JP3215701B2 - Method for producing high heat load resistant C / C material and first wall material of fusion reactor - Google Patents

Method for producing high heat load resistant C / C material and first wall material of fusion reactor

Info

Publication number
JP3215701B2
JP3215701B2 JP19699690A JP19699690A JP3215701B2 JP 3215701 B2 JP3215701 B2 JP 3215701B2 JP 19699690 A JP19699690 A JP 19699690A JP 19699690 A JP19699690 A JP 19699690A JP 3215701 B2 JP3215701 B2 JP 3215701B2
Authority
JP
Japan
Prior art keywords
resin
heat load
high heat
fusion reactor
graphite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19699690A
Other languages
Japanese (ja)
Other versions
JPH0483779A (en
Inventor
敏治 上井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP19699690A priority Critical patent/JP3215701B2/en
Publication of JPH0483779A publication Critical patent/JPH0483779A/en
Application granted granted Critical
Publication of JP3215701B2 publication Critical patent/JP3215701B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高熱負荷抵抗性を備えるC/C材(炭素繊維
強化炭素複合材)の製造法およびこのC/C材から構成さ
れた核融合炉の第1壁材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for producing a C / C material (carbon fiber reinforced carbon composite material) having high heat load resistance and a nucleus composed of the C / C material. The present invention relates to a first wall material of a fusion reactor.

〔従来の技術〕[Conventional technology]

核融合炉発電は、従来の核分裂による原子力発電に比
べて環境汚染性が少ない等の有利性があることから国家
的規模で開発研究が進められている。
Fusion reactor power generation has advantages such as less environmental pollution than conventional nuclear power generation by nuclear fission, so development research is being promoted on a national scale.

核融合炉の型式には、トカマク型、ミラー型、レーザ
ー型等があるが、そのうち主流と目されているトカマク
型の第1壁材は、苛酷な熱負荷条件に曝されるため、破
損原因となる熱衝撃やエロージョンに耐える材料で構成
する必要がある。
Fusion reactor types include tokamak type, mirror type, laser type, etc. Among them, the first wall material of tokamak type, which is considered to be the mainstream, is exposed to severe heat load conditions, causing damage. It must be made of a material that can withstand thermal shock and erosion.

カーボン材は本来的に3000℃の高温にも耐え得る耐熱
性を有している関係で、前記第1壁材の有望な候補とし
て検討の対象となっている。
Since the carbon material inherently has heat resistance that can withstand a high temperature of 3000 ° C., it has been studied as a promising candidate for the first wall material.

とくにC/C材は、組織が繊維骨格で構成されていて、
熱衝撃に対して優れた抵抗性を示すことから第1壁の構
成材料として大きな期待がかけられている。
In particular, the C / C material has a tissue composed of a fiber skeleton,
Because of its excellent resistance to thermal shock, it is expected to be a great material for the first wall.

ところが、C/C材は一面、熱伝導性が低いためエロー
ジョンに対する抵抗性に乏しい欠点がある。そこで、C/
C材の表面にCVD手法で熱伝導性に優れる熱分解黒鉛を生
成被覆させることにより耐エロージョン性を向上させる
試みもなされている。
However, the C / C material, on the other hand, has a drawback of poor erosion resistance due to low thermal conductivity. So, C /
Attempts have also been made to improve the erosion resistance by forming and coating pyrolytic graphite having excellent thermal conductivity on the surface of the C material by the CVD method.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

核融合炉の第1壁材として実行段階での事態を考慮し
た場合には、大型で高熱負荷抵抗性に優れる材料の製造
が容易であること、低コストでの材料供給が可能である
こと、エロージョン等の現象で消耗した部分を短時間で
補修できること、等が重要な製造条件となる。
In consideration of the situation at the execution stage as the first wall material of the fusion reactor, it is easy to manufacture a large-sized material having high heat load resistance, and it is possible to supply the material at low cost; An important manufacturing condition is that a portion consumed by a phenomenon such as erosion can be repaired in a short time.

この点、上記したC/C材表面に熱分解黒鉛皮膜を形成
する方法では、低コストで大型材料を製造することは困
難であり、また局部的な補修ができないため前記の製造
条件を満足していない。
In this respect, in the method of forming a pyrolytic graphite film on the surface of the C / C material described above, it is difficult to manufacture a large-sized material at low cost, and the above-described manufacturing conditions are satisfied because local repair cannot be performed. Not.

本発明の目的は、C/C材をベースとして上述の製造条
件を満足する高熱負荷抵抗性C/C材の製造法、および得
られたC/C材から構成された核融合炉の第1壁材を提供
するところにある。
An object of the present invention is to provide a method for producing a high heat load resistant C / C material that satisfies the above-mentioned production conditions based on the C / C material, and a first method for a fusion reactor composed of the obtained C / C material. The wall material is provided.

〔課題を解決するための手段〕[Means for solving the problem]

上記の目的を達成するための本発明による高熱負荷抵
抗性C/C材の製造法は、炭素繊維強化炭素複合基材の表
面に、樹脂系接着材を介して高密度黒鉛フィルムを展着
し、ついで焼成炭化処理することを構成上の特徴とす
る。
In order to achieve the above object, the method for producing a high heat load resistant C / C material according to the present invention comprises, on a surface of a carbon fiber reinforced carbon composite substrate, spreading a high-density graphite film via a resin-based adhesive. Then, the structure is characterized by performing a firing carbonization treatment.

本発明において使用する炭素繊維強化炭素複合基材
は、特に製造履歴、組織性状、形状などは問われない
が、通常は次のようにして製造したものが適用される。
The carbon fiber reinforced carbon composite base material used in the present invention is not particularly limited in terms of production history, texture, shape and the like, but usually the one produced as follows is applied.

炭素繊維には、ポリアクリロニトリル系、レーヨン
系、ピッチ系など各種原料から製造された平織、綾織な
どの織布、フエルトあるいはトウが使用され、マトリッ
クス樹脂としてはフェノール系、フラン系その他炭化性
の良好な液状熱硬化性樹脂が用いられる。炭素繊維は、
浸漬、含浸、塗布などの手段を用いてマトリックス樹脂
で十分に濡らしたのち半硬化してプリプレグを形成し、
ついで積層加圧成形する。成形体は加熱して樹脂成分を
完全に硬化し、引き続き常法に従って焼成炭化処理また
は更に黒鉛化して基材を得る。基材には必要に応じマト
リックス樹脂を含浸、硬化、炭化する処理を反復して、
組織の緻密化を図ることもできる。
For the carbon fiber, woven fabric such as plain weave, twill weave, felt or tow manufactured from various raw materials such as polyacrylonitrile, rayon, and pitch is used, and phenol, furan, and other good carbonizable matrix resins are used. Liquid thermosetting resin is used. Carbon fiber is
Immersion, impregnation, fully wet with the matrix resin using means such as coating and then semi-cured to form a prepreg,
Subsequently, lamination pressure molding is performed. The molded body is heated to completely cure the resin component, and then calcined or carbonized or further graphitized according to a conventional method to obtain a base material. The base material is impregnated with the matrix resin as necessary, cured, and repeatedly carbonized,
The organization can be refined.

このようにして得られた炭素繊維強化炭素複合基材の
表面には、樹脂系接着剤を介して高密度黒鉛フィルムを
展着する。
A high-density graphite film is spread on the surface of the carbon fiber reinforced carbon composite base material thus obtained via a resin-based adhesive.

高密度黒鉛フィルムは、芳香族ポリイミド、ポリオキ
シジアゾールまたはポリパラフェニレビニレンから選ば
れた高分子フィルムを炭化する方法によって製造された
ものが有効に適用される。この際、炭化処理の条件とし
て、高分子フィルムを炭素質押え板に挟み込み10〜100g
f/cm2程度の押さえ圧力を加えた状態で不活性雰囲気に
保持された加熱炉に入れ、処理温度を2000℃以上、好適
には2000〜2500℃に設定しておこなうことが好ましい。
As the high-density graphite film, a film produced by a method of carbonizing a polymer film selected from aromatic polyimide, polyoxydiazole or polyparaphenylene vinylene is effectively applied. At this time, as a condition of the carbonization treatment, a polymer film was sandwiched between carbonaceous holding plates and 10 to 100 g.
It is preferable that the treatment is carried out in a heating furnace maintained in an inert atmosphere while applying a pressing pressure of about f / cm 2 , and the treatment temperature is set to 2000 ° C. or higher, preferably 2000 to 2500 ° C.

該方法で得られる高密度黒鉛フィルムは、黒鉛層面が
フィルムと平行に配列する高配向性の層状結晶構造を備
える可撓性でガラス状の薄い黒鉛シートで、厚さは0.02
〜2mmの範囲で所望の肉厚に製造することができる。
The high-density graphite film obtained by the method is a flexible, glassy thin graphite sheet having a highly oriented layered crystal structure in which the graphite layer surface is arranged in parallel with the film, and has a thickness of 0.02.
It can be manufactured to a desired thickness in the range of 22 mm.

樹脂系接着材には、フェノール系、フラン系、ポリイ
ミド系など比較的残炭率の高い樹脂の少なくとも1成分
からなる樹脂液、もしくはこれらの樹脂液に例えば黒
鉛、コークス、ガラス状カーボンなどの微粉末またはカ
ーボンブラックを混入してペースト化したものが好適に
使用される。
Resin-based adhesives include a resin solution composed of at least one component of a resin having a relatively high residual carbon ratio such as a phenol-based, furan-based, or polyimide-based resin, or a fine resin such as graphite, coke, glassy carbon, etc. A paste obtained by mixing powder or carbon black is preferably used.

展着は、炭素繊維強化炭素複合基材の表面に樹脂系接
着材を均等に塗布して高密度黒鉛フィルムを貼り付け、
軽く押さえながら50〜300℃の温度で加熱硬化する方法
でおこなうことができる。
For spreading, apply a resin-based adhesive evenly to the surface of the carbon fiber reinforced carbon composite base material and attach a high-density graphite film,
The method can be carried out by heating and curing at a temperature of 50 to 300 ° C. while gently pressing.

高密度黒鉛フィルムを展着した炭素繊維強化炭素複合
基材は、ついで不活性雰囲気中で700℃以上の温度域で
焼成炭化処理して高熱負荷抵抗性C/C材を製造する。
The carbon fiber reinforced carbon composite base material on which the high-density graphite film is spread is then subjected to a calcination treatment in a temperature range of 700 ° C. or more in an inert atmosphere to produce a high heat load resistant C / C material.

上記の製造法で得られる高熱負荷抵抗性のC/C材から
構成された核融合炉の第1壁材が、第2の発明である。
The first wall material of the fusion reactor composed of the high heat load resistant C / C material obtained by the above manufacturing method is the second invention.

〔作 用〕(Operation)

本発明の製造法において基材表面に展着される高密度
黒鉛フィルムは、フィルム面に沿って黒鉛結晶層が配向
する性状を備えているから熱伝導性がよく、したがって
エロージョンに対する抵抗性が頗る高い。この機能が、
炭素繊維強化炭素複合基材の有する高度の耐熱衝撃性と
相俟って材質としての高熱負荷抵抗性を効果的に向上さ
せる。
The high-density graphite film spread on the substrate surface in the production method of the present invention has good thermal conductivity because of the property that the graphite crystal layer is oriented along the film surface, and therefore has very low resistance to erosion. high. This feature
In combination with the high thermal shock resistance of the carbon fiber reinforced carbon composite base material, high heat load resistance as a material is effectively improved.

したがって、製造されたC/C材により構成する本発明
による核融合炉の第1壁材は、長期に亘って安定した使
用が保証される。そのうえ、エロージョン現象によって
表面部分が損耗した場合には、高密度黒鉛フィルムを張
り替えるか、補填することにより短時間内に補修するこ
とができる。
Therefore, the first wall material of the fusion reactor according to the present invention constituted by the manufactured C / C material is guaranteed to be stably used for a long period of time. In addition, when the surface portion is worn out by the erosion phenomenon, it can be repaired in a short time by replacing or supplementing the high-density graphite film.

また、本発明の製造法によれば、高密度黒鉛フィルム
が適度な可撓性を有するため基材が曲面その他の複雑形
状であっても容易に展着することができ、操作が簡単で
あるため大型材料の生産が可能である。
Further, according to the production method of the present invention, since the high-density graphite film has appropriate flexibility, it can be easily spread even if the substrate has a curved surface or other complicated shape, and the operation is simple. Therefore, production of large materials is possible.

〔実施例〕〔Example〕

以下、本発明の実施例を比較例と対比して説明する。 Hereinafter, examples of the present invention will be described in comparison with comparative examples.

実施例 (1)炭素繊維強化炭素複合基材の作製 ポリアクリロニトリル系高弾性タイプの平織炭素繊維
布〔東邦レーヨン(株)製、W6101〕をフェノール樹脂
初期縮合物〔住友デュレズ(株)製、PR940〕からなる
マトリックス樹脂液に浸漬して含浸処理した。これを積
層してモールドに入れ、加熱温度110℃、適用圧力20kg/
cm2の条件で複合成形した。
Examples (1) Preparation of Carbon Fiber Reinforced Carbon Composite Substrate Polyacrylonitrile-based high elasticity type plain woven carbon fiber cloth [W6101 manufactured by Toho Rayon Co., Ltd.] was converted to a phenol resin initial condensate [Sumitomo Durez Co., Ltd., PR940]. And immersion in a matrix resin solution consisting of This is laminated and put into a mold, heating temperature 110 ° C, applied pressure 20kg /
Composite molding was performed under the condition of cm 2 .

成形物を250℃の温度に加熱して完全に硬化したの
ち、窒素雰囲気に保持された焼成炉に移し、2500℃の温
度に5時間保持して焼成炭化した。
After the molded article was heated to a temperature of 250 ° C. to be completely cured, it was transferred to a firing furnace maintained in a nitrogen atmosphere, and was fired and carbonized at a temperature of 2500 ° C. for 5 hours.

得られた炭素繊維強化炭素複合基材は、厚さ10mmの二
次元積層タイプの板状体で、嵩密度1.53g/cc、曲げ強度
15.8kgf/cm2の特性を備えるものであった。
The obtained carbon fiber reinforced carbon composite base material is a 10-mm-thick two-dimensional laminated plate-shaped body, with a bulk density of 1.53 g / cc and bending strength.
It had characteristics of 15.8 kgf / cm 2 .

(2)高密度黒鉛フィルムの作製 芳香族ポリイミド樹脂フィルム〔東レ・デュポン
(株)製、“カプトンH"〕を平滑面をもつ黒鉛押え板に
挟み付け、60gf/cm2の押え圧力をかけた状態で窒素ガス
雰囲気炉に入れ、2200℃の温度で炭化処理を施した。
(2) Preparation of high-density graphite film An aromatic polyimide resin film ("Kapton H" manufactured by Du Pont-Toray Co., Ltd.) was sandwiched between graphite pressing plates having a smooth surface, and a pressing pressure of 60 gf / cm 2 was applied. In this state, it was put into a nitrogen gas atmosphere furnace and carbonized at a temperature of 2200 ° C.

得られた黒鉛フィルムは、嵩密度2.25g/ccの高密度組
織を有する厚さ0.05mmの可撓性のある薄膜シートであっ
た。
The obtained graphite film was a 0.05 mm thick flexible thin film sheet having a high density structure with a bulk density of 2.25 g / cc.

(3)高熱負荷抵抗性C/C材の製造 前記(1)で作製した炭素繊維強化炭素複合基材を縦
横100mmに切断し、表面に接着材としてポリイミド樹脂
系の前駆体ワニス〔宇部興産(株)製、U−ワニスA〕
を均一に塗布したのち前記(2)の高密度黒鉛フィルム
を貼り付けた。引き続き、貼付面に約100gf/cm2の荷重
をかけながら120℃の温度に加熱して接着材成分を硬化
させて展着を完結させた。
(3) Production of high heat load resistant C / C material The carbon fiber reinforced carbon composite base material prepared in the above (1) is cut into 100 mm in length and width, and a polyimide resin-based precursor varnish [Ube Industries ( U-varnish A)
Was uniformly applied, and then the high-density graphite film of the above (2) was attached. Subsequently, while applying a load of about 100 gf / cm 2 to the application surface, the adhesive was heated to a temperature of 120 ° C. to cure the adhesive component, thereby completing the spreading.

高密度黒鉛フィルムを展着した基材は、ついで窒素雰
囲気に保持した加熱炉に移し、2000℃の温度で焼成炭化
処理して高熱負荷抵抗性C/C材を製造した。
The substrate on which the high-density graphite film was spread was then transferred to a heating furnace maintained in a nitrogen atmosphere, and calcined and carbonized at a temperature of 2000 ° C. to produce a high heat load resistant C / C material.

(4)核融合炉第1壁材としての性能評価 前記(3)で製造された高熱負荷抵抗性C/C材をトカ
マク型核融合炉の第1壁材タイルとした場合の熱衝撃性
およびエロージョン消耗度を評価するため、C/C材(10
サンプル)の高密度黒鉛フィルム展着面に電子ビームを
照射した。照明条件は、熱流速100MW/m2、照射時間0.1s
ec.、照射面積10mm角とし、照射を10回に亘り反復し
た。
(4) Performance evaluation as the first wall material of fusion reactor The thermal shock resistance and the thermal shock resistance when the high heat load resistant C / C material produced in (3) above was used as the first wall material tile of a tokamak fusion reactor C / C material (10
The sample was irradiated with an electron beam on the high-density graphite film-deposited surface. Lighting conditions, heat flux 100 MW / m 2, the irradiation time 0.1s
ec., the irradiation area was 10 mm square, and irradiation was repeated 10 times.

照射処理後の熱衝撃によるクラックの発生状況および
エロージョンによる重量減少(平均)を測定し、結果を
表1に示した。
The occurrence of cracks due to thermal shock after the irradiation treatment and the weight loss (average) due to erosion were measured, and the results are shown in Table 1.

実施例2 接着材としてポリイミド樹脂系の前躯体ワニス〔宇部
興産(株)製、U−ワニスA〕に平均粒子径8μmの黒
鉛微粉末を重量比で2:1の割合で混練したペーストを用
いた外は、実施例1と同一の材料およびプロセスにより
高熱負荷抵抗性C/C材を製造した。
Example 2 A paste prepared by kneading a graphite fine powder having an average particle diameter of 8 μm at a weight ratio of 2: 1 to a polyimide resin-based precursor varnish [U-Varnish A, manufactured by Ube Industries, Ltd.] as an adhesive was used. Other than that, a high heat load resistant C / C material was manufactured using the same material and process as in Example 1.

得られた高熱負荷抵抗性C/C材(10サンプル)につ
き、実施例1と同一方法により核融合炉第1壁材として
の評価をおこない、結果を表1に併載した。
The obtained high heat load resistant C / C material (10 samples) was evaluated as a first wall material of a fusion reactor by the same method as in Example 1, and the results are shown in Table 1.

比較例1 実施例1の(1)で作製した炭素繊維強化炭素複合基
材そのもの(10サンプル)につき実施例1と同一方法に
より電子ビームの照射テストをおこない、結果を表1に
併載した。
Comparative Example 1 An electron beam irradiation test was performed on the carbon fiber reinforced carbon composite base material itself (10 samples) produced in (1) of Example 1 by the same method as in Example 1, and the results are also shown in Table 1.

比較例2 嵩密度1.83g/cc、曲げ強度500kgf/cm2の特性を備える
等方性高密度黒鉛材〔東海カーボン(株)製、G347〕を
縦横100mm、厚さ10mmに切り出した。この試片(10サン
プル)につき実施例1と同一方法により電子ビームの照
射テストをおこない結果を表1に併載した。
Comparative Example 2 An isotropic high-density graphite material (G347, manufactured by Tokai Carbon Co., Ltd.) having characteristics of a bulk density of 1.83 g / cc and a bending strength of 500 kgf / cm 2 was cut into a length and width of 100 mm and a thickness of 10 mm. An electron beam irradiation test was performed on the test pieces (10 samples) in the same manner as in Example 1, and the results are also shown in Table 1.

表1の結果から、本発明により製造された高熱負荷抵
抗性C/C材は核融合炉の第1壁材とした場合に優れた耐
熱衝撃性と耐エロージョン性と発揮しりことが認められ
る。これに対し、表面に高密度黒鉛フィルムを展着しな
いC/C材はエロージョンに対する抵抗性が乏しく、また
通常の等方性高密度黒鉛材では耐熱衝撃性に面で要求性
能を満足しないことが判る。
From the results shown in Table 1, it is recognized that the high heat load resistant C / C material produced according to the present invention exhibits excellent thermal shock resistance and erosion resistance when used as the first wall material of a fusion reactor. In contrast, C / C materials that do not have a high-density graphite film spread on the surface have poor erosion resistance, and ordinary isotropic high-density graphite materials do not satisfy the required performance in terms of thermal shock resistance. I understand.

〔発明の効果〕〔The invention's effect〕

以上のとおり、本発明に従えば炭素繊維強化炭素複合
基材の表面に高密度黒鉛フィルムを展着して一体に焼成
炭化処理することにより大型の高熱負荷抵抗性C/C材が
低コストで製造することができる。また、本発明により
高度の耐熱衝撃性と耐エロージョン性を兼備し、長期に
亘って安定な性能を示す核融合炉の第1壁材が提供さ
れ、エロージョン部分の補修も容易におこなうことがで
きる。
As described above, according to the present invention, a large high heat load resistant C / C material can be produced at a low cost by spreading a high-density graphite film on the surface of a carbon fiber reinforced carbon composite substrate and integrally firing and carbonizing. Can be manufactured. Further, the present invention provides a first wall material of a fusion reactor having both high thermal shock resistance and erosion resistance and exhibiting stable performance over a long period of time, and the erosion portion can be easily repaired. .

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C08G 73/10 G21B 1/00 D C09J 179/08 C04B 35/52 E G21B 1/00 G (58)調査した分野(Int.Cl.7,DB名) C04B 41/87 C04B 35/52 C04B 35/83 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────の Continuation of front page (51) Int.Cl. 7 Identification code FI C08G 73/10 G21B 1/00 D C09J 179/08 C04B 35/52 E G21B 1/00 G (58) Investigated field (Int. Cl. 7, DB name) C04B 41/87 C04B 35/52 C04B 35/83 CA (STN) REGISTRY (STN)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維強化炭素複合基材の表面に、樹脂
系接着材を介して高密度黒鉛フィルムを展着し、ついで
焼成炭化処理することを特徴とする高熱負荷抵抗性C/C
材の製造法。
1. A high heat load resistant C / C, wherein a high-density graphite film is spread on a surface of a carbon fiber reinforced carbon composite base material via a resin-based adhesive, and then calcined and carbonized.
The method of manufacturing the material.
【請求項2】高密度黒鉛フィルムが、芳香族ポリイミ
ド、ポリオキシジアゾールまたはポリパラフェニレンビ
ニレンから選ばれた高分子フィルムを2000℃以上の温度
で炭化させたものである請求項1記載の高熱負荷抵抗性
C/C材の製造法。
2. The high-temperature graphite film according to claim 1, wherein the high-density graphite film is obtained by carbonizing a polymer film selected from aromatic polyimide, polyoxydiazole or polyparaphenylene vinylene at a temperature of 2000 ° C. or higher. Load resistance
Manufacturing method of C / C material.
【請求項3】樹脂系接着材が、フェノール樹脂、フラン
系樹脂またはポリイミド樹脂の少なくとも1成分からな
る樹脂液、もしくはこれら樹脂液に炭素質粉末を混入し
たペーストである請求項1記載の高熱負荷抵抗性C/C材
の製造法。
3. The high heat load according to claim 1, wherein the resin-based adhesive is a resin liquid comprising at least one component of a phenolic resin, a furan-based resin, or a polyimide resin, or a paste obtained by mixing a carbonaceous powder with these resin liquids. Manufacturing method of resistant C / C material.
【請求項4】請求項1記載の高熱負荷抵抗性C/C材から
構成された核融合炉の第1壁材。
4. A first wall material of a fusion reactor comprising the high heat load resistant C / C material according to claim 1.
JP19699690A 1990-07-24 1990-07-24 Method for producing high heat load resistant C / C material and first wall material of fusion reactor Expired - Fee Related JP3215701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19699690A JP3215701B2 (en) 1990-07-24 1990-07-24 Method for producing high heat load resistant C / C material and first wall material of fusion reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19699690A JP3215701B2 (en) 1990-07-24 1990-07-24 Method for producing high heat load resistant C / C material and first wall material of fusion reactor

Publications (2)

Publication Number Publication Date
JPH0483779A JPH0483779A (en) 1992-03-17
JP3215701B2 true JP3215701B2 (en) 2001-10-09

Family

ID=16367095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19699690A Expired - Fee Related JP3215701B2 (en) 1990-07-24 1990-07-24 Method for producing high heat load resistant C / C material and first wall material of fusion reactor

Country Status (1)

Country Link
JP (1) JP3215701B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1626816B1 (en) * 2003-05-16 2009-09-09 Cinvention Ag Method for coating substrates with a carbon-based material
EP1881049B1 (en) * 2005-04-22 2020-11-04 Kureha Corporation Adhesive agent for thermally insulating material and carbonized laminate for thermally insulating material using the same

Also Published As

Publication number Publication date
JPH0483779A (en) 1992-03-17

Similar Documents

Publication Publication Date Title
Patton et al. Ablation, mechanical and thermal conductivity properties of vapor grown carbon fiber/phenolic matrix composites
JP2005297547A (en) Carbon fiber sheet and porous carbon board and its production method
JP3215701B2 (en) Method for producing high heat load resistant C / C material and first wall material of fusion reactor
JPH03150266A (en) Production of carbon/carbon composite material
JPH03163174A (en) Heat-insulating coating agent and process for coating with same
JP4582685B2 (en) Adhesive for heat insulating material and carbonized laminate for heat insulating material using the same
CN110294632B (en) Carbon fiber three-dimensional fabric reinforced polyimide-carbon-based binary matrix composite material
JPS6054270B2 (en) Carbon fiber reinforced carbon friction material
KR20210133454A (en) Carbon fiber carbon sheet and manufacturing method thereof
JPH02111679A (en) Production of oxidation-resistant carbon fiber-reinforced carbon material
JP2001181062A (en) Carbon fiber-reinforced carbon composite material impregnated with resin and method for producing the same
JP3574831B2 (en) Porous carbon material for phosphoric acid type fuel cell and method for producing the same
JPH06263558A (en) Production of porous carbon plate and porous carbon electrode material
CN115991013B (en) Graphene composite heat conducting film and preparation method thereof
JPH04284363A (en) Manufacture of carbon plate
JP2775766B2 (en) Carbon fiber reinforced carbon composite and use thereof
JPS63967A (en) Manufacture of electrode base plate for fuel cell
JPH08245273A (en) Production of carbon fiber reinforced carbon composite material
JP3142167B2 (en) Molding material for carbon fiber reinforced carbon composite
JPH0442857A (en) Preparation of carbon fiber-reinforced composite material
JP2743397B2 (en) Carbon fiber reinforced carbon composite material and method of using the same
KR970007019B1 (en) Process for the preparation of carbon fiber reinforced carbon composite using pitch
JPH0732532A (en) Carbon fiber molded heat insulating material
JP3129424B2 (en) High-strength carbon fiber reinforced carbon composite material structure with ribs and method of manufacturing the same
JP2022138515A (en) Carbon fiber-based heat insulation material and method of manufacturing the same

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees