JP3246910B2 - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JP3246910B2
JP3246910B2 JP2000368033A JP2000368033A JP3246910B2 JP 3246910 B2 JP3246910 B2 JP 3246910B2 JP 2000368033 A JP2000368033 A JP 2000368033A JP 2000368033 A JP2000368033 A JP 2000368033A JP 3246910 B2 JP3246910 B2 JP 3246910B2
Authority
JP
Japan
Prior art keywords
region
insulating substrate
substrate
semiconductor
base region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000368033A
Other languages
Japanese (ja)
Other versions
JP2001203274A (en
Inventor
信 吉見
稔 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2000368033A priority Critical patent/JP3246910B2/en
Publication of JP2001203274A publication Critical patent/JP2001203274A/en
Application granted granted Critical
Publication of JP3246910B2 publication Critical patent/JP3246910B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)
  • Bipolar Transistors (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)
  • Junction Field-Effect Transistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、絶緑性基板上例え
ばSOI(Silicon-On-Insulator)膜に形成するバイポー
ラ型トランジスタ(以下BIP素子)の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a bipolar transistor (hereinafter referred to as a BIP device) formed on a green substrate, for example, in an SOI (Silicon-On-Insulator) film.

【0002】[0002]

【従来の技術】SOI膜上に形成したBIP素子は、低
浮遊容量のために、バルクシリコン基板に形成されるB
lP素子に較べて、高速動作が期待される。例えばIEE
E,EDL−8,NO.3,p.104,1987,byJ.C.Sturm
et al.で知られたものを図9に示した。これはSi基
板1上にSiO2膜2を介し、この上にp型層63、及
びp+型層632を積層にしてべース領域Bが形成され
ている。また、この領域の両側にはn+型層68,67
のエミッタ領域E及びコレクタ領域Cが形成されてい
る。これらの領域には引き出し配線60が接続されてい
る。61は層間絶縁膜である。しかし、SOIラテラル
BIP素子は、本質的に優れていると考えられるにも拘
らず、以下に述べる短所のために期待されたぼどの高性
能を示さなかった。即ち、べース領域631の不純物分
布がエミッタ68からコレクタ67方向に掛けて均一濃
度で構成されているため、キャリア走行時間が大きく、
遮断周波数など高周波特性の低下を招いていた点であ
る。これらは構造上、基板1表面と平行方向の不純物分
布を変化させることが困難であることに起因している。
2. Description of the Related Art A BIP device formed on an SOI film has a low stray capacitance, so that a BIP device formed on a bulk silicon substrate can be used.
High-speed operation is expected as compared with the IP device. For example, IEE
E, EDL-8, NO. 3, p. 104, 1987, byJ. C. Sturm
et al. 9 is shown in FIG. In this, a base region B is formed by laminating a p-type layer 63 and ap + -type layer 632 on a silicon substrate 1 with an SiO 2 film 2 interposed therebetween. On both sides of this region, n + type layers 68, 67
, An emitter region E and a collector region C are formed. The lead wiring 60 is connected to these regions. 61 is an interlayer insulating film. However, SOI lateral BIP devices, despite being considered inherently superior, did not exhibit the expected rough performance due to the disadvantages described below. That is, since the impurity distribution of the base region 631 is formed at a uniform concentration from the emitter 68 to the collector 67, the carrier transit time is large,
That is, the high frequency characteristics such as the cutoff frequency are lowered. These are due to the fact that it is structurally difficult to change the impurity distribution in the direction parallel to the surface of the substrate 1.

【0003】[0003]

【発明が解決しようとする課題】従来の半導体装置はキ
ャリアのべース領域での走行時間が長く、そのために高
速動作性に劣るという問題があった。本発明は上記問題
点に鑑みなされたもので、キャリアのべース走行時間が
短く、極めて高速動作性に優れた半導体装置を提供する
ことを目的とする。また、この様な半導体装置を容易に
形成できる半導体装置の製造方法を提供することを目的
とする。
The conventional semiconductor device has a problem that the traveling time of the carrier in the base region is long, and therefore, the high-speed operation is inferior. SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and has as its object to provide a semiconductor device which has a short carrier base traveling time and is extremely excellent in high-speed operation. Another object is to provide a method for manufacturing a semiconductor device in which such a semiconductor device can be easily formed.

【0004】[0004]

【課題を解決するための手段】上記目的を達成するため
に、本願発明は、半導体基板と、この半導体基板上に形
成された絶縁性基板と、この絶縁性基板表面に形成され
た第1導電型のエミッタ領域と、前記絶縁性基板表面に
前記エミッタ領域と離間して形成された第1導電型のコ
レクタ領域と、前記エミッタ領域と前記コレクタ領域の
間の前記絶縁性基板表面に、これらと隣接しかつ前記絶
縁性基板の基板方向に対して直交する方向に突出形成さ
れた第2導電型の第1のベース領域と、この第1のベー
ス領域上に形成された、前記第1のベース領域の不純物
濃度より高濃度な不純物濃度を有する第2導電型の第2
のベース領域とを有するバイポーラトランジスタと、前
記絶縁性基板表面に形成された第1導電型のドレイン領
域と、前記絶縁性基板表面に前記ドレイン領域と離間し
て形成された第1導電型のソース領域と、前記ドレイン
領域と前記ソース領域の間の前記絶縁性基板表面に、こ
れらと隣接するよう形成されたチャネル形成予定領域
と、このチャネル形成予定領域上に形成されたゲート絶
縁膜と、このゲート絶縁膜上に形成されたゲート電極と
を有するMOSトランジスタとを有する半導体装置にお
いて、前記第1のベース領域の不純物濃度分布が、前記
エミッタ領域より前記コレクタ領域側で低く、前記エミ
ッタ領域の前記第1のベース領域と接する側に第1導電
型の不純物濃度を低くした低濃度部が形成されており、
前記チャネル形成予定領域、前記コレクタ領域及び前記
エミッタ領域の前記絶縁性基板の平面方向に直行する方
向の厚さt0が略同一であり、かつこのt0が100Å≦
t0≦3000Åであることを特徴とする半導体装置を
提供するものである。
To achieve the above object, the present invention provides a semiconductor substrate, an insulating substrate formed on the semiconductor substrate, and a first conductive layer formed on the surface of the insulating substrate. An emitter region of a first conductivity type, a collector region of a first conductivity type formed on the surface of the insulating substrate so as to be separated from the emitter region, and a surface of the insulating substrate between the emitter region and the collector region. A first base region of a second conductivity type which is adjacent to and protrudes in a direction perpendicular to the substrate direction of the insulating substrate; and the first base formed on the first base region The second conductivity type second having an impurity concentration higher than the impurity concentration of the region.
A bipolar transistor having a base region, a first conductivity type drain region formed on the surface of the insulating substrate, and a first conductivity type source formed on the surface of the insulating substrate so as to be separated from the drain region. A region, a channel formation scheduled region formed adjacent to the insulating substrate surface between the drain region and the source region, and a gate insulating film formed on the channel formation scheduled region; A MOS transistor having a gate electrode formed on a gate insulating film, the impurity concentration distribution of the first base region being lower on the collector region side than the emitter region, and A low-concentration portion having a low impurity concentration of the first conductivity type is formed on a side in contact with the first base region;
The thickness t0 of the channel forming region, the collector region, and the emitter region in a direction perpendicular to the planar direction of the insulating substrate is substantially the same, and this t0 is 100 ° ≦
It is intended to provide a semiconductor device characterized in that t0 ≦ 3000 °.

【0005】(作用)BIP素子のベース領域中の不純
物濃度は、工ミッタ側よりもコレクタ側で低濃度にし、
必要以上に高めていないため、べース領域中でのキャリ
アの走行時間を短くでき、遮断周波数等の高周波特性を
向上できる。また、この様な不純物濃度分布を得るため
にベース領域中へ斜めからイオン注入を行っているため
に、極めて容易にこのBIP素子を形成できる。さら
に、BIP素子のエミッタ・コレクタ領域とFETのソ
ース・ドレイン領域を、同一の半導体層から形成するた
めに、製造工程が簡単である。
(Operation) The impurity concentration in the base region of the BIP element is made lower on the collector side than on the emitter side.
Since it is not increased more than necessary, the traveling time of carriers in the base region can be shortened, and high-frequency characteristics such as cutoff frequency can be improved. Further, since ion implantation is performed obliquely into the base region in order to obtain such an impurity concentration distribution, the BIP element can be formed very easily. Further, since the emitter / collector region of the BIP element and the source / drain region of the FET are formed from the same semiconductor layer, the manufacturing process is simple.

【0006】[0006]

【発明の実施の形態】本発明の詳細を実施例によって説
明する。本発明の第1の実施倒に係る半導体装置の平面
図を図1に示した。また夫々の断面A−A´,B−B´
及びC一C´は夫々図2(a)、図2(b)、及び図2
(c)に示した。この半導体装置はシリコン基板1上に
SiO2膜2を介して形成したSOI膜にMOSFET
とNPNBIP素子を作り込んだもので所謂BiCMO
Sになっている。NPNBIP素子は、P型Si層(内
部ベース領域)39、P+型Si層(外部ベース領域)
35を積層したべ一ス領域と、この両側に形成したn+
型Si層のコレクタ領域72、エミッタ領域82とを有
する。このBiCMOSには3つの特徴がある。第1
に、べース領域の一部であるp型Si層39がエミッタ
領域82よりもコレクタ領域72側で不純物濃度が低く
なっている事である。ここでは、p型Si層39にp型
のイオン注入層6を重ねて形成する事により達成され
た。これにより、キャリア走行時間を短縮でき、遮断周
波数なとの高周波特性を向上できる。また第2に、コレ
クタ領域72とエミッタ領域82の夫々のべース領域近
傍には、これらの領域に比べて不純物濃度が低い領域7
3,83を形成している事である。これにより、図9に
示した様な従来構造のBIP素子では、べース・コレク
タ接合部のコレクタ側の不純物濃度が高いため、この接
合部で高電界を発生しやすくアバランシェ破壊を生じべ
一ス開放エミッタ・コレクタ耐圧(VECO)が著しく
低くなるという問題があったが、本実施例のBIP素子
は、上述した構造により、この様な問題が生じ難い。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The details of the present invention will be described by way of examples. FIG. 1 shows a plan view of a semiconductor device according to a first embodiment of the present invention. In addition, respective cross sections AA 'and BB'
2 (a), FIG. 2 (b), and FIG.
(C). In this semiconductor device, a MOSFET is formed on an SOI film formed on a silicon substrate 1 via an SiO 2 film 2.
So-called BiCMO incorporating NPNBIP element
It is S. The NPNBIP element has a P-type Si layer (internal base region) 39 and a P + -type Si layer (external base region).
35, and n + formed on both sides of the base region.
It has a collector region 72 and an emitter region 82 of a type Si layer. This BiCMOS has three features. First
In addition, the p-type Si layer 39, which is a part of the base region, has a lower impurity concentration on the collector region 72 side than the emitter region 82. Here, this was achieved by forming the p-type ion implantation layer 6 on the p-type Si layer 39. As a result, the carrier traveling time can be shortened, and high-frequency characteristics such as a cutoff frequency can be improved. Second, near the base region of each of the collector region 72 and the emitter region 82, a region 7 having a lower impurity concentration than these regions is provided.
3,83 are formed. As a result, in the BIP element having the conventional structure as shown in FIG. 9, since the impurity concentration on the collector side of the base-collector junction is high, a high electric field is easily generated at this junction and avalanche breakdown should occur. Although the open-circuit emitter-collector breakdown voltage (VECO) has a problem of being extremely low, such a problem hardly occurs in the BIP element of the present embodiment due to the above-described structure.

【0007】さらに第3に、BIP素子のみでは、集積
化と共に消費電力は著しく増大し大きな問題になる。特
にSOI膜上では放熱が悪いため消贅電力の問題はさら
に深刻になる。低消費電力化のためには、CMOS構造
との混用が考えられる。そこで、本実施例では、BIP
素子をCMOSFETと混用しているために、全てBI
P素子を使用した場合と比べ、全体の消費電力を大幅に
低減できるのである。ところで、MOSFETのチャネ
ル形領域38とBIP素子のエミッタ・コレクタ領域8
2,72の膜厚(t0)は同一厚が良いがなかでも特に
以下に示した実験式(A)の膜厚にする方が好ましい。
Third, the power consumption of the BIP element alone increases remarkably with the integration, causing a serious problem. In particular, the power dissipation problem is more serious on the SOI film due to poor heat dissipation. In order to reduce the power consumption, it is conceivable to use the same with the CMOS structure. Therefore, in this embodiment, the BIP
Since all elements are mixed with CMOSFET, all BI
The overall power consumption can be greatly reduced as compared with the case where the P element is used. By the way, the channel region 38 of the MOSFET and the emitter / collector region 8 of the BIP element
The film thicknesses (t0) of the layers 2 and 72 are preferably the same, but it is particularly preferable to set the film thickness to the empirical formula (A) shown below.

【0008】[0008]

【数2】 ここで、φ:半導体のフェルミレベル,q:電子電荷,
NA:半導体の不純物濃度,ε:半導休の誘電率 また、内部べ一ス領域39の厚さTとt0との間には次式
(B)の関係がある事が好ましい。 T≧2・t0 …(B) ただし、100Å≦t0≦3000Å t0が100Åょりも薄くなるとhFEが低下し、LS
I用のスイッチング素子として不適当なものしか得るこ
とができない。また、t0が3000Åを超えると特性
がバルクSi基板に形成したトランジスタに近くなり、
SOI薄膜の利点を生かした高速動作ができなくなって
しまうからである。さらに、べース領域の幅Wはt0以
下である事がより好ましい。次ぎに、図2乃至図5に沿
って本実施例の半導体装置の製造方法を具体的に説明す
る。まず、P型単結晶シリコン基板1に、酸素イオンを
加速電圧180kV、ドーズ量2×1018cm−2で
打ち込んだ後、1300度C、20時間のアニールで厚
さ4000ÅのSiO2層2と厚さ2500ÅのSOI
膜31を形成する。この形成方法はイオン注入に限るも
のではなく、Si基板上にCVD−Si02膜を形成
し、さらにこの上にポリSiを堆積した後これを液相、
或は固相で単結晶化してSOI膜を形成しても良い。
(図3(a)) 次にボロンイオンを加速電圧50kV、ドーズ量2×1
011cm−2でイオン注入し、1000度C、2時間
のアニールを加え、前記SOI膜を濃度約1017cm
−3のP型領域32とする。次にボロンイオンを加速電
圧30kV、ドーズ量3×1015cm−2で注入した
後、900度C、30分間のアニールを施し、SOI膜
31表面に高濃度P型領域33を形成する。
(Equation 2) Here, φ: Fermi level of the semiconductor, q: electron charge,
NA: impurity concentration of the semiconductor, ε: dielectric constant of semiconductivity It is preferable that the following formula (B) be established between the thickness T of the internal base region 39 and t0. T ≧ 2 · t0 (B) However, when 100 ° ≦ t0 ≦ 3000 ° When t0 becomes thinner by 100 mm, hFE decreases and LS
Only an unsuitable switching element for I can be obtained. On the other hand, when t0 exceeds 3000 °, the characteristics become close to those of a transistor formed on a bulk Si substrate,
This is because high-speed operation utilizing the advantage of the SOI thin film cannot be performed. Further, the width W of the base region is more preferably t0 or less. Next, a method for manufacturing the semiconductor device according to the present embodiment will be specifically described with reference to FIGS. First, oxygen ions are implanted into a P-type single crystal silicon substrate 1 at an acceleration voltage of 180 kV and a dose of 2 × 10 18 cm −2, and then an SiO 2 layer 2 having a thickness of 4000 ° and a thickness of 2500 ° are annealed at 1300 ° C. for 20 hours. SOI
A film 31 is formed. This formation method is not limited to ion implantation. A CVD-Si02 film is formed on a Si substrate, and poly-Si is further deposited thereon.
Alternatively, the SOI film may be formed by single crystallization in a solid phase.
(FIG. 3A) Next, boron ions are accelerated at 50 kV and the dose is 2 × 1.
Ion implantation is performed at 011 cm−2, annealing is performed at 1000 ° C. for 2 hours, and the concentration of the SOI film is about 1017 cm 2.
-3 P-type region 32. Next, after implanting boron ions at an acceleration voltage of 30 kV and a dose of 3 × 10 15 cm −2, annealing is performed at 900 ° C. for 30 minutes to form a high-concentration P-type region 33 on the surface of the SOI film 31.

【0009】次に、CVD酸化模を4000Å堆積した
後、周知のパターニング技術を用いてBIP素子のべー
ス領域となる部分にレジストパターン51を形成し、さ
らに反応性イオンエッチンク技術を用いてCVD酸化膜
41を形成する。(図3(b)) さらに露出したSOI膜32,33をエッチングしてP
型層34を形成する。このとき、SOI膜32の残存膜
厚は1000Åであり、P型高濃度領域33はBIP素
子のべ一ス領域以外を除去した。(図3(c)) 次に、レジスト51を除去した後、BIP素子、MOS
素子となる領域をレジストパターン52,53で覆い、
エッチングしSOI膜を除去、島状の素子領域36,3
7を形戎した。(図4(a))。さらにMOS素子部
と、BIP素子のコレクタ領域をレジスト54,55で
覆い、ボロンイオンを、基板に垂直方向から斜め方向例
えば45度傾けた方向から、加速電圧50kV、ドーズ
量1×1013cm−2で注入しイオン注入層6を形成
した。このとき、シリコン基板1はイオン注入時に回転
させ、様々な方向を向いているBIP素子のベース領域
に対しイオン注入を施しても良い。図4(b)) 次に、酸化膜111,112を200Åの厚さで残存形
成し、ボロンドープのポリシリコン膜を堆積させた後、
パターニングによりMOS素子のゲート電極42とBI
P素子のべース電極41を形成した。次に、基板1にほ
ぼ垂直方向からリンイオンを加速電圧50kV、ドーズ
量1×1013cm−2で注入し、N型MOS素子のい
わゆるLDD(Lightly−Doped Drain)領域となるN
型低濃度拡散領域91,101を形成すると共に、BIP
素子における高耐圧化のための低濃度N型領域71,8
1を形成した。(図5(a)) 次にCVDSi02膜を2000Åの厚さで形成した
後、反応性イオンエッチング技術によりMOS型素子の
ゲート側壁にSiO2 114を、またBIP素子のべ
一ス領域のSOI膜段差部にSiO2 113を夫々形
成した。さらに、ヒ素イオンを加速電圧60kV、ドー
ズ量3×1016cm−2でイオン注入し、900度
C、1時問のアニールを施し、MOS素子のソース・ド
レイン92,102、BIP素子の工ミッタ、コレクタ
部82,72を同時に形成した。(図5(b)) 次に層間絶縁膜のCVDSiO2膜511或はこれにB
PSG膜を積層した後、周知の方法でアルミ配線60を
形成し、最後にパッシベーション用のPSG膜512を
堆積させ素子を完成させた。(図2(a)) この様にして得られたBIP素子の断面(図2(a)に
示した方向から視たもの)の不純物濃度分布を調べたの
が図6(a)である。図6(b)は比較のために挙げた
図9に示す従来構造のBIP素子の同様の図である。こ
の図から明らかな様に、本実施例の素子ではべース領域
の不純物濃度がコレクタ領域側で低くなっており、しか
もエミッタ領域からコレクタ領域方向にかけて徐々に減
少している事が判る。また、べース領域とコレクタ領域
との間には、コレクタ領域に比べて不純物濃度の低い低
不純物濃度層が形成できている事も判る。図7は、この
本実施例のBIP素子と同時に形成したMOSFETの
不純物濃度分布を示す。ソース・ドレイン領域とチャネ
ル形成領域との夫々の間には低濃度不純物層が形成でき
ている事が判る。これにより、LDD構造のMOSFE
Tを構成できる。
[0009] Next, after depositing a CVD oxide layer at 4000 ° C, a resist pattern 51 is formed in a portion to be a base region of the BIP element by using a well-known patterning technique, and further, by using a reactive ion etching technique. A CVD oxide film 41 is formed. (FIG. 3B) The exposed SOI films 32 and 33 are further etched to
A mold layer 34 is formed. At this time, the remaining thickness of the SOI film 32 was 1000 Å, and the P-type high-concentration region 33 was removed from portions other than the base region of the BIP element. (FIG. 3C) Next, after the resist 51 is removed, the BIP element and the MOS are removed.
A region to be an element is covered with resist patterns 52 and 53,
The SOI film is removed by etching, and island-shaped element regions 36 and 3 are formed.
7 was shaped. (FIG. 4 (a)). Further, the MOS element portion and the collector region of the BIP element are covered with resists 54 and 55, and boron ions are obliquely inclined from the direction perpendicular to the substrate, for example, at an angle of 45 degrees, at an acceleration voltage of 50 kV and a dose of 1 × 10 13 cm −2. Implantation was performed to form an ion implantation layer 6. At this time, the silicon substrate 1 may be rotated at the time of ion implantation, and the ion implantation may be performed on the base regions of the BIP elements facing various directions. (FIG. 4B) Next, oxide films 111 and 112 are formed to have a thickness of 200 ° and a boron-doped polysilicon film is deposited.
By patterning, the gate electrode 42 of the MOS element and BI
A base electrode 41 of the P element was formed. Next, phosphorus ions are implanted into the substrate 1 from a substantially vertical direction at an acceleration voltage of 50 kV and a dose of 1 × 10 13 cm −2, so that an N-type MOS device becomes a so-called LDD (Lightly-Doped Drain) region.
Type low concentration diffusion regions 91 and 101 and BIP
Low-concentration N-type regions 71 and 8 for increasing the breakdown voltage of the device
1 was formed. (FIG. 5 (a)) Next, after forming a CVDSi02 film with a thickness of 2000.degree., SiO2 114 is formed on the gate side wall of the MOS device by the reactive ion etching technique, and the SOI film step in the base region of the BIP device is formed. SiO2 113 was formed in each part. Further, arsenic ions are implanted at an accelerating voltage of 60 kV and a dose of 3 × 10 16 cm −2, annealed at 900 ° C. for 1 hour, and the source / drain 92 and 102 of the MOS device, the emitter and the collector of the BIP device, and the collector. Parts 82 and 72 were formed simultaneously. (FIG. 5B) Next, the CVD SiO2 film 511 as an interlayer insulating film or B
After laminating the PSG film, an aluminum wiring 60 was formed by a known method, and finally, a PSG film 512 for passivation was deposited to complete the device. (FIG. 2 (a)) FIG. 6 (a) shows an investigation of the impurity concentration distribution of the cross section (as viewed from the direction shown in FIG. 2 (a)) of the BIP element thus obtained. FIG. 6B is a view similar to that of the conventional BIP element shown in FIG. 9 for comparison. As is clear from this figure, in the device of this embodiment, the impurity concentration in the base region is lower on the collector region side, and is gradually reduced from the emitter region toward the collector region. It can also be seen that a low impurity concentration layer having a lower impurity concentration than the collector region can be formed between the base region and the collector region. FIG. 7 shows the impurity concentration distribution of the MOSFET formed simultaneously with the BIP element of this embodiment. It can be seen that a low concentration impurity layer has been formed between each of the source / drain region and the channel formation region. Thereby, the MOSFE having the LDD structure is formed.
T can be constructed.

【0010】本実施例の製造方法により高性能CMOS
FETと高性能BIP素子とを同時に形成でき、従来に
ない高性能のBiCMOS構造を実現することができ
る。さらに、ラテラルBIPトランジスタの特長を生か
すため、SOI膜を用い、工程数を最小限にしてMOS
構造との同時作製を可能にしている。さらに、コレクタ
領域に低濃度不純物領域をMOS構造のLDD構造と同
時に作製することにより、BIP素子の耐圧向上と、M
OS素子の信頼性をやはり素子作製工程を複雑にするこ
となく同時に実現している。ここでは、斜めイオン注入
によってべ一ス領域内の不純物濃度を変えたが、この角
度は45°に限るものではなく、チャネリングが起きな
い様な角度例えば基板表面とのなす角が20°〜80°
の範囲であればより好ましい。次ぎに、本発明の第2の
実施例を図8に沿って説明する。本実施例の装置は相補
型のBiCMOS構造を実現したものである。先の実施
例と同一部分の詳細な説明は以下省略する。PchMO
SFETは、NchMOSFETと同一部分に付した番
号の50番代で示す。また、PNPBIPも同様にNP
NBIPに付した番号の50番代をつけた。このBiC
MOS構造の先の実施例と異なる大きな特徴はBIP素
子のベース領域をエミッタ・コレクタ領域より厚く残置
した事に加え、MOSFETのソース・ドレイン領域を
チャネル形成領域より厚く同様に残置した事にある。こ
れは、同一膜厚の半導体層を同じエッチング工程で削っ
て形成する事によって得た。
According to the manufacturing method of this embodiment, a high-performance CMOS
The FET and the high-performance BIP element can be formed simultaneously, and an unprecedented high-performance BiCMOS structure can be realized. Furthermore, in order to make use of the features of the lateral BIP transistor, the MOSI is formed by using an SOI film and minimizing the number of processes.
Simultaneous fabrication with the structure is possible. Further, by forming a low-concentration impurity region in the collector region simultaneously with the LDD structure of the MOS structure, the withstand voltage of the BIP element can be improved, and
The reliability of the OS element is also realized without complicating the element manufacturing process. Here, the impurity concentration in the base region is changed by oblique ion implantation, but this angle is not limited to 45 °, and an angle such that channeling does not occur, for example, an angle of 20 ° to 80 ° with the substrate surface. °
Is more preferable. Next, a second embodiment of the present invention will be described with reference to FIG. The device according to the present embodiment realizes a complementary BiCMOS structure. A detailed description of the same parts as in the previous embodiment will be omitted below. PchMO
The SFET is indicated by the 50's of the number assigned to the same part as the NchMOSFET. Also, PNPBIP is similarly NP
The 50th generation number of NBIP was added. This BiC
A major feature of the MOS structure different from the previous embodiment is that, in addition to the base region of the BIP element being left thicker than the emitter / collector region, the source / drain region of the MOSFET is left thicker than the channel forming region. This was obtained by shaving and forming semiconductor layers having the same thickness in the same etching step.

【0011】この実施例では、先の実施例で得た効果に
加えて、さらにN型MOSFETとNPN型BIP素子
だけでなく、P型MOSFETとPNP型BIP素子に
も適用でき、しかも、同一基板上に全てを作り込むこと
ができるのである。本発明は上述した実施例に限定され
るものではなく、以下の様にしても良い。 絶縁性基板は、ここではSiの基体の表面にSiO2
膜を形成したものを用いたが、基板の表面が絶縁性のも
のであれば良く、例えばサファイアやスピネル等の絶縁
性単結晶基板を用いても良い。 素子形成に使用する半導体材料はSiに限るものでは
なく、他のIV族半導体例えばGe,Cや、化合物半導体
例えばSiGe,GaAs,InP等でも良い。 BIP素子と同時に形成する素子はMOSFETに限
るものではなく、他のFET例えば、MIS型FETや
ショットキー接合型FET或はSIS型FET等でも良
い。
In this embodiment, in addition to the effects obtained in the previous embodiment, the present invention can be applied not only to the N-type MOSFET and the NPN-type BIP element but also to the P-type MOSFET and the PNP-type BIP element. You can build everything on top. The present invention is not limited to the above-described embodiment, and may be as follows. Here, the insulating substrate is made of SiO2 on the surface of a Si substrate.
Although a substrate having a film is used, any substrate having an insulating surface may be used. For example, an insulating single crystal substrate such as sapphire or spinel may be used. The semiconductor material used for element formation is not limited to Si, but may be another group IV semiconductor such as Ge, C, or a compound semiconductor such as SiGe, GaAs, InP, or the like. The element formed at the same time as the BIP element is not limited to the MOSFET, but may be another FET such as a MIS type FET, a Schottky junction type FET or an SIS type FET.

【0012】[0012]

【発明の効果】本発明によれぱ、高速性に優れた半導体
装置を得ることができる。
According to the present invention, a semiconductor device excellent in high speed can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例を示す平面図。FIG. 1 is a plan view showing a first embodiment of the present invention.

【図2】本発明の第1の実施例を示す断面図。FIG. 2 is a sectional view showing the first embodiment of the present invention.

【図3】本発明の第1の実施例を示す工程順の断面図。FIG. 3 is a sectional view of a first embodiment of the present invention in the order of steps.

【図4】本発明の第1の実施例を示す工程順の断面図。FIG. 4 is a sectional view of a first embodiment of the present invention in the order of steps.

【図5】本発明の第1の実施例を示す工程順の断面図。FIG. 5 is a sectional view of a first embodiment of the present invention in the order of steps.

【図6】本発明の第1の実施例を説明する図。FIG. 6 is a diagram illustrating a first embodiment of the present invention.

【図7】本発明の第1の実施例を説明する図。FIG. 7 is a diagram illustrating a first embodiment of the present invention.

【図8】本発明の第2の実施例を示す断面図。FIG. 8 is a sectional view showing a second embodiment of the present invention.

【図9】従来例を示す断面図。FIG. 9 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1…Si基板 2…SiO2膜 35,39…ベース領域 38…チャネル形成領域 42…ゲート電極 51…層間絶縁膜 6…イオン注入層 72…エミッタ領域 82…コレクタ領域 92…ソース領域 102…ドレイン領域 60…電極配線 DESCRIPTION OF SYMBOLS 1 ... Si substrate 2 ... SiO2 film 35, 39 ... Base region 38 ... Channel formation region 42 ... Gate electrode 51 ... Interlayer insulating film 6 ... Ion implantation layer 72 ... Emitter region 82 ... Collector region 92 ... Source region 102 ... Drain region 60 … Electrode wiring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 27/08 331 H01L 29/80 B 29/73 29/786 29/812 (56)参考文献 特開 平2−49464(JP,A) 特開 昭60−57643(JP,A) 特開 平1−298767(JP,A) 特開 平1−192171(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/8222 H01L 21/331 H01L 21/338 H01L 21/8249 H01L 27/06 H01L 27/08 331 H01L 29/73 H01L 29/786 H01L 29/812 ──────────────────────────────────────────────────の Continued on the front page (51) Int.Cl. 7 Identification symbol FI H01L 27/08 331 H01L 29/80 B 29/73 29/786 29/812 (56) References JP-A-2-49464 (JP JP-A-60-57643 (JP, A) JP-A-1-298767 (JP, A) JP-A-1-192171 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB Name) H01L 21/8222 H01L 21/331 H01L 21/338 H01L 21/8249 H01L 27/06 H01L 27/08 331 H01L 29/73 H01L 29/786 H01L 29/812

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】半導体基板と、 この半導体基板上に形成された絶縁性基板と、 この絶縁性基板表面に形成された第1導電型のエミッタ
領域と、 前記絶縁性基板表面に前記エミッタ領域と離間して形成
された第1導電型のコレクタ領域と、 前記エミッタ領域と前記コレクタ領域の間の前記絶縁性
基板表面に、これらと隣接しかつ前記絶縁性基板の基板
方向に対して直交する方向に突出形成された第2導電型
の第1のベース領域と、 この第1のベース領域上に形成された、前記第1のベー
ス領域の不純物濃度より高濃度な不純物濃度を有する第
2導電型の第2のベース領域とを有するバイポーラトラ
ンジスタと、 前記絶縁性基板表面に形成された第1導電型のドレイン
領域と、 前記絶縁性基板表面に前記ドレイン領域と離間して形成
された第1導電型のソース領域と、 前記ドレイン領域と前記ソース領域の間の前記絶縁性基
板表面に、これらと隣接するよう形成されたチャネル形
成予定領域と、 このチャネル形成予定領域上に形成されたゲート絶縁膜
と、 このゲート絶縁膜上に形成されたゲート電極とを有する
MOSトランジスタとを有する半導体装置において、 前記第1のベース領域の不純物濃度分布が、前記エミッ
タ領域より前記コレクタ領域側で低く、 前記エミッタ領域の前記第1のベース領域と接する側に
第1導電型の不純物濃度を低くした低濃度部が形成され
ており、 前記チャネル形成予定領域、前記コレクタ領域及び前記
エミッタ領域の前記絶縁性基板の平面方向に直行する方
向の厚さt0が略同一であり、かつこのt0が100Å≦
t0≦3000Åであることを特徴とする半導体装置。
A semiconductor substrate; an insulating substrate formed on the semiconductor substrate; an emitter region of a first conductivity type formed on the surface of the insulating substrate; and an emitter region on the surface of the insulating substrate. A first conductivity type collector region formed at a distance, and a direction adjacent to the insulating substrate surface between the emitter region and the collector region and orthogonal to the substrate direction of the insulating substrate. A first base region of a second conductivity type protruding from the first base region; and a second conductivity type formed on the first base region and having an impurity concentration higher than that of the first base region. A bipolar transistor having a second base region, a first conductivity type drain region formed on the surface of the insulating substrate, and a first region formed on the surface of the insulating substrate so as to be separated from the drain region. A conductive type source region; a channel formation region formed on the surface of the insulating substrate between the drain region and the source region so as to be adjacent thereto; and a gate insulation formed on the channel formation region. A semiconductor device having a film and a MOS transistor having a gate electrode formed on the gate insulating film, wherein an impurity concentration distribution of the first base region is lower on the collector region side than on the emitter region; A low-concentration portion having a low impurity concentration of a first conductivity type is formed on a side of the emitter region in contact with the first base region, and the insulated substrate of the channel formation planned region, the collector region, and the emitter region Are substantially the same in a direction perpendicular to the plane direction of the above, and this t0 is 100 ° ≦
A semiconductor device, wherein t0 ≦ 3000 °.
【請求項2】前記第1のベース領域の前記絶縁性基板の
平面方向に直行する方向の厚さTが、T≧2t0である
ことを特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein a thickness T of said first base region in a direction perpendicular to a plane direction of said insulating substrate satisfies T ≧ 2t0.
【請求項3】前記コレクタ領域と前記エミッタ領域が対
向する方向の前期第1のベース領域の幅Wが、W≧t0
であることを特徴とする請求項1及び請求項2記載の半
導体装置。
3. The width W of the first base region in a direction in which the collector region and the emitter region are opposed to each other is W ≧ t0.
3. The semiconductor device according to claim 1, wherein:
【請求項4】半導体のフェルミレベルをφF、半導体の
不純物濃度をNA、半導体の誘電率をε、電子の電荷を
qとするとき、これらとt0が次式の関係であることを
特徴とする請求項1乃至請求項4記載の半導体装置。 【数1】
4. When the Fermi level of a semiconductor is φF, the impurity concentration of the semiconductor is NA, the dielectric constant of the semiconductor is ε, and the charge of electrons is q, these and t0 have the following relationship. The semiconductor device according to claim 1. (Equation 1)
JP2000368033A 2000-12-04 2000-12-04 Semiconductor device Expired - Fee Related JP3246910B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000368033A JP3246910B2 (en) 2000-12-04 2000-12-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000368033A JP3246910B2 (en) 2000-12-04 2000-12-04 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP20933990A Division JP3163092B2 (en) 1990-08-09 1990-08-09 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JP2001203274A JP2001203274A (en) 2001-07-27
JP3246910B2 true JP3246910B2 (en) 2002-01-15

Family

ID=18838350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000368033A Expired - Fee Related JP3246910B2 (en) 2000-12-04 2000-12-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JP3246910B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110018608A1 (en) 2009-07-24 2011-01-27 Semiconductor Manufacturing International (Shanghai) Corporation Bipolar Transistor, Band-Gap Reference Circuit and Virtual Ground Reference Circuit

Also Published As

Publication number Publication date
JP2001203274A (en) 2001-07-27

Similar Documents

Publication Publication Date Title
JP3163092B2 (en) Method for manufacturing semiconductor device
TW538509B (en) Fully-depleted-collector Silicon-on-Insulator (SOI) bipolar transistor useful alone or in SOI BiCMOS
US7911024B2 (en) Ultra-thin SOI vertical bipolar transistors with an inversion collector on thin-buried oxide (BOX) for low substrate-bias operation and methods thereof
JPH0521726A (en) Bicmos device and manufacture thereof
EP0281235B1 (en) Bipolar transistor fabrication utilizing cmos techniques
US5670396A (en) Method of forming a DMOS-controlled lateral bipolar transistor
JP3246910B2 (en) Semiconductor device
US6784063B2 (en) Method for fabricating BiCMOS transistor
US11843034B2 (en) Lateral bipolar transistor
JP2633559B2 (en) Method for manufacturing bipolar CMOS semiconductor device
KR100395159B1 (en) Method of manufacturing a BICMOS device using Si-Ge
US20230129914A1 (en) Transistor with wrap-around extrinsic base
JPS63305566A (en) Semiconductor device and manufacture thereof
JP2004022555A (en) Insulated-gate field-effect transistor and manufacturing method thereof
JPH06350085A (en) Semiconductor device and manufacture thereof
JPH06244365A (en) Semiconductor device, and manufacture thereof
JPH0712064B2 (en) Method for manufacturing semiconductor integrated circuit
JP3703427B2 (en) MOS field effect transistor
JP3982204B2 (en) Semiconductor device and manufacturing method thereof
JP2586386B2 (en) Semiconductor device
JPH05291569A (en) Insulation gate type fet and its manufacture
JPH02207534A (en) Semiconductor device
JP2765864B2 (en) Method for manufacturing semiconductor device
CN113838923A (en) Three-dimensional strain Si bipolar junction transistor and preparation method thereof
KR100247813B1 (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees