JP2775766B2 - Carbon fiber reinforced carbon composite and use thereof - Google Patents

Carbon fiber reinforced carbon composite and use thereof

Info

Publication number
JP2775766B2
JP2775766B2 JP63225817A JP22581788A JP2775766B2 JP 2775766 B2 JP2775766 B2 JP 2775766B2 JP 63225817 A JP63225817 A JP 63225817A JP 22581788 A JP22581788 A JP 22581788A JP 2775766 B2 JP2775766 B2 JP 2775766B2
Authority
JP
Japan
Prior art keywords
thickness direction
thermal conductivity
composite material
resin
carbon fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63225817A
Other languages
Japanese (ja)
Other versions
JPH0230665A (en
Inventor
公平 奥山
一夫 丹羽
均 関
公裕 伊尾木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Chemical Corp
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26446322&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2775766(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Mitsubishi Chemical Corp, Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Chemical Corp
Priority to JP63225817A priority Critical patent/JP2775766B2/en
Priority to EP94112521A priority patent/EP0630875B1/en
Priority to DE68929046T priority patent/DE68929046T2/en
Priority to DE68923901T priority patent/DE68923901T2/en
Priority to EP89107551A priority patent/EP0339606B1/en
Publication of JPH0230665A publication Critical patent/JPH0230665A/en
Priority to US07/873,683 priority patent/US5390217A/en
Priority to US08/450,640 priority patent/US5586152A/en
Publication of JP2775766B2 publication Critical patent/JP2775766B2/en
Application granted granted Critical
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • Y02E30/128

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、炭素繊維強化炭素複合材料及びその使用法
に関する。
The present invention relates to a carbon fiber reinforced carbon composite material and a method for using the same.

(従来の技術) 炭素繊維強化炭素複合材料(以下、C/C複合材とい
う)は、軽量、高強度であり、耐熱、耐食性に優れてい
るという特徴を有する。このため、ロケットノズル、ノ
ーズコーン、航空機のディジタルブレーキなどの航空宇
宙材料、発熱体、ホットプレス鋳型、その他の機械部
品、原子炉用部材等に用いられている。
(Prior Art) A carbon fiber reinforced carbon composite material (hereinafter, referred to as a C / C composite material) is characterized by being lightweight, high in strength, and excellent in heat resistance and corrosion resistance. For this reason, they are used for aerospace materials such as rocket nozzles, nose cones, digital brakes for aircraft, heating elements, hot press molds, other mechanical parts, and members for nuclear reactors.

このC/C複合材は、一般にポリアクリロニトリル系、
ピッチ系等の長繊維もしくは短繊維の炭素繊維にフェノ
ール樹脂、フラン樹脂等の熱硬化性樹脂又はピッチ等の
熱可塑性樹脂等のマトリックス物質を含浸又は混合し
て、加熱成形したものを不活性ガス等の非酸化性雰囲気
において、600〜1000℃程度で焼成、さらにピッチ樹脂
を含浸した後焼成するか、化学蒸着法を用いる方法、あ
るいはこれらを組合わせる方法を用いて緻密化した後、
必要に応じて黒鉛化することにより製造されている。
This C / C composite is generally polyacrylonitrile-based,
Pitch-based carbon fibers such as long or short fibers are impregnated or mixed with a thermosetting resin such as phenolic resin or furan resin or a thermoplastic resin such as pitch, and then heated and molded into an inert gas. In a non-oxidizing atmosphere such as, firing at about 600 to 1000 ° C., firing after impregnating the pitch resin, or after densification using a method using chemical vapor deposition, or a method combining these,
It is manufactured by graphitization as needed.

(発明が解決しようとする問題点) しかしながら、得られるC/C複合材を、特に一方向、
すなわち厚み方向に熱を有効に伝導又は除去する用途に
使う必要がある場合には、必ずしも満足すべきものとは
いえず、実用に供するには問題があった。
(Problems to be solved by the invention) However, the obtained C / C composite material is not
That is, when it is necessary to use it for the purpose of effectively conducting or removing heat in the thickness direction, it is not always satisfactory, and there is a problem in practical use.

そこで、本発明者らは、上述の不十分さを克服したC/
C複合材を得るべく、種々検討を行ない、一方向の熱伝
導率を大きくしたC/C複合材を得、本発明に到達した。
Therefore, the present inventors have overcome the above-mentioned insufficiency C /
Various studies were conducted to obtain a C composite material, and a C / C composite material having an increased thermal conductivity in one direction was obtained, and the present invention was achieved.

すなわち、本発明の要旨は炭素繊維の約50%以上が実
質的に厚み方向に配向しており、厚み方向に直角でかつ
繊維の厚み方向に配向する面に直角となる方向の熱伝導
率に対する厚み方向の熱伝導率の比率が1.2以上であ
り、かつ厚み方向の熱伝導率が1.5W/cm・℃以上である
炭素繊維強化炭素複合材料およびその使用法にある。
That is, the gist of the present invention is that about 50% or more of carbon fibers are substantially oriented in the thickness direction, and the thermal conductivity in the direction perpendicular to the thickness direction and perpendicular to the plane oriented in the thickness direction of the fiber. A carbon fiber reinforced carbon composite material having a thermal conductivity ratio in the thickness direction of 1.2 or more and a thermal conductivity in the thickness direction of 1.5 W / cm · ° C. or more and a method of using the same.

(問題点を解決するための手段) 以下、本発明を詳細に説明する。(Means for Solving the Problems) Hereinafter, the present invention will be described in detail.

本発明で使用する炭素繊維は、ポリアクリロニトリル
(PAN)系、ピッチ系炭素繊維あるいは気相成長法炭素
繊維等、いずれの種類でもよいが、特に繊維軸方向の熱
伝導率が高い高特性のピッチ系、特に石炭系ピッチ系、
炭素繊維が好適である。
The carbon fiber used in the present invention may be of any type such as polyacrylonitrile (PAN) -based, pitch-based carbon fiber, or vapor grown carbon fiber, and particularly high-performance pitch having high thermal conductivity in the fiber axis direction. System, especially coal-based pitch system,
Carbon fibers are preferred.

本発明に係るC/C複合材は、このような炭素繊維を用
いて得られ、炭素繊維の約50%以上が実質的に厚み方向
に配向しており、厚み方向に直角でかつ繊維の厚み方向
に配向する面に直角となる方向の熱伝導率に対する厚み
方向の熱伝導率の比率が1.2以上、好ましくは1.5以上で
あり、かつ厚み方向の熱伝導率が1.5W/cm・℃以上、好
ましくは1.8W/cm・℃以上である点に特徴を有する。
The C / C composite material according to the present invention is obtained using such a carbon fiber, and about 50% or more of the carbon fiber is substantially oriented in the thickness direction, and is perpendicular to the thickness direction and the thickness of the fiber. The ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the plane oriented in the direction is 1.2 or more, preferably 1.5 or more, and the thermal conductivity in the thickness direction is 1.5 W / cm It is characterized in that it is preferably at least 1.8 W / cm · ° C.

そして、このようなC/C複合材は、次のような方法に
よって、織布、短繊維、ウェッブ、不織布等を用いて得
られる。
Then, such a C / C composite material is obtained by using a woven fabric, a short fiber, a web, a nonwoven fabric, or the like by the following method.

〔A〕 織布を用いる場合: 織布としては、通常の平織、朱子織、綾織などが用い
られる。
[A] When a woven fabric is used: As the woven fabric, ordinary plain weave, satin weave, twill weave and the like are used.

まず、これらの織布を、熱硬化性樹脂に含浸する。 First, these woven fabrics are impregnated with a thermosetting resin.

熱硬化性樹脂としては、例えばフェノール樹脂、フラ
ン樹脂、エポキシ樹脂、不飽和ポリエステル樹脂等が挙
げられるが、フェノール樹脂特にレゾール型のフェノー
ル樹脂が好適に使用できる。これらの熱硬化性樹脂は通
常、エタノールのようなアルコール類、ヘキサンのよう
な炭化水素あるいはアセトンといった溶剤で溶解希釈し
て用いる。
Examples of the thermosetting resin include a phenol resin, a furan resin, an epoxy resin, and an unsaturated polyester resin, and a phenol resin, particularly a resol-type phenol resin can be preferably used. These thermosetting resins are usually dissolved and diluted with a solvent such as alcohols such as ethanol, hydrocarbons such as hexane, or acetone.

熱硬化性樹脂溶液の濃度としては通常10〜70wt%、好
ましくは20〜60wt%の範囲のものを使用する。
The concentration of the thermosetting resin solution is usually in the range of 10 to 70% by weight, preferably 20 to 60% by weight.

また、フラン樹脂、エポキシ樹脂等硬化剤を要するも
のは硬化剤も溶液中に添加されるがその量はそれぞれの
樹脂に適した量が添加される。
For those requiring a curing agent such as a furan resin and an epoxy resin, the curing agent is also added to the solution, but the amount is added in an amount suitable for each resin.

かかる熱硬化性樹脂溶液に炭素繊維の織布を含浸する
方法としては、溶液中に炭素繊維を浸漬するといった簡
単な方法で良いが、連続した織布であれば溶液の満たさ
れた槽内を連続的に走行させるのが好ましい。
As a method of impregnating such a thermosetting resin solution with a woven fabric of carbon fibers, a simple method such as immersing carbon fibers in the solution may be used. It is preferable to run continuously.

また、この際に溶液の満たされた槽に10〜50KHz程度
の超音波を作用させておくと各単繊維間、織目間の気泡
等による処理むらの影響を防ぐことができるので好まし
い。
At this time, it is preferable to apply an ultrasonic wave of about 10 to 50 KHz to the tank filled with the solution, because it is possible to prevent the influence of unevenness of treatment due to bubbles or the like between the individual fibers or between the weaves.

上記含浸後、たとえば乾燥機に入れ溶媒を除去し、得
られる繊維/樹脂の複合体を所望の大きさに切断する。
After the above impregnation, the fiber / resin composite obtained is cut into a desired size, for example, put in a dryer to remove the solvent.

たとえば、織布をロールの間を通してフェノール樹脂
のアルコール溶液に含浸し、さらにその織布をロール間
を通すことによって、余分の樹脂を除き、アルコールの
沸点より約10℃低い温度に保った乾燥機に入れアルコー
ルを除去する。その後、カッターを用いてこの織布が目
的とする製品の厚み方向の断面よりやや大きい寸法にカ
ッターで切断する。
For example, a dryer in which a woven fabric is impregnated with an alcohol solution of a phenol resin by passing between rolls, and the woven fabric is passed between the rolls to remove excess resin and keep the temperature at about 10 ° C. lower than the boiling point of the alcohol. Remove alcohol. Thereafter, the woven fabric is cut with a cutter to a size slightly larger than the cross section in the thickness direction of the product intended by the cutter.

切断された複合体は、目的とする製品よりやや大きい
寸法を有する金型枠内に積み重ねて充填し成型する。た
とえば、切断された複合体を積み重ね、その積み重ねた
方向に圧力を加え、かつ温度を高くすることにより、成
型し樹脂を硬化させる成型体を得る。
The cut composites are stacked and filled in a mold having dimensions slightly larger than the intended product, and molded. For example, the cut composites are stacked, pressure is applied in the stacking direction, and the temperature is increased to obtain a molded body in which the resin is cured by curing.

加熱硬化処理の条件は使用する熱硬化性樹脂の種類に
よってそれぞれ適正条件は異なるが通常50〜300℃、好
ましくは80〜200℃の温度で0.2〜5時間、好ましくは0.
2〜2時間加熱処理される。
The appropriate conditions for the heat curing treatment vary depending on the type of the thermosetting resin used, but are usually 50 to 300 ° C, preferably 80 to 200 ° C for 0.2 to 5 hours, preferably 0.1 to 5 hours.
Heat treatment is performed for 2 to 2 hours.

その後、成型体を容器に入れ、成型体をコークスブリ
ーズで取囲むような形とした後、容器を電気炉に入れ、
必要に応じてN2ガス流通下で1000℃程度まで昇温して
炭化する。
After that, put the molded body in a container, and shape the molded body to be surrounded by coke breeze, then put the container in an electric furnace,
If necessary, the temperature is raised to about 1000 ° C. under N 2 gas flow to carbonize.

必要に応じては、さらに黒鉛化炉に入れ、不活性雰囲
気下で2000℃以上の温度まで熱処理する。
If necessary, it is further placed in a graphitization furnace and heat-treated to a temperature of 2000 ° C. or more in an inert atmosphere.

ついで、得られた炭化物もしくは黒鉛化物を石油系、
石炭系ピッチあるいはフェノール樹脂、フラン樹脂等の
熱硬化性樹脂に含浸した後、また熱硬化性樹脂の場合に
は樹脂を硬化させた後、炭化させる。
Then, the obtained carbide or graphitized product is petroleum-based,
After impregnating a thermosetting resin such as coal pitch or a phenol resin or a furan resin, or in the case of a thermosetting resin, the resin is cured and then carbonized.

その再、熱硬化性樹脂は、アルコール、アセトン、ア
ントラセン油等の溶媒に溶解して適当な粘度に調整した
ものを使用するのが一般的である。
The recurable thermosetting resin is generally used by dissolving it in a solvent such as alcohol, acetone or anthracene oil and adjusting the viscosity to an appropriate value.

また、この場合、圧力下に含浸する方法が好適に採用
される。
In this case, a method of impregnating under pressure is preferably employed.

たとえば、成型体の炭化物もしくは黒鉛化物とピッチ
を低圧反応容器(オートクレーブ)内に入れ真空内で加
熱してピッチを溶解し、炭化物もしくは黒鉛化物がピッ
チの溶融液の中に浸漬した状態となった後、N2ガスを
導入して低圧で550〜600℃程度に昇温する。
For example, the carbide or graphitized material and the pitch of the molded body were put into a low-pressure reactor (autoclave) and heated in a vacuum to dissolve the pitch, and the carbide or the graphitized material was immersed in the pitch melt. Thereafter, N 2 gas is introduced and the temperature is raised to about 550 to 600 ° C. at a low pressure.

その後、冷却して炭化物もしくは黒鉛化物の緻密化物
を取出し、前述と同様の方法でこれを1000℃程度まで炭
化し、必要に応じて黒鉛化する。
Thereafter, it is cooled to take out a densified carbide or graphitized material, carbonized to about 1000 ° C. in the same manner as described above, and graphitized as necessary.

以上のいわゆる緻密化の方法を繰返して行なうことに
より比重1.6以上の高緻密のC/C複合材を得る。
By repeating the above-mentioned so-called densification method, a highly dense C / C composite material having a specific gravity of 1.6 or more is obtained.

この際、繊維/樹脂複合体の樹脂含有量や緻密化が不
十分であったり、炭化、黒鉛化の際の昇温速度が大きす
ぎると繊維の長さ方向に直角の方向の強度が小さくな
り、場合によっては破壊に至るので適切な条件を選ぶ必
要がある。また、黒鉛化温度を高くしたほうが高い熱伝
導率が得られやすい。
At this time, if the resin content or densification of the fiber / resin composite is insufficient, or if the heating rate during carbonization and graphitization is too high, the strength in the direction perpendicular to the length direction of the fiber will decrease. Therefore, it is necessary to select an appropriate condition because it may lead to destruction in some cases. In addition, a higher graphitization temperature facilitates obtaining a higher thermal conductivity.

得られたC/C複合材は厚み方向に1.5W/cm・℃以上(通
常は3.0W/cm・℃未満まで)の熱伝導率、電気伝導率を
有する、異方性の材料となる。
The obtained C / C composite material is an anisotropic material having a thermal conductivity and an electrical conductivity of 1.5 W / cm · ° C. or more (usually up to less than 3.0 W / cm · ° C.) in the thickness direction.

〔B〕 織布を用いる場合のもう一つの実施態様: 熱硬化性樹脂を含浸した炭素繊維織布を積み重ね、つ
いで成型、硬化し、炭化し、ついでピッチ又は熱硬化性
樹脂に含浸した後に炭化、必要に応じて黒鉛化し、目的
とするC/C複合材を得る。
[B] Another embodiment in which a woven fabric is used: A carbon fiber woven fabric impregnated with a thermosetting resin is stacked, then molded, cured, carbonized, and then carbonized after impregnating in a pitch or thermosetting resin. Graphite as needed to obtain the desired C / C composite.

これを、目的とする製品の厚みの方向の断面積より大
きくなるようにこのC/C複合材の織布の面方向の寸法を
とって切断する。
This is cut by taking the dimension of the C / C composite material in the surface direction so as to be larger than the cross-sectional area in the thickness direction of the target product.

この切断した複合体を、面方向が一致するような形、
すなわち目的とする製品の厚み方向に織布の面が向くよ
うに結束又は接着する。
The cut composite is shaped so that the plane directions match,
That is, binding or bonding is performed so that the surface of the woven fabric is oriented in the thickness direction of the target product.

炭素繊維を材料とした長繊維等を用いて周囲を巻くこ
とにより結束させたり、あるいはC/C複合材、一般の炭
素繊維を適当な形にしてこれを結束することにより、互
いに接した面間に間隙がないように結束させる。
By wrapping around using a long fiber made of carbon fiber as a material, or by binding C / C composite material or general carbon fiber in an appropriate shape, Tied together without gaps.

また、面間を、フェノール樹脂を主体とする樹脂など
を用いて接着し、これを再びC/C複合材が最終的に処理
された温度程度にまで昇温させてC/C複合材の切断片を
多数枚互いに接着させてもよい。
In addition, the surfaces are bonded together using a resin mainly composed of phenolic resin, and the temperature is raised again to a temperature at which the C / C composite material is finally processed to cut the C / C composite material. Many pieces may be adhered to each other.

〔C〕 短繊維又は不織布を用いる場合: (i) 炭素繊維の短繊維を解繊し常法により、ウェッ
ブを形成させ、このウェッブを〔A〕の織布のかわりに
用いて〔A〕と同様の方法で処理してウェッブの大部分
の繊維が向いている方向(ウェッブの平面方向)が目的
とする製品の厚み方向に向いたC/C複合材を作成する。
[C] When short fibers or non-woven fabrics are used: (i) A short fiber of carbon fibers is defibrated and a web is formed by an ordinary method, and this web is used in place of the woven fabric of [A] and replaced with [A]. In the same manner, a C / C composite material is prepared in which the direction in which most of the fibers of the web are oriented (the plane direction of the web) is oriented in the thickness direction of the target product.

(ii) 常法により炭素繊維の長繊維から作成した炭素
繊維不織布を、〔A〕の織布のかわりに用いて〔A〕と
同様の方法で処理し、不織布の平面方向が目的とする製
品の厚み方向を向いているC/C複合材を作成する。
(Ii) A carbon fiber non-woven fabric prepared from long fibers of carbon fiber by a conventional method, treated in the same manner as in [A], instead of the woven fabric in [A], and the product is oriented in the plane direction of the non-woven fabric. Create a C / C composite that is oriented in the thickness direction.

〔D〕 短繊維から形成したウェッブをニードリングし
たものを用いる場合: 〔C〕で得られたウェッブの厚み方向にニードリング
したものをウェッブのかわりに用いて、〔C〕と同様に
処理してウェッブの平面方向が目的とするC/C複合材の
厚み方向を向くようにしてC/C複合材を得る。
[D] When using a web formed from short fibers and needling it: Using the web obtained in [C] and needling in the thickness direction instead of the web, treating in the same manner as in [C] Thus, the C / C composite is obtained such that the plane direction of the web is oriented in the thickness direction of the target C / C composite.

本発明におけるC/C複合材は、厚み方向に熱伝導、電
気伝導が高いものであり、熱を有効に除去したり伝達し
たりしうる。また、厚み方向と直角の方向の耐熱衝撃性
も高く、高温炉での使用に耐えるものである。
The C / C composite material of the present invention has high heat conductivity and electric conductivity in the thickness direction, and can effectively remove and transmit heat. In addition, it has high thermal shock resistance in a direction perpendicular to the thickness direction, and can withstand use in a high-temperature furnace.

このC/C複合材は、たとえば、その一方の面に高温度
に加熱された物質を置いても厚み方向の熱伝導率が高い
ため、他方の面に熱が伝わりやすく、この他方の面に冷
却水を流した部分を接触させることにより、この加熱し
た物質を有効に冷却することができる。すなわち、熱交
換により、物質を冷却する場合に有効に使用しうる。
This C / C composite material, for example, has a high thermal conductivity in the thickness direction even if a substance heated at a high temperature is placed on one surface, so that heat is easily transmitted to the other surface, and The heated substance can be effectively cooled by contacting the parts where the cooling water has flowed. That is, it can be effectively used when cooling a substance by heat exchange.

なお、本発明において、繊維軸方向の熱伝導率が大き
いピッチ系、特に石炭ピッチ系、高特性の炭素繊維を用
いると、その効果がより大きくなるので好適である。
In the present invention, it is preferable to use a pitch-based carbon fiber having a high thermal conductivity in the fiber axis direction, particularly a coal pitch-based, high-performance carbon fiber because the effect is further enhanced.

(実施例) 以下、本発明を実施例によりさらに詳細に説明する
が、本発明はこれらの実施例に限定されるものではな
い。
(Examples) Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

実施例1 ピッチ繊維(“ダイアリード”、3000フィラメント、
繊維径10μ)の8枚朱子織(260g/m2)をフェノール樹
脂のエタノール溶液(フェノール樹脂:エタノール=1:
4)に含浸し、70℃の温度に保った乾燥機中でエタノー
ルを除去した後、22×105mmに切断した。
Example 1 Pitch fibers ("Dialead", 3000 filaments,
Eight-sheet satin weave (260 g / m 2 ) with a fiber diameter of 10 μm was mixed with an ethanol solution of phenol resin (phenol resin: ethanol = 1:
After impregnating in 4) and removing ethanol in a drier maintained at a temperature of 70 ° C., it was cut into 22 × 105 mm.

この複合体を22×105mmの平面と直角方向に約95mm積
み重ね、目的とするC/C複合材の寸法より大きくなるよ
うにした。
The composite was stacked about 95 mm in a direction perpendicular to the plane of 22 × 105 mm so as to be larger than the size of the target C / C composite.

ついで150℃で低圧を付加し、1時間で250℃まで昇温
し、250℃で1時間保持し、成型、硬化した。得られた
成型物の寸法は、103×2×93.4×21.9mmであった。
Then, a low pressure was applied at 150 ° C., the temperature was raised to 250 ° C. in one hour, and the temperature was held at 250 ° C. for one hour, followed by molding and curing. The dimensions of the obtained molded product were 103 × 2 × 93.4 × 21.9 mm.

ついで、この成型物をコークスブリーズを詰めた容器
の中に入れコークスブリーズでおおった状態で約50時間
かけて1000℃まで昇温し樹脂の炭化を行なった。
Next, the molded product was placed in a container filled with coke breath, and the temperature was raised to 1000 ° C. over about 50 hours in a state covered with the coke breath to carbonize the resin.

ついで、この炭化した複合体と固形のピッチをオート
クレーブに入れ、減圧状態のまま250℃まで昇温し、つ
いでN2を入れることにより雰囲気を陽圧とした後、昇
温し8時間で500℃まで到達させた後、500℃で5時間保
持した。
Then, the carbonized composite and the solid pitch were put into an autoclave, and the temperature was raised to 250 ° C. in a reduced pressure state. Then, the atmosphere was made positive by adding N 2 , and then the temperature was raised to 500 ° C. for 8 hours. After that, the temperature was kept at 500 ° C. for 5 hours.

昇温の際に圧力は、オートクレーブに付属したバルブ
を使って一定に保持した。
During the heating, the pressure was kept constant using a valve attached to the autoclave.

オートクレーブを冷却し、複合体を取出し、成型品の
炭化と同様の方法で1000℃まで炭化した。上記のオート
クレーブ処理とその後の炭化処理を合計3回行なった
後、これを黒鉛化炉に入れアルゴン雰囲気中、2800℃ま
で昇温した後、冷却し、C/C複合材を得た。
The autoclave was cooled, the composite was taken out, and carbonized to 1000 ° C. in the same manner as the carbonization of the molded product. After the above-mentioned autoclave treatment and subsequent carbonization treatment were performed a total of three times, the mixture was placed in a graphitization furnace, heated to 2800 ° C. in an argon atmosphere, and then cooled to obtain a C / C composite material.

得られたC/C複合材の嵩密度は1.62g/cm3で、厚み方向
の熱伝導率は1.63W/cm・℃であり、それに直角でかつ織
布面とも直角となる方向の熱伝導率は0.23W/cm・℃であ
り、その熱伝導率の比率は7.0であった(炭素繊維の厚
み方向への配向は約50%)。
The bulk density of the obtained C / C composite material is 1.62 g / cm 3 , the thermal conductivity in the thickness direction is 1.63 W / cm ・ ℃, and the thermal conductivity in the direction perpendicular to it and also perpendicular to the woven fabric surface The ratio was 0.23 W / cm · ° C., and the ratio of the thermal conductivity was 7.0 (the orientation of the carbon fibers in the thickness direction was about 50%).

実施例2 実施例1で用いたと同様のピッチ系炭素繊維朱子織
を、実施例1と同様にフェノール樹脂のエタノール溶液
中に含浸し、乾燥し平板上に成型硬化した。ついで、こ
れを1000℃に加熱し、その後、通常のピッチ含浸法を繰
り返すことにより、これを緻密化し、最終的に2800℃で
黒鉛化した。つぎに、この厚み10mmの平板状C/C複合材
を幅20mm、長さ100mmに切断し、その平面が互いに接触
するように20枚重ね、フェノール樹脂で接着し、さらに
炭素繊維で外周を巻くことにより、幅100mm、長さ200m
m、厚さ20mmのC/C複合材を得た。このものの厚み方向の
熱伝導率は1.64W/cm・℃であり、それに直角でかつ接着
面と直角方向の熱伝導率との比率は7.5であった(厚み
方向への配向は約50%)。
Example 2 The same pitch-based carbon fiber satin weave as used in Example 1 was impregnated in an ethanol solution of a phenolic resin, dried and molded on a flat plate in the same manner as in Example 1. Then, this was heated to 1000 ° C., and thereafter, it was densified by repeating a usual pitch impregnation method, and finally graphitized at 2800 ° C. Next, this 10 mm thick plate-like C / C composite material is cut into a width of 20 mm and a length of 100 mm, 20 sheets are stacked so that their planes are in contact with each other, adhered with a phenol resin, and further wound around with carbon fiber. By this, width 100 mm, length 200 m
Thus, a C / C composite material having a thickness of 20 mm and a thickness of 20 mm was obtained. The thermal conductivity in the thickness direction was 1.64 W / cm · ° C., and the ratio of the thermal conductivity in the direction perpendicular to the adhesive surface and the direction perpendicular to the adhesive surface was 7.5 (the orientation in the thickness direction was about 50%). .

実施例3 ピッチ繊維(“ダイアリード”、3000フィラメント、
繊維径10μ)の繊維を切断して短繊維を得、ついでこれ
を解繊し、ウェッブを形成させ、30mm×150mmに切断し
た後、これをフェノール樹脂のエタノール溶液に含浸し
た。ついで、約100mmの厚さとなるようにこれを積層
し、実施例1と同様の方法でC/C複合材を製造した。
Example 3 pitch fibers ("Dialead", 3000 filaments,
Short fibers were obtained by cutting fibers having a fiber diameter of 10 μm), then defibrated to form a web, cut into 30 mm × 150 mm, and impregnated with an ethanol solution of a phenol resin. Then, these were laminated so as to have a thickness of about 100 mm, and a C / C composite material was manufactured in the same manner as in Example 1.

得られたC/C複合材の厚み方向の熱伝導率は1.64であ
り、厚み方向と厚み方向に直角でかつ積層方向に平行な
方向の熱伝導率の比率は約6.5であった(厚み方向への
配向は約100%)。
The thermal conductivity in the thickness direction of the obtained C / C composite material was 1.64, and the ratio of the thermal conductivity in the direction perpendicular to the thickness direction and the direction parallel to the lamination direction was about 6.5 (the thickness direction). Orientation is about 100%).

実施例4 実施例3で得たと同様のウェッブにニードリングを行
ない、ウェッブの厚み方向に繊維を配向させたフェルト
を作った。
Example 4 Needling was performed on the same web as that obtained in Example 3 to produce a felt in which the fibers were oriented in the thickness direction of the web.

これを用いて実施例3と同様の方法でC/C複合材を
得、実施例3と同様に熱伝導率を測定したところ、厚み
方向の熱伝導率は1.64、比率は6.0であった(厚み方向
への平衡は約93%)。
Using this, a C / C composite material was obtained in the same manner as in Example 3, and the thermal conductivity was measured in the same manner as in Example 3. As a result, the thermal conductivity in the thickness direction was 1.64, and the ratio was 6.0 ( The equilibrium in the thickness direction is about 93%).

実施例5 実施例1において、目的とするC/C複合材の寸法が大
きかったため、複合体の寸法が45×110mmとなるように
切断して、最終的に得られるC/C複合材中の炭素繊維含
有量が多くなるように積重ねて得られた成型物の寸法を
112×105×46mmとしたこと、及びオートクレーブ処理と
その後の炭化処理を合計4回行なったことのほかは、実
施例1と同様にしてC/C複合材を得た。
Example 5 In Example 1, since the size of the target C / C composite material was large, it was cut so that the size of the composite became 45 × 110 mm, and the C / C composite material finally obtained was The dimensions of the moldings obtained by stacking to increase the carbon fiber content
A C / C composite material was obtained in the same manner as in Example 1 except that the size was 112 × 105 × 46 mm, and that the autoclave treatment and the subsequent carbonization treatment were performed four times in total.

得られた複合体の嵩密度は1.82g/cm3で、厚み方向の
熱伝導率は2.14W/cm・℃であり、それに直角でかつ織布
面とも直角となる方向の熱伝導率は0.34W/cm・℃であ
り、その熱伝導率の比率は6.0であった(炭素繊維の厚
み方向への配向は約50%)。
The bulk density of the resulting complex with 1.82 g / cm 3, the thermal conductivity in the thickness direction is 2.14W / cm · ℃, it is perpendicular at and the direction of the thermal conductivity at right angles with the fabric surface 0.34 W / cm · ° C., and the ratio of the thermal conductivity was 6.0 (the orientation of the carbon fibers in the thickness direction was about 50%).

実施例6 実施例5において、熱処理温度を3000℃としたほか
は、実施例5と同様にしてC/C複合材を得た。
Example 6 A C / C composite material was obtained in the same manner as in Example 5, except that the heat treatment temperature was changed to 3000 ° C.

得られた複合材の嵩密度は、1.84g/cm3で、厚み方向
の熱伝導率は2.95W/cm・℃であり、それに直角でかつ織
布面とも直角となる方向の熱伝導率は、0.37W/cm・℃で
あり、その熱伝導率の比率は約8.0であった。
The bulk density of the obtained composite material is 1.84 g / cm 3 , the thermal conductivity in the thickness direction is 2.95 W / cm ・ ° C., and the thermal conductivity in the direction perpendicular to it and also perpendicular to the woven fabric surface is , 0.37 W / cm · ° C., and the ratio of the thermal conductivity was about 8.0.

実施例7 実施例3において、最終的に得られるC/C複合材中の
炭素繊維含有量が多くなるように積層時の厚さを大きく
したほかは、実施例2と同様にしてC/C複合材を得た。
Example 7 In Example 3, except that the thickness at the time of lamination was increased so that the carbon fiber content in the finally obtained C / C composite material was increased, C / C was performed in the same manner as in Example 2. A composite was obtained.

得られた複合材の嵩密度は、1.85g/cm3であった。The bulk density of the obtained composite material was 1.85 g / cm 3 .

厚み方向の熱伝導率は1.72W/cm・℃であり、それに直
角でかつ接着面と直角方向の熱伝導率(0.39)との比率
は約4.4であった。
The thermal conductivity in the thickness direction was 1.72 W / cm · ° C., and the ratio of the thermal conductivity (0.39) perpendicular to the adhesive surface and perpendicular to the adhesive surface was about 4.4.

実施例8 実施例7において、熱処理温度を3000℃としたほか
は、実施例7と同様にしてC/C複合材を得た。
Example 8 A C / C composite material was obtained in the same manner as in Example 7, except that the heat treatment temperature was changed to 3000 ° C.

得られた複合材の嵩密度は、1.83g/cm3であり、熱伝
導率の比率は約4.9(2.19/0.45)であった。
The bulk density of the obtained composite material was 1.83 g / cm 3 , and the ratio of the thermal conductivity was about 4.9 (2.19 / 0.45).

実施例9 実施例4において、ニードリングの回数を増してウェ
ッブの厚み方向に配向させた繊維を多くし、かつオート
クレーブ処理とその後の炭化処理を合計5回行なったほ
かは、実施例4と同様にしてC/C複合材を得た。
Example 9 The same as Example 4 except that the number of needlings was increased to increase the number of fibers oriented in the thickness direction of the web, and the autoclave treatment and the subsequent carbonization treatment were performed a total of five times. To obtain a C / C composite material.

得られた複合材の嵩密度は、1.72g/cm3であり、厚み
方向の熱伝導率は1.66であり、厚み方向と厚み方向に直
角でかつ積層方向に平行な方向の熱伝導率(1.17)の比
率は約1.4であった。
The bulk density of the obtained composite material was 1.72 g / cm 3 , the thermal conductivity in the thickness direction was 1.66, and the thermal conductivity in the direction perpendicular to the thickness direction and parallel to the lamination direction (1.17 g) ) Ratio was about 1.4.

実施例10 実施例9において、熱処理温度を3000℃としたほか
は、実施例9と同様にしてC/C複合材を得た。
Example 10 A C / C composite material was obtained in the same manner as in Example 9, except that the heat treatment temperature was changed to 3000 ° C.

得られた複合材の嵩密度は1.73g/cm3であり、熱伝導
率の比率は約1.2(1.84/1.53)であった。
The bulk density of the obtained composite material was 1.73 g / cm 3 , and the ratio of the thermal conductivity was about 1.2 (1.84 / 1.53).

(発明の効果) 本発明に係るC/C複合材は、その厚み方向に大きい熱
伝導率、電気伝導率を有するため、特に一方向の熱もし
くは電気の伝導を必要とする場合に使用すると有効であ
る。
(Effect of the Invention) Since the C / C composite material according to the present invention has a large thermal conductivity and electrical conductivity in the thickness direction, it is particularly effective when used in a case where heat or electric conduction in one direction is required. It is.

たとえば、一方の平面を冷却ジャケットと接触させた
りすることにより熱除去、熱伝達をするような熱交換の
材料あるいはスイッチ材料などに使用しうる。
For example, it can be used as a heat exchange material or a switch material that removes and transfers heat by bringing one plane into contact with a cooling jacket.

フロントページの続き (72)発明者 関 均 香川県坂出市番の州町1番地 三菱化成 株式会社坂出工場内 (72)発明者 伊尾木 公裕 東京都港区芝公園2丁目4番1号 三菱 原子力工業株式会社内 (56)参考文献 特開 昭55−32710(JP,A) 特開 昭64−5984(JP,A) (58)調査した分野(Int.Cl.6,DB名) C04B 35/83Continued on front page (72) Inventor Hitoshi Seki 1 Banshu-cho, Sakaide-shi, Kagawa Prefecture Mitsubishi Sakaide Co., Ltd. (72) Inventor Kimihiro Ioki 2-4-1 Shiba Park, Minato-ku, Tokyo Mitsubishi Nuclear Energy Corporation (56) References JP-A-55-3710 (JP, A) JP-A-64-5984 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C04B 35/83

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】炭素繊維の約50%以上が実質的に厚み方向
に配向しており、厚み方向に直角でかつ繊維の厚み方向
に配向する面に直角となる方向の熱伝導率に対する厚み
方向の熱伝導率の比率が1.2以上であり、かつ厚み方向
の熱伝導率が1.5W/cm・℃以上である炭素繊維強化炭素
複合材料。
1. About 50% or more of carbon fibers are oriented substantially in the thickness direction, and the thickness direction with respect to the thermal conductivity in the direction perpendicular to the thickness direction and perpendicular to the plane oriented in the thickness direction of the fibers. Is a carbon fiber reinforced carbon composite material having a thermal conductivity ratio of 1.2 or more and a thermal conductivity in the thickness direction of 1.5 W / cm · ° C or more.
【請求項2】厚み方向の熱伝導率が1.5W/cm・℃以上、3
W/cm・℃未満である請求項1記載の材料。
2. The thermal conductivity in the thickness direction is 1.5 W / cm.degree.
2. The material according to claim 1, wherein the material is less than W / cm · ° C.
【請求項3】厚み方向に直角でかつ繊維の厚み方向に配
向する面に直角となる方向の熱伝導率に対する厚み方向
の熱伝導率の比が1.5以上である請求項1又は2に記載
の材料。
3. The method according to claim 1, wherein the ratio of the thermal conductivity in the thickness direction to the thermal conductivity in the direction perpendicular to the thickness direction and perpendicular to the plane oriented in the thickness direction of the fiber is 1.5 or more. material.
【請求項4】炭素繊維の約50%以上が実質的に厚み方向
に配向しており、厚み方向に直角でかつ繊維の厚み方向
に配向する面に直角となる方向の熱伝導率に対する厚み
方向の熱伝導率の比率が1.2以上であり、かつ厚み方向
の熱伝導率が1.5W/cm・℃以上である炭素繊維強化炭素
複合材料の、厚み方向に対向する一方の面に高温の物
質、他方の面に低温の物質を接触させる伝熱方法。
4. The thickness direction relative to the thermal conductivity in a direction in which about 50% or more of the carbon fibers are substantially oriented in the thickness direction, and are perpendicular to the thickness direction and perpendicular to the plane oriented in the thickness direction of the fiber. The ratio of the thermal conductivity of 1.2 or more, and the thermal conductivity in the thickness direction is 1.5 W / cm · ° C. or more of the carbon fiber reinforced carbon composite material, the high-temperature substance on one surface facing the thickness direction, A heat transfer method in which a low-temperature substance is brought into contact with the other surface.
JP63225817A 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite and use thereof Expired - Lifetime JP2775766B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP63225817A JP2775766B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite and use thereof
EP89107551A EP0339606B1 (en) 1988-04-28 1989-04-26 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
DE68929046T DE68929046T2 (en) 1988-04-28 1989-04-26 Carbon fiber reinforced carbon composites, processes for their manufacture and their use as inner walls of nuclear fusion reactors
DE68923901T DE68923901T2 (en) 1988-04-28 1989-04-26 Carbon fiber reinforced carbon composites, processes for their production and their use as inner walls of nuclear fusion reactors.
EP94112521A EP0630875B1 (en) 1988-04-28 1989-04-26 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
US07/873,683 US5390217A (en) 1988-04-28 1992-04-24 Carbon fiber-reinforced carbon composite materials processes for their production, and first walls of nuclear fusion reactors employing them
US08/450,640 US5586152A (en) 1988-04-28 1995-05-25 Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-106157 1988-04-28
JP10615788 1988-04-28
JP63225817A JP2775766B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite and use thereof

Publications (2)

Publication Number Publication Date
JPH0230665A JPH0230665A (en) 1990-02-01
JP2775766B2 true JP2775766B2 (en) 1998-07-16

Family

ID=26446322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63225817A Expired - Lifetime JP2775766B2 (en) 1988-04-28 1988-09-09 Carbon fiber reinforced carbon composite and use thereof

Country Status (1)

Country Link
JP (1) JP2775766B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5590686B2 (en) * 2012-07-25 2014-09-17 独立行政法人国立高等専門学校機構 Method for producing thermal protection composite material
JP7153688B2 (en) * 2020-06-10 2022-10-14 株式会社Cfcデザイン Carbon/carbon composites using anisotropic nonwovens

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6054270B2 (en) * 1978-08-23 1985-11-29 東邦レーヨン株式会社 Carbon fiber reinforced carbon friction material
JPS62163167A (en) * 1986-01-13 1987-07-18 Advantest Corp Smoothing differential arithmetic device

Also Published As

Publication number Publication date
JPH0230665A (en) 1990-02-01

Similar Documents

Publication Publication Date Title
US5586152A (en) Carbon fiber-reinforced carbon composite materials, processes for their production, and first walls of nuclear fusion reactors employing them
JP4226100B2 (en) Carbon fiber reinforced composite material and method for producing the same
KR101472850B1 (en) High-temperature-resistant composite
US20070237954A1 (en) Process for the impregnation of carbon fiber bundles, resin-impregnated carbon fiber bundle, shaped body and intermediate body for silicization
EP0335736B1 (en) Process for producing carbon/carbon composites
US4101354A (en) Coating for fibrous carbon material in boron containing composites
JP7153688B2 (en) Carbon/carbon composites using anisotropic nonwovens
JPH03150266A (en) Production of carbon/carbon composite material
JP2775766B2 (en) Carbon fiber reinforced carbon composite and use thereof
JPS60200860A (en) Manufacture of high strength acid-resistance carbon/carbon composite material
GB1410090A (en) Reinforced carbon structures
GB2112827A (en) Carbon fiber materials
JPH0816032B2 (en) High-strength carbon-carbon composite manufacturing method
JP2811681B2 (en) First wall of fusion device
JP2743397B2 (en) Carbon fiber reinforced carbon composite material and method of using the same
US4164601A (en) Coating for fibrous carbon material in boron containing composites
JPH09290474A (en) Preparation of carbonaceous molded article
JP3288408B2 (en) Manufacturing method of general-purpose carbon fiber reinforced carbon material
WO2023085080A1 (en) Screw component formed of two-dimensional carbon/carbon composite material that is obtained by stacking anisotropic nonwoven fabrics
JP2699443B2 (en) Carbon fiber reinforced carbon composite material bonded to metal and method for producing the same
JPH0532457A (en) Carbon fiber-reinforced carbon composite material and its production
JPH03109266A (en) Carbon fiber reinforced carbon composite material
JPS6126563A (en) Manufacture of oxidation-resistant carbon fiber reinforced carbon material
JP3983401B2 (en) Method for producing molded body made of C / C material
JPS62212262A (en) Manufacture of carbon fiber reinforced carbon material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080501

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090501

Year of fee payment: 11