な構造物の界面に形成された凹凸を指し、特に、予め基材に凹凸を形成させるのではなく、透明な構造物形成時に、元の基材の表面精度を変化させて形成される凹凸のことを指す。
(内部歪)
原料微粒子に含まれる格子歪のことで、X線回折測定におけるHall法を用いて算出される値であり、微粒子を十分にアニールした標準物質を基準として、そのずれを百分率表示する。
【0016】
本発明に係る複合構造物は、基材表面に透明な構造物が形成され、この透明な構造物は脆性材料からなり、多結晶であり、また結晶は実質的に結晶配向性がなく、また結晶同士の界面にはガラス層からなる粒界層が実質的に存在せず、更にその一部は基材表面に食い込むアンカー部となった構成である。
【0017】
上記複合構造物では、多結晶の構造内に、膜厚方向で20nm以上の大きさの空隙が実質的に存在しないことを特徴とする。
【0018】
空隙とは構造物内の気泡、ポアに相当するが、微粒子ビーム堆積法を用いた場合でも、構造物形成条件によっては、微粒子の衝突時、構造物形成時において十分に微粒子の破砕や変形が起こらず、微粒子が一次粒子の形をとどめたまま構造物に取り込まれるなどのことが起こる。このような場合には、取り込まれた一次粒子などとそのまわりの構造物との間に空隙が形成される。サブミクロン径の微粒子を使用するとこの空隙が大きい場合には数十nmの大きさで形成される。空隙(気相)と構造物の界面は、光の反射や散乱を引き起こすと考えられ、これが多数存在すると構造物の透明度を劣化させることとなる。一方、微粒子ビーム堆積法は膨大な量の微粒子を加速して繰り返し基材に衝突させて構造物を形成させるという手法から、どのような構造物形成条件を選んでも確率的にこのような空隙が形成される場合が存在する。従って適当な形成条件を選択して、極力透明度を保持する工夫をして実質的な対応することとなる。空隙が実質的に存在しないとは、例えば透過型電子顕微鏡のイメージから1μm四方の中に、膜厚方向で20nm以上の大きさの空隙が平均1ヶ以下の存在量であるなどの手法で判断するなどの方法が考えられる。
【0019】
上記複合構造物としては、基材も透明で、また前記透明な構造物の厚みは1μm以上で可視光透過率が80%以上であるものを含む。また、透明な構造物の構成材料としては酸化アルミニウムを主成分とするものが挙げられる。また透明な構造物の純度としては99%以上が好ましい。
【0020】
また、本件における可視光とは、380〜760nmの波長を持つ電磁波のことを指す。構造物の表面や界面での反射損失を考慮に入れない場合、入射光I0と透過光IにおいてI/I0を内部透過率と呼ぶが、これにはBeerの法則、
I/I0=exp(−ax)
ここで、a:吸光係数、x:光が構造物中を通過する距離
の関係があり、xに大きく依存する。
構造物が厚膜で形成される場合、膜厚方向での透光率が問題になる場合が多く、また透過率測定の場合もこの方向で行う。
また、本発明では微粒子ビーム堆積法で形成される実用的な膜厚である1μm以上の場合の透過率を取り上げたが、微粒子ビーム堆積法では数百μmほどの厚膜も形成することが可能である。
【0021】
また、基材としては可視光をほとんど透過させる石英ガラスなどが好ましいが、特に基材が透明でないものも本発明に含まれる。即ち、基材としては、ガラスの他に、金属、セラミックス、半金属あるいは有機化合物などが挙げられ、脆性材料としては酸化アルミニウム、酸化チタン、酸化亜鉛、酸化錫、酸化鉄、酸化ジルコニウム、酸化イットリウム、酸化クロム、酸化ハフニウム、酸化ベリリウム、酸化マグネシウム、酸化珪素などの酸化物、ダイヤモンド、炭化硼素、炭化珪素、炭化チタン、炭化ジルコニウム、炭化バナジウム、炭化ニオブ、炭化クロム、炭化タングステン、炭化モリブデン、炭化タンタルなどの炭化物、窒化硼素、窒化チタン、窒化アルミニウム、窒化珪素、窒化ニオブ、窒化タンタルなどの窒化物、硼素、硼化アルミニウム、硼化珪素、硼化チタン、硼化ジルコニウム、硼化バナジウム、硼化ニオブ、硼化タンタル、硼化クロム、硼化モリブデン、硼化タングステンなどの硼化物、あるいはこれらの混合物や多元系の固溶体、チタン酸バリウム、チタン酸鉛、チタン酸リチウム、チタン酸ストロンチウム、チタン酸アルミニウム、PZT、PLZTなどの圧電性・焦電性セラミックス、サイアロン、サーメットなどの高靭性セラミックス、水酸アパタイト、燐酸カルシウムなどの生体適合性セラミックス、シリコン、ゲルマニウム、あるいはこれらに燐などの各種ドープ物質を添加した半金属物質、ガリウム砒素、インジウム砒素、硫化カドミウムなどの半導体化合物などが挙げられる。
【0022】
上記の複合構造物の製造方法としては、例えば、気中放電が生じにくいガス雰囲気中で、予め内部歪が付与された脆性材料微粒子を高速で基材に衝突させ、この衝突の衝撃によって前記脆性材料微粒子を変形または破砕し、この変形または破砕にて生じた活性な新生面を介して微粒子同士を再結合せしめて基材の表面に透明な構造物を形成する。
【0023】
例えば、ヘリウムやネオン、アルゴンなどの放電の生じやすいガス種と、生じにくいガス種を混合し、そのガス分圧を制御しつつ構造物形成を行うことにより所望の透過率を持つ膜を形成することが考えられる。透過率を制御することができれば、分光フィルターなどの波長選択性を持った光学部材への応用が見込まれる。
また、放電現象を極力抑えるようガス種、ガス圧を制御すれば、相当程度透明な膜が作製可能であることも示唆される。すなわち、ヘリウム、アルゴン、ネオンなどの希ガス類を極力排除したガス雰囲気下で脆性材料の微粒子を高速で基板に衝突させて多結晶構造物を形成させることにより、可視光域で透明な脆性材料多結晶膜を得ることができる。
【0024】
本発明方法にあっては、焼成を伴うことなく構造物を形成するため、粒成長を抑制して微細な結晶のまま止めておくことができ、ナノメートルレベルの結晶粒からなる多結晶体を形成することができる。
【0025】
透明膜の用途としては、光学センサーの防護透明板などの摺動を受ける部位で従来酸化アルミニウムなどの高硬度のバルクが使用されていた部品を、廉価なガラスで代替し、表面のみこの手法で透明脆性材料膜を形成させて耐摩耗性を向上させるなどのことが考えられる。
【0026】
【発明の実施の態様】
以下に本発明の実施の形態を添付図面に基づいて説明する。
(実施例1)
図1は、本発明に係る複合構造物の製造装置の一例を示す図であり、窒素、乾燥空気、ヘリウムの各種ガスボンベ11が、搬送管12を介してエアロゾル発生器13に連結され、さらに搬送管12を通じて構造物形成装置14内に10mm×0.4mmの長方形の開口を持つノズル15が配置される。ノズル15の先方にはXYステージ17に設置された石英ガラス基板16がノズル15に対向して10mmの間隔をあけて配置される。構造物形成室14は排気ポンプ18に接続している。
【0027】
以上の構成からなる脆性材料構造物作製装置の作用を次に述べる。サブミクロン粒径、純度99.8%の酸化アルミニウム微粒子をエアロゾル発生器13内に充填した後、ガスボンベ11を開き、乾燥空気を流量3リットル/分で搬送管12を通じてエアロゾル発生器13に導入し、酸化アルミニウム微粒子をガス中に分散させたエアロゾルを発生させる。このエアロゾルを搬送管12を通じてさらに構造物形成室14の方向へ搬送し、高速に加速させつつノズル15より酸化アルミニウム微粒子を基板16に向けて噴射する。
【0028】
このときの酸化アルミニウム微粒子の速度は亜音速から音速程度まで加速されている。また構造物形成室14内の圧力は数kPaであった。ただし、構造物形成付近の圧力はガス噴射の影響によりこれより大きいものと思われる。十分に加速されて運動エネルギーを得たエアロゾル中の酸化アルミニウム微粒子は、基板16に衝突し、その衝撃のエネルギーにより細かく破砕されて、発生した微細断片粒子が基板16に接合し、さらに微細断片粒子同士が接合して緻密質の酸化アルミニウム構造物を形成する。基板16はXYステージ17により揺動され、所定の面積を持つ厚さ10μmの酸化アルミニウム膜(構造物)が形成された。排気ポンプの運転により構造物形成室は形成時には1kPa以下で低真空状態にある。このような操作をガスを乾燥空気だけでなく、窒素やヘリウムガスに切り替えて行い、各種ガス雰囲気下で構造物形成を行い同等膜厚の酸化アルミニウム膜を得た。
【0029】
図2は、このようにして得られた酸化アルミニウム膜の紫外から可視光波長領域での透過率を分光光度計で調べたものである。同じ7μmの膜厚で比較して、乾燥空気で形成した酸化アルミニウム膜は透過率が高く、可視光領域では80%以上の透過が見られる一方、ヘリウムガスを使用した場合においては、透過率が非常に低くなっていることがわかる。窒素ガスを使用して10μmの膜を形成した場合は、乾燥ガスのものとほぼ同じ透過率特性を示している。
【0030】
図3は、乾燥空気およびヘリウムガスを用いて形成した酸化アルミニウム膜の写真であり、乾燥空気を用いたものは(a)に示すようにほぼ透明のものが得られ、ヘリウムガスで形成したものは(b)に示すように黒色を呈した不透明のものが得られる。
【0031】
ところで、ヘリウムガスを用いた場合で、酸化アルミニウム微粒子が基材16に衝突してまさに構造物形成が行われている領域近傍において発光現象(放電現象)が観察されていた。そこでこの光の波長を測定したのが図4である。図4は、図3で示した酸化アルミニウム膜の形成時の輝線スペクトルを調べたものである。(a)に示すように、乾燥空気では全く光放出が観察されていない一方、(b)に示すように、ヘリウムガス使用時においていくつものヘリウム固有の輝線が観察されている。
【0032】
更に、本発明者らは同じ粒径の脆性材料を用いた場合でも、形成される構造物の形成速度、達成膜厚に相違があり、これは粒子の内部歪に起因するとの結論を得た。
そこで、内部歪と同一の形成時間で達成された構造物の膜厚の関係について実験した結果を図5に示す。実験は、純度99.6%の酸化アルミニウム微粒子に遊星ミルを用いて粉砕処理を行い、微粒子のキャラクタリゼーションを変化させた後、超微粒子ビーム堆積法によりアルミニウム基板上に構造物を形成した。微粒子の内部歪はX線回折により測定し、歪量は同微粒子に熱エージングを施して内部歪を除去したものを0%として基準にした。
また、図5中のポイントA,B,Cにおける微粒子のSEM写真(日立製インレンズSEM S−5000)を図6、図7及び図8に示す。
【0033】
図5から1μmの膜厚を得るには0.01〜2.50%の内部歪があれば十分であることが分るが、安定した膜厚を得るには0.1〜2.0%の内部歪が好ましい。クラックと内部歪との関係は、内部歪がない場合には図6に示すようにクラックは発生しないが、内部歪が一定値以上、本件の場合には2.0%以上となると完全にクラックが形成されてしまい、さらには脱落した断片が表面に付着して図8に示すような再凝集状態となってしまう。
【0034】
このように微粒子に歪を与える粉砕処理は、微粒子にかかる粉砕のための衝撃を大きく与えることのできる粉砕手段を用いるのが好ましい。微粒子に比較的一様に大きな歪を付与することができるからである。このような粉砕手段としては、セラミックスの粉砕処理によく用いられるボールミルに比べて大きな重力加速度を与えることの出来る振動ミルやアトライタ、遊星ミルを用いるのが好ましく、とりわけボールミルに比べて格段に大きな重力加速度を与えることの出来る遊星ミルを用いることが最も好ましい。微粒子の状態に着目すれば、クラックは内部歪をキャンセルするものであるので、最も好ましいのは、クラックが生じる直前まで内部歪が高まっている微粒子ということになる。図7に示す状態は若干のクラックが生じているが、十分に内部歪が残されている。
【0035】
(実施例2)
実施例2では、別の事例として、透明な酸化アルミニウム構造物と白濁した不透明な酸化アルミニウム構造物の微細観察の結果について説明する。純度99.8%で粒径が0.6μm程度の酸化アルミニウム微粒子Aと純度99.9%以上で粒径が0.2μm程度の酸化アルミニウム微粒子Bを用いて、図1と同等の装置を用いて窒素ガスを搬送ガスとしていずれも流量7L/minで微粒子ビーム堆積法にてそれぞれ基板上に膜状の酸化アルミニウム構造物を4μm程度の膜厚で作製したところ、微粒子Aでは透明な構造物が得られ、微粒子Bでは不透明な構造物が得られた。このときに使用したノズルの開口の大きさは17mm×0.4mmであった。またこのときの構造物形成室内の圧力は100〜200Paであった。このときのこれらの構造物について日立製作所製透過型電子顕微鏡(TEM)H−9000UHRにより断面微細観察を行った。微粒子Aによる構造物のTEMイメージを図9に、微粒子Bによる構造物のTEMイメージを図10に示す。図の上下方向が膜厚方向に相当する。微粒子Aによる構造物は緻密で、数十nmの微細な結晶子からなっていることが見て取れる。それに対して微粒子Bによる構造物では、構造物中に微粒子Bの一次粒子と目される100nm程度の球状の粒子が混在していることが見て取れ、またこれら球状粒子の周囲には空隙が多数存在していることがわかる。このTEMイメージから空隙の膜厚方向の大きさが20nm以上ある場合が多いことが観察され、これら空隙が多数存在すると粒子と空隙との界面で光の散乱・反射を引き起こし、構造物が不透明となるものと思われる。
なお、粒径が小さい酸化アルミニウム微粒子Bにおいて100nm程度の球状粒子が混在して白濁したのは、運動エネルギーが小さく微粒子ビーム堆積法における結晶格子のずれや破砕が不十分であった為と考えられる。
【0036】
(実施例3)
次に構造物形成に伴って形成されたアンカー部について、図11に示す。尚、図11において、上部は製膜前の基板表面の凹凸を測定した結果を示し、下部は製膜後に脆性材料の膜を剥がした後の基板の表面すなわちアンカー部の凹凸を測定した結果を示す。
図1に示したものと同等の装置で、純度99.8%以上、サブミクロン粒径の酸化アルミニウム微粒子を窒素ガスと混合させてエアロゾルを発生させ、表面を鏡面に仕上げた真鍮基板に向けて、ガス流量7L/minの条件で噴射し、酸化アルミニウム膜を膜厚10μm程度で形成させた後、膜に引張り応力を与えて膜を基板より引き剥がしてアンカー部をむき出しにし、基板の表面粗さとアンカー部を日本真空技術株式会社製触針式表面形状測定器Dektak3030を用いて計測した。図11の上のプロファイルが構造物形成前の真鍮基板の表面プロファイルであり、下がアンカー部のプロファイルである。図より微粒子の衝突によりアンカー部が形成されている様子がわかる。また同表面形状測定器によりこれらの表面粗さRaは、スイープ距離200μmにおいて、基板表面が7.7nm、アンカー層が73.8nmであった。また基板として透明な材料であるガラスを用いた場合でも、基板と構造物との間に同様のアンカー部が確認された。
【0037】
【発明の効果】
以上に説明したように本発明によれば、ガラス等の基板表面に、脆性材料からなり、可視光透過率が高く、高硬度の多結晶構造体を設けることで、基材と透明構造物とが一体化した複合構造物を得ることができる。したがって、光学部品、機械部品、装飾品などに広く利用することができる。
【0038】
また、本発明によれば透明な構造物の可視光透過率を簡単且つ正確にコントロールすることが可能になり、その応用範囲は更に広くなる。
【図面の簡単な説明】
【図1】本発明に係る複合構造物の製造装置の一例を示す図
【図2】酸化アルミニウム膜の紫外から可視光波長領域での透過率を示すグラフ
【図3】(a)は乾燥空気使用時の多結晶構造体の透明度を示す写真、(b)はヘリウムガス使用時の多結晶構造体の透明度を示す写真
【図4】(a)は乾燥空気使用時の酸化アルミニウム膜の形成時の輝線スペクトル
(b)はヘリウムガス使用時の酸化アルミニウム膜の形成時の輝線スペクトル
【図5】脆性材料微粒子の内部歪と膜厚との関係を示すグラフ
【図6】図5のポイントAにおける微粒子のSEM写真
【図7】図5のポイントBにおける微粒子のSEM写真
【図8】図5のポイントCにおける微粒子のSEM写真
【図9】酸化アルミニウム微粒子Aを用いて形成した構造物の断面TEMイメージ写真
【図10】酸化アルミニウム微粒子Bを用いて形成した構造物の断面TEMイメージ写真
【図11】基板とアンカー部の凹凸を示す表面プロファイル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a composite structure in which a transparent polycrystalline structure made of a brittle material is formed on the surface of a base material, and specifically to a light-transmitting member such as an optical element.
[0002]
[Prior art]
A brittle material such as an oxide has a characteristic of transmitting light in the wavelength region of visible light (defined here as 380 to 760 nm) due to its unique energy band structure.
[0003]
However, in the case of a single crystal or amorphous, the characteristics often appear, but in the case of a polycrystal, incident light is absorbed, scattered, and reflected due to the existence of crystal interfaces, bubbles, impurities, and other reasons. It is difficult to ensure transparency.
[0004]
Further, in order to form a polycrystalline film on a substrate, a CVD or sol-gel method is used for a polycrystalline thin film of several tens to several hundreds nm, and when a thick film of several μm or more is used, a thermal spraying method is generally used. In addition to thermal spraying, recently the gas deposition method (Keishu Seiichiro: Metals, January 1989 issue) and electrostatic fine particle coating method (Igawa et al .: Preprint of the academic conference of the Japan Society for Precision Mechanics Autumn Showa 52) It has been proposed as a film forming method.
[0005]
In the gas deposition method, ultrafine particles such as metals and ceramics are aerosolized by gas stirring and accelerated through a minute nozzle to form a compact layer of ultrafine particles on the surface of the substrate, which is heated and fired. To form a coating. In the electrostatic fine particle coating method, fine particles are charged and accelerated using an electric field gradient, and thereafter a film is formed on the same basic principle as in the gas deposition method.
[0006]
Further, as prior arts improved from the above-described gas deposition method or electrostatic fine particle coating method, JP-A-8-81774, JP-A-10-202171, JP-A-11-21676, or JP-A-2000-212766. What is disclosed in the Gazette is known.
[0007]
In the technique disclosed in Japanese Patent Laid-Open No. 8-81774, two types of metals or organic substances having different melting points are heated and evaporated by resistance wire heating, electron beam heating, high frequency induction heating, sputtering, arc plasma, etc. By using a nozzle for each metal having a different melting point, the ultrafine particles are sprayed onto the substrate based on the cross-sectional CAD data of a three-dimensional shape. By repeating, a three-dimensional solid object composed of two types of metals having different melting points is formed, and then the low-melting point metal part is melted by heating the three-dimensional solid object at an intermediate temperature between the melting points of the two types of metals. It is removed to leave only the refractory metal part.
[0008]
The technique disclosed in Japanese Patent Application Laid-Open No. 10-202171 is for spraying ultrafine particles obtained by heating and evaporation using the resistance wire heating, electron beam heating, high frequency induction heating, sputtering, arc plasma, or the like toward the substrate. In this case, a three-dimensional object having no shoulder is obtained by performing through the opening of the mask.
[0009]
The technique disclosed in Japanese Patent Application Laid-Open No. 11-21677 prevents the ultrafine particles from aggregating into large particles when transporting the aerosol containing the ultrafine particles or when the metal or ceramic is heated and evaporated. In order to do so, a classifier is arranged in an intermediate path.
[0010]
Japanese Laid-Open Patent Publication No. 2000-212766 has been proposed by the present inventors, and this publication discloses a method of forming a film of ultrafine particles without heating by a heating means. Specifically, by irradiating an ultrafine particle having a particle diameter of 10 nm to 5 μm (not obtained by heating and evaporation unlike the prior art) with an ion beam, an atomic beam, a molecular beam, or a low temperature plasma, The ultrafine particles are activated without melting and sprayed onto the substrate in this state at a speed of 3 m / sec to 300 m / sec to promote the bonding between the ultrafine particles to form a sliding contact layer. is there.
[0011]
[Problems to be solved by the invention]
Forming a thick structure by CVD or a sol-gel method takes a long time for film formation and causes cracks in the film. Furthermore, in the case of the thermal spraying method, relatively large bubbles of about several μm or more remain in the film, and an electrode material such as copper or tungsten from the electrode of the thermal spray gun is added to the film in a trace amount, and impurities and Therefore, it is difficult to form a film with high translucency.
[0012]
Further, by a gas deposition method or electrostatic fine particle coating method, a technique disclosed in Japanese Patent Laid-Open No. 8-81774, Japanese Patent Laid-Open No. 10-202171, Japanese Patent Laid-Open No. 11-21676, or Japanese Patent Laid-Open No. 2000-212766. However, a highly transparent polycrystalline structure cannot be obtained, and the translucency of the polycrystalline structure cannot be freely controlled.
[0013]
[Means for Solving the Problems]
The present invention has been made based on the following findings.
That is, when a mechanical impact force is applied to a brittle material (ceramics) that does not have spreadability, the crystal lattice shifts or breaks along the wall open surface such as the interface between crystallites. When these phenomena occur, a new surface is formed on the slipping surface or fracture surface, in which atoms originally present inside and bonded to other atoms are exposed. The part of the atomic layer on the new surface is exposed to an unstable surface state by an external force from a stable atomic bond state, and the surface energy is high. The active surface joins the adjacent brittle material surface, the newly formed brittle material surface, or the substrate surface, and shifts to a stable state. The addition of continuous mechanical impact force from the outside causes this phenomenon to occur continuously, and the joining progress and densification are performed by repeated deformation and crushing of fine particles, and a transparent layer of brittle material is formed. .
Further, an embodiment of the present invention in which the above-described mechanical impact is caused to cause the brittle material to collide with the substrate with the carrier gas is hereinafter referred to as a fine particle beam deposition method. This method is also called an aerosol deposition method. By using the fine particle beam deposition method, it is possible to make the structure dense and hence transparent by combining various conditions such as appropriate gas species and gas flow rate conditions, and the particle diameter of the brittle material fine particles used. They found out.
[0014]
In addition, when a structure is formed using a gas that easily causes discharge, such as helium, a discharge phenomenon may be observed during the formation. In such a case, the transparency of the structure may deteriorate significantly. It was observed. Therefore, it can be said that it is a preferable method to form a structure using a gas that does not easily cause discharge. The pressure at the time of structure formation in the fine particle beam deposition method is in the range of several to several hundred kPa, but in this range, the magnitude relationship of the spark voltage due to the gas species is almost equal, and air discharge is likely to occur at high and low voltage values. Whether or not is discussed. It can be said that oxygen, nitrogen, dry air, carbon dioxide gas and the like hardly generate air discharge, and rare gases such as helium, neon, and argon easily generate air discharge.
The gas in which air discharge hardly occurs in this case refers to a gas having a composition in which no discharge phenomenon is observed in the vicinity of the formation of a polycrystalline brittle material structure. Refers to the gas as the main component.
[0015]
Here, the interpretation of the words that are important for understanding the present invention will be described below.
(Polycrystalline)
In this case, it refers to a structure in which crystallites are joined and integrated. The crystallite is essentially one crystal, and its diameter is usually 5 nm or more. However, the case where the fine particles are taken into a transparent structure without being crushed rarely occurs, but is substantially polycrystalline.
(Crystal orientation)
In this case, it refers to the degree of orientation of crystal axes in a transparent structure that is polycrystalline. Whether or not there is orientation is generally determined by standard X-ray diffraction, etc. JCPDS (ASTM) data is judged as an index.
The peak intensity of the three major diffraction peaks in this index, which is the material constituting the brittle material crystal in the transparent structure, is defined as 100%. In this case, it is assumed that there is substantially no orientation in a state where the deviation of the peak intensity of the other two peaks is within 30% of the index value.
(interface)
In this case, it refers to the region that forms the boundary between crystallites.
(Grain boundary layer)
It is a layer with a certain thickness (usually several nm to several μm) located at the grain boundary in the interface or sintered body. It usually has an amorphous structure different from the crystal structure in the crystal grain, and in some cases, segregates impurities. Accompany.
(Anchor part)
In this case, it refers to the unevenness formed at the interface between the base material and the transparent structure, and in particular, the surface of the original base material is not formed when the transparent structure is formed, instead of forming the unevenness on the base material in advance. It refers to irregularities formed with varying accuracy.
(Internal distortion)
The lattice strain contained in the raw material fine particles is a value calculated by using the Hall method in the X-ray diffraction measurement, and the deviation is expressed as a percentage on the basis of a standard substance obtained by sufficiently annealing the fine particles.
[0016]
In the composite structure according to the present invention, a transparent structure is formed on the surface of the substrate, the transparent structure is made of a brittle material, is polycrystalline, and the crystal has substantially no crystal orientation. There is substantially no grain boundary layer composed of a glass layer at the interface between the crystals, and a part thereof is an anchor portion that bites into the substrate surface.
[0017]
The composite structure is characterized in that there is substantially no void having a size of 20 nm or more in the film thickness direction in the polycrystalline structure.
[0018]
The voids correspond to bubbles and pores in the structure, but even when the particle beam deposition method is used, depending on the structure formation conditions, the particles may be sufficiently crushed or deformed when colliding with the particles or forming the structure. It does not occur, and the fine particles are taken into the structure while maintaining the shape of the primary particles. In such a case, a void is formed between the incorporated primary particles and the surrounding structures. When submicron-sized fine particles are used, if the voids are large, they are formed with a size of several tens of nm. The interface between the air gap (gas phase) and the structure is considered to cause reflection and scattering of light, and the presence of a large number of them deteriorates the transparency of the structure. On the other hand, in the particle beam deposition method, a huge amount of particles are accelerated and repeatedly collided with the base material to form a structure, so that such voids are stochastically formed regardless of the structure formation conditions. There are cases where it is formed. Therefore, an appropriate formation condition is selected, and a measure is taken to keep the transparency as much as possible. The fact that there is substantially no void, for example, is determined from a transmission electron microscope image by a method such that the average amount of voids with a size of 20 nm or more in the film thickness direction is 1 or less in 1 μm square. The method of doing etc. can be considered.
[0019]
As the composite structure, the base material is also transparent, and the transparent structure has a thickness of 1 μm or more and a visible light transmittance of 80% or more. Moreover, as a constituent material of the transparent structure, a material mainly composed of aluminum oxide can be given. The purity of the transparent structure is preferably 99% or more.
[0020]
The visible light in this case refers to an electromagnetic wave having a wavelength of 380 to 760 nm. When the reflection loss at the surface or interface of the structure is not taken into consideration, I / I 0 is referred to as internal transmittance in the incident light I 0 and the transmitted light I. For this, Beer's law,
I / I 0 = exp (−ax)
Here, there is a relationship of a: extinction coefficient, x: distance through which light passes through the structure, and greatly depends on x.
When the structure is formed with a thick film, the light transmittance in the film thickness direction is often a problem, and the transmittance measurement is also performed in this direction.
In the present invention, the transmittance when the film thickness is 1 μm or more which is a practical film thickness formed by the particle beam deposition method is taken up. However, it is possible to form a thick film of about several hundred μm by the particle beam deposition method. It is.
[0021]
Moreover, as a base material, although quartz glass etc. which transmit most visible light are preferable, the thing in which a base material is not transparent is also contained in this invention. That is, examples of the base material include glass, metals, ceramics, metalloids, and organic compounds, and brittle materials include aluminum oxide, titanium oxide, zinc oxide, tin oxide, iron oxide, zirconium oxide, and yttrium oxide. , Oxides such as chromium oxide, hafnium oxide, beryllium oxide, magnesium oxide, silicon oxide, diamond, boron carbide, silicon carbide, titanium carbide, zirconium carbide, vanadium carbide, niobium carbide, chromium carbide, tungsten carbide, molybdenum carbide, carbonized Carbides such as tantalum, boron nitride, titanium nitride, aluminum nitride, silicon nitride, niobium nitride, nitrides such as tantalum nitride, boron, aluminum boride, silicon boride, titanium boride, zirconium boride, vanadium boride, boron Niobium tantalum, tantalum boride, chromium boride, molybdenum boride Borides such as titanium and tungsten boride, or mixtures and multi-component solid solutions, piezoelectric / pyroelectrics such as barium titanate, lead titanate, lithium titanate, strontium titanate, aluminum titanate, PZT, and PLZT Ceramics, high toughness ceramics such as sialon and cermet, biocompatible ceramics such as hydroxyapatite and calcium phosphate, silicon, germanium, or metalloid materials with various doping materials such as phosphorus added thereto, gallium arsenide, indium arsenide And semiconductor compounds such as cadmium sulfide.
[0022]
As a method for producing the above composite structure, for example, in a gas atmosphere in which air discharge is unlikely to occur, brittle material fine particles to which internal strain has been applied in advance are collided with a substrate at high speed, and the brittleness is caused by the impact of this collision. The material fine particles are deformed or crushed, and the fine particles are recombined through an active new surface generated by the deformation or crushing to form a transparent structure on the surface of the substrate.
[0023]
For example, a film having a desired transmittance is formed by mixing a gas species that is likely to generate discharge, such as helium, neon, and argon, and a gas species that is difficult to generate, and performing structure formation while controlling the gas partial pressure. It is possible. If the transmittance can be controlled, application to an optical member having wavelength selectivity such as a spectral filter is expected.
It is also suggested that a considerably transparent film can be produced by controlling the gas type and gas pressure so as to suppress the discharge phenomenon as much as possible. In other words, a brittle material polycrystal that is transparent in the visible light region is formed by colliding fine particles of a brittle material with a substrate at high speed in a gas atmosphere in which rare gases such as helium, argon, and neon are eliminated as much as possible to form a polycrystalline structure. A membrane can be obtained.
[0024]
In the method of the present invention, since a structure is formed without firing, the crystal growth can be suppressed and fine crystals can be stopped, and a polycrystalline body composed of nanometer-level crystal grains can be obtained. Can be formed.
[0025]
The transparent film can be used by replacing parts that had previously been used with high-hardness bulk such as aluminum oxide in parts that are subject to sliding, such as the protective transparent plate of an optical sensor, with inexpensive glass, and using this method only on the surface. It may be possible to improve the wear resistance by forming a transparent brittle material film.
[0026]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings.
Example 1
FIG. 1 is a view showing an example of a composite structure manufacturing apparatus according to the present invention, in which various gas cylinders 11 of nitrogen, dry air, and helium are connected to an
[0027]
The operation of the brittle material structure manufacturing apparatus having the above configuration will be described below. After filling fine particles of aluminum oxide with a submicron particle size and purity of 99.8% into the
[0028]
At this time, the speed of the aluminum oxide fine particles is accelerated from the subsonic speed to the sound speed. The pressure in the structure forming chamber 14 was several kPa. However, the pressure in the vicinity of the structure formation seems to be larger due to the effect of gas injection. The aluminum oxide fine particles in the aerosol that have been sufficiently accelerated to obtain kinetic energy collide with the
[0029]
FIG. 2 shows the spectrophotometer of the transmittance of the aluminum oxide film thus obtained in the ultraviolet to visible wavelength region. Compared with the same film thickness of 7 μm, the aluminum oxide film formed with dry air has a high transmittance, and transmission of 80% or more is seen in the visible light region, whereas when helium gas is used, the transmittance is low. It can be seen that it is very low. When a 10 μm film is formed using nitrogen gas, the transmittance characteristics are almost the same as those of the dry gas.
[0030]
FIG. 3 is a photograph of an aluminum oxide film formed using dry air and helium gas. A film using dry air is obtained as shown in FIG. As shown in (b), an opaque material having a black color is obtained.
[0031]
By the way, when helium gas was used, a light emission phenomenon (discharge phenomenon) was observed in the vicinity of a region where the aluminum oxide fine particles collided with the
[0032]
Furthermore, the present inventors have concluded that even when brittle materials having the same particle size are used, there is a difference in the formation speed and the achieved film thickness of the structure to be formed, which is caused by the internal strain of the particles. .
Therefore, FIG. 5 shows the result of an experiment conducted on the relationship between the thickness of the structure achieved in the same formation time as the internal strain. In the experiment, aluminum oxide fine particles having a purity of 99.6% were pulverized using a planetary mill to change the characterization of the fine particles, and then a structure was formed on the aluminum substrate by an ultrafine particle beam deposition method. The internal strain of the fine particles was measured by X-ray diffraction, and the amount of strain was determined based on 0% obtained by subjecting the fine particles to thermal aging to remove the internal strain.
In addition, SEM photographs (Hitachi in-lens SEM S-5000) of fine particles at points A, B, and C in FIG. 5 are shown in FIGS.
[0033]
FIG. 5 shows that an internal strain of 0.01 to 2.50% is sufficient to obtain a film thickness of 1 μm, but 0.1 to 2.0% is necessary to obtain a stable film thickness. Is preferable. As shown in FIG. 6, when there is no internal strain, the crack does not occur when there is no internal strain, but when the internal strain exceeds a certain value, in this case, 2.0% or more, the crack is completely cracked. 8 is formed, and the fragments that fall off adhere to the surface, resulting in a re-aggregation state as shown in FIG.
[0034]
Thus, it is preferable to use a pulverizing means capable of giving a large impact for the pulverization applied to the fine particles in the pulverization treatment for distorting the fine particles. This is because a large strain can be imparted to the fine particles relatively uniformly. As such a pulverizing means, it is preferable to use a vibration mill, an attritor, or a planetary mill that can give a large acceleration of gravity compared to a ball mill often used for pulverizing ceramics. Most preferably, a planetary mill that can provide acceleration is used. Focusing on the state of the fine particles, since the crack cancels the internal strain, the most preferable is the fine particle whose internal strain is increased until just before the crack is generated. In the state shown in FIG. 7, some cracks are generated, but sufficient internal strain remains.
[0035]
(Example 2)
In Example 2, as another example, the result of fine observation of a transparent aluminum oxide structure and a cloudy opaque aluminum oxide structure will be described. Using an aluminum oxide fine particle A having a purity of 99.8% and a particle size of about 0.6 μm and an aluminum oxide fine particle B having a purity of 99.9% or more and a particle size of about 0.2 μm, an apparatus equivalent to that shown in FIG. When a film-like aluminum oxide structure having a film thickness of about 4 μm was formed on each substrate by a fine particle beam deposition method using a nitrogen gas as a carrier gas at a flow rate of 7 L / min, a transparent structure was obtained with fine particles A. As a result, an opaque structure was obtained with the fine particles B. The size of the nozzle opening used at this time was 17 mm × 0.4 mm. The pressure in the structure forming chamber at this time was 100 to 200 Pa. These structures were observed with a transmission electron microscope (TEM) H-9000UHR manufactured by Hitachi, Ltd. for microscopic cross-section observation. FIG. 9 shows a TEM image of the structure made of the fine particles A, and FIG. 10 shows a TEM image of the structure made of the fine particles B. The vertical direction in the figure corresponds to the film thickness direction. It can be seen that the structure of the fine particles A is dense and consists of fine crystallites of several tens of nm. On the other hand, in the structure of fine particles B, it can be seen that spherical particles of about 100 nm, which are regarded as primary particles of fine particles B, are mixed in the structure, and there are many voids around these spherical particles. You can see that From this TEM image, it is observed that the size of the gap in the film thickness direction is often 20 nm or more. If there are many such gaps, light scattering / reflection occurs at the interface between the particles and the gap, and the structure is opaque. It seems to be.
In addition, in the aluminum oxide fine particle B having a small particle diameter, spherical particles of about 100 nm are mixed and become cloudy. This is probably because the kinetic energy is small and the crystal lattice displacement and crushing in the fine particle beam deposition method are insufficient. .
[0036]
(Example 3)
Next, the anchor part formed with the structure formation is shown in FIG. In addition, in FIG. 11, the upper part shows the result of measuring the unevenness of the substrate surface before film formation, and the lower part shows the result of measuring the unevenness of the surface of the substrate after peeling the brittle material film after film formation, that is, the unevenness of the anchor part. Show.
In an apparatus equivalent to that shown in FIG. 1, aluminum oxide fine particles having a purity of 99.8% or more and submicron particle diameter are mixed with nitrogen gas to generate an aerosol, and directed toward a brass substrate having a mirror-finished surface. After injecting under the condition of a gas flow rate of 7 L / min and forming an aluminum oxide film with a film thickness of about 10 μm, a tensile stress is applied to the film and the film is peeled off from the substrate to expose the anchor portion. The Sato anchor portion was measured using a stylus type surface shape measuring instrument Dektak 3030 manufactured by Nippon Vacuum Technology Co., Ltd. The upper profile in FIG. 11 is the surface profile of the brass substrate before the structure is formed, and the lower profile is the profile of the anchor portion. From the figure, it can be seen that the anchor is formed by the collision of the fine particles. The surface roughness Ra of the surface profile measuring device was 7.7 nm for the substrate surface and 73.8 nm for the anchor layer at a sweep distance of 200 μm. Even when glass, which is a transparent material, was used as the substrate, a similar anchor portion was confirmed between the substrate and the structure.
[0037]
【The invention's effect】
As described above, according to the present invention, a base material and a transparent structure can be obtained by providing a polycrystalline structure with a brittle material, high visible light transmittance, and high hardness on a substrate surface such as glass. Can be obtained. Therefore, it can be widely used for optical parts, machine parts, ornaments and the like.
[0038]
Further, according to the present invention, it is possible to easily and accurately control the visible light transmittance of a transparent structure, and the application range is further widened.
[Brief description of the drawings]
FIG. 1 is a diagram showing an example of an apparatus for producing a composite structure according to the present invention. FIG. 2 is a graph showing transmittance of an aluminum oxide film in the ultraviolet to visible wavelength region. FIG. 3 (a) is dry air. A photograph showing the transparency of the polycrystalline structure when in use, (b) is a photograph showing the transparency of the polycrystalline structure when using helium gas. FIG. 4 (a) is when forming an aluminum oxide film when using dry air. The emission line spectrum (b) is the emission line spectrum when the aluminum oxide film is formed when helium gas is used. FIG. 5 is a graph showing the relationship between the internal strain and the film thickness of the brittle material fine particles. SEM photograph of fine particles [FIG. 7] SEM photograph of fine particles at point B in FIG. 5 [FIG. 8] SEM photograph of fine particles at point C in FIG. I Surface profile showing the
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2002108799A JP3897631B2 (en) | 2001-04-12 | 2002-04-11 | Composite structure and manufacturing method thereof |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2001-113944 | 2001-04-12 | ||
JP2001113944 | 2001-04-12 | ||
JP2002108799A JP3897631B2 (en) | 2001-04-12 | 2002-04-11 | Composite structure and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2003183848A JP2003183848A (en) | 2003-07-03 |
JP3897631B2 true JP3897631B2 (en) | 2007-03-28 |
Family
ID=27615112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2002108799A Expired - Lifetime JP3897631B2 (en) | 2001-04-12 | 2002-04-11 | Composite structure and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3897631B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003112975A (en) * | 2001-09-28 | 2003-04-18 | National Institute Of Advanced Industrial & Technology | Structure and method for manufacturing the same, particle for forming structure and method for manufacturing the same |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4736019B2 (en) * | 2003-11-27 | 2011-07-27 | 独立行政法人産業技術総合研究所 | Manufacturing method of molded body |
JP4769979B2 (en) * | 2004-03-30 | 2011-09-07 | ブラザー工業株式会社 | Method for manufacturing piezoelectric film |
EP1583163B1 (en) | 2004-03-30 | 2012-02-15 | Brother Kogyo Kabushiki Kaisha | Method for manufacturing film or piezoelectric film |
JP4963009B2 (en) * | 2004-11-02 | 2012-06-27 | 独立行政法人産業技術総合研究所 | Inorganic film-substrate composite material with improved transparency and method for producing the same |
JP4664054B2 (en) * | 2004-12-09 | 2011-04-06 | 富士フイルム株式会社 | Deposition equipment |
JP4826188B2 (en) * | 2005-09-26 | 2011-11-30 | Toto株式会社 | Method for producing transparent composite structure |
JP2007260886A (en) * | 2006-03-30 | 2007-10-11 | Mitsubishi Materials Corp | Cmp conditioner and manufacturing method therefor |
US8114473B2 (en) | 2007-04-27 | 2012-02-14 | Toto Ltd. | Composite structure and production method thereof |
JP5395345B2 (en) * | 2007-10-03 | 2014-01-22 | 関西ペイント株式会社 | Method for producing aluminum-doped zinc oxide transparent conductive film using aerosol |
JP2015140484A (en) | 2014-01-30 | 2015-08-03 | セイコーエプソン株式会社 | Exterior component for timepiece, method of manufacturing exterior component for timepiece, and timepiece |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3265481B2 (en) * | 1999-04-23 | 2002-03-11 | 独立行政法人産業技術総合研究所 | Low temperature molding of brittle material ultrafine particles |
JP2000313970A (en) * | 1999-04-28 | 2000-11-14 | Fuji Seisakusho:Kk | Formation of ceramic thin film layer |
JP2001226780A (en) * | 2000-02-09 | 2001-08-21 | Seiko Epson Corp | Producing method for transparent electrically conductive film |
-
2002
- 2002-04-11 JP JP2002108799A patent/JP3897631B2/en not_active Expired - Lifetime
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003112975A (en) * | 2001-09-28 | 2003-04-18 | National Institute Of Advanced Industrial & Technology | Structure and method for manufacturing the same, particle for forming structure and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP2003183848A (en) | 2003-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100767395B1 (en) | Composite structured material | |
JP3500393B2 (en) | Composite structure and manufacturing method thereof | |
JP3554735B2 (en) | Composite structure, method of manufacturing the same, and manufacturing apparatus | |
Iwasawa et al. | Plasma‐resistant dense yttrium oxide film prepared by aerosol deposition process | |
JP3897631B2 (en) | Composite structure and manufacturing method thereof | |
WO2013176168A1 (en) | Component for plasma processing apparatus, and method for manufacturing component for plasma processing apparatus | |
KR100983952B1 (en) | Composite structure | |
JP2002235181A (en) | Composite structure, its manufacturing method and fabricating device | |
KR102499540B1 (en) | Member for semiconductor manufacturing device and semiconductor manufacturing device with member for semiconductor manufacturing device and display manufacturing device | |
JP2003277948A (en) | Composite structure and method for manufacturing the same | |
JP2021077900A (en) | Member for semiconductor manufacturing device, semiconductor manufacturing device including the member, and display manufacturing device | |
US20080274347A1 (en) | Method for Producing Film Using Aerosol, Particles Mixture Therefor, and Film and Composite Material | |
JP3716913B2 (en) | Brittle material composite structure and manufacturing method thereof | |
JP3850257B2 (en) | Low temperature forming method for brittle material structures | |
JP3874682B2 (en) | Sliding member and manufacturing method thereof | |
JP2002309384A (en) | Composite structure and production method therefor | |
JP2004256920A (en) | Composite structure, and method and device for producing the same | |
JP4826188B2 (en) | Method for producing transparent composite structure | |
JP2005314804A (en) | Method for producing coating film with use of aerosol, particulate therefor, coating film and composite material | |
US20080274348A1 (en) | Method for Producing Coating Film Using Aerosol, Fine Particles for Use Therein, and Coating Film and Composite Material | |
JP2004107757A (en) | Composite structure | |
JP4487764B2 (en) | Translucent body for plasma processing apparatus and plasma processing apparatus | |
JP2005314800A (en) | Method for producing coating film with the use of aerosol, particulate mixture therefor, coating film and composite material | |
Iwasawa et al. | Preparation of transparent yttrium oxide film by aerosol deposition method | |
JP2006289683A (en) | Composite structure and its manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20050316 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20060615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20060620 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20060829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060921 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20061024 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20061121 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20061219 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20061219 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 Ref document number: 3897631 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100105 Year of fee payment: 3 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100105 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110105 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110105 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120105 Year of fee payment: 5 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120105 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130105 Year of fee payment: 6 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130105 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140105 Year of fee payment: 7 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |