JP5590686B2 - Method for producing thermal protection composite material - Google Patents

Method for producing thermal protection composite material Download PDF

Info

Publication number
JP5590686B2
JP5590686B2 JP2012165090A JP2012165090A JP5590686B2 JP 5590686 B2 JP5590686 B2 JP 5590686B2 JP 2012165090 A JP2012165090 A JP 2012165090A JP 2012165090 A JP2012165090 A JP 2012165090A JP 5590686 B2 JP5590686 B2 JP 5590686B2
Authority
JP
Japan
Prior art keywords
composite material
fibers
thermal protection
ablator
protection composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012165090A
Other languages
Japanese (ja)
Other versions
JP2013028166A (en
Inventor
圭一 奥山
純郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Kawasaki Motors Ltd
Original Assignee
Institute of National Colleges of Technologies Japan
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan, Kawasaki Jukogyo KK filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2012165090A priority Critical patent/JP5590686B2/en
Publication of JP2013028166A publication Critical patent/JP2013028166A/en
Application granted granted Critical
Publication of JP5590686B2 publication Critical patent/JP5590686B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

本発明は、厳しい加熱条件下で外表面が損耗することにより機体を熱的に防御するアブレータ方式の熱防御複合材を製造する方法、および本方法で製造した熱防御複合材に関する。   The present invention relates to a method of manufacturing an ablator type thermal protection composite material that thermally protects an airframe by wearing an outer surface under severe heating conditions, and a thermal protection composite material manufactured by this method.

宇宙機等の回収システムが地球周回軌道や惑星軌道から地球等の惑星の大気に突入する際、その機体は空力加熱環境に曝される。この空力加熱の機内侵入を防ぐため、機体の外表面を熱防御材で覆う必要がある。回収システムのうち特に回収カプセルは、突入時に曝される加熱環境が厳しいため、外表面が損耗することにより内部機器を熱的に防御するアブレータ方式の熱防御材を採用している。そのような宇宙機の代表例としてはアポロ宇宙船、ガリレオ(木星突入機、1995年突入)、USERS宇宙機のREVカプセル(2003年回収)等が挙げられる。   When a recovery system such as a spacecraft enters the atmosphere of a planet such as the Earth from an earth orbit or planetary orbit, the aircraft is exposed to an aerodynamic heating environment. In order to prevent this aerodynamic heating from entering the machine, it is necessary to cover the outer surface of the machine with a thermal protection material. Among the collection systems, the collection capsules in particular have a severe heating environment that is exposed at the time of entry, and therefore employ an ablator type heat protection material that thermally protects the internal equipment by damaging the outer surface. Representative examples of such spacecraft include Apollo spacecraft, Galileo (Jupiter rush, 1995 rush), USERS spacecraft REV capsule (collected in 2003), and the like.

このうちガリレオや、USERS宇宙機のREVカプセルは、高加熱環境に適したCFRP製のアブレータを使用している。このCFRPアブレータは密度が約1.5g/cm(非特許文献5を参照)でありアルミ合金の密度約2.7g/cmより小さく、さらに比強度や比剛性も大きく、耐熱特性も優れているものである。しかしながらこのCFRP製アブレータは機体全体の重量のうちかなりを占めることから、さらに密度を小さくすることが求められていた。 Among them, Galileo and REV capsules of USERS spacecraft use ablator made of CFRP suitable for high heating environment. This CFRP ablator has a density of about 1.5 g / cm 3 (see Non-Patent Document 5), is smaller than the density of aluminum alloy of about 2.7 g / cm 3, and has a higher specific strength and specific rigidity, and excellent heat resistance. It is what. However, since this CFRP ablator accounts for a considerable part of the weight of the entire airframe, it has been required to further reduce the density.

このため、米国のNASAにおいてより軽量のアブレータが積極的に研究され、その結果、PICA(Phenolic Impregnated Carbon Ablator)(非特許文献1、2を参照)が開発されるに至った。PICAは、密度が0.25〜0.35g/cm程度と極めて超軽量のアブレータであり、すでに惑星探査機Stardust(1999年打ち上げ)等で採用されている。 For this reason, a lighter ablator has been actively researched at NASA in the United States, and as a result, PICA (Phenolically Impregnated Carbon Ablator) (see Non-Patent Documents 1 and 2) has been developed. PICA is an extremely lightweight ablator with a density of about 0.25 to 0.35 g / cm 3 and has already been adopted in the planetary explorer Stardust (launched in 1999).

本発明の対象とするアブレータはフェノール樹脂等の熱硬化性樹脂からなるマトリックスを炭素繊維等の強化繊維に含浸した後、熱硬化及び成形を行い製造される複合材料であり、厳しい加熱環境に曝されるとそれ自体が熱分解することによって内部への入熱を遮蔽するものである。   The ablator targeted by the present invention is a composite material produced by impregnating a reinforcing fiber such as carbon fiber with a matrix made of a thermosetting resin such as a phenol resin and then thermosetting and molding, and is exposed to a severe heating environment. When it is done, it heats itself and shields the heat input to the inside.

前記PICAは、炭素繊維を水スラリー中で径14〜16μm、繊維長1600μmの短繊維状にして、これを水溶性フェノール樹脂と混合した後、真空キャストし、熱硬化及び炭化を行うことによって製造される。またPICAは製造の初期段階から一体化しており、本発明の対象である積層型アブレータとは異なるものである(非特許文献1を参照)。   The PICA is produced by making carbon fibers into short fibers with a diameter of 14-16 μm and a fiber length of 1600 μm in water slurry, mixing this with a water-soluble phenolic resin, vacuum casting, thermosetting and carbonizing. Is done. PICA is integrated from the initial stage of manufacture, and is different from the laminated ablator which is the object of the present invention (see Non-Patent Document 1).

PICA以外のアブレータとしては、熱硬化性樹脂を強化繊維に含浸したプリプレグを複数枚積層した構造を持つ積層型のものが知られている(例えば特許文献1〜3を参照)。積層型のアブレータには、強化繊維への樹脂の含浸量、使用する強化繊維1枚の厚さ、積層枚数等を調整することによって、均質含浸又は分布含浸などをコントロールすることができ、また、目標とするアブレータ厚さ及び密度等の達成が容易であるという利点がある。   As ablator other than PICA, a laminated type having a structure in which a plurality of prepregs in which a reinforcing fiber is impregnated with a thermosetting resin is laminated is known (see, for example, Patent Documents 1 to 3). The laminated type ablator can control homogeneous impregnation or distributed impregnation by adjusting the amount of resin impregnated into the reinforcing fibers, the thickness of one reinforcing fiber to be used, the number of laminated layers, etc. There is an advantage that it is easy to achieve the target ablator thickness and density.

前述した特許文献では、積層型のアブレータを製造するために、プリプレグを積層した後、オートクレーブ内で加熱することによって樹脂の硬化と各層の一体化を達成することが記載されている。   In the above-mentioned patent document, in order to produce a laminated type ablator, it is described that after the prepreg is laminated, the resin is cured and the layers are integrated by heating in an autoclave.

特開2003−48266号公報JP 2003-48266 A 特開2002−292755号公報JP 2002-292755 A 特開2001−278199号公報JP 2001-278199 A

Tran et al., ”Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions”, NASA Technical Memorandum 110440, National Aeronautics and Space Administration, April 1997, pp.1-2Tran et al., “Phenolic Impregnated Carbon Ablators (PICA) as Thermal Protection Systems for Discovery Missions”, NASA Technical Memorandum 110440, National Aeronautics and Space Administration, April 1997, pp.1-2 Tran, H., Johnson, C., Rasky, D. and Hui, F., “Phenolic Impreg- nated Carbon Ablators (PICA) for Discovery Missions”, AIAA-96-1191, 31ST AIAA Thermophysics Conference”June 17-20, 1996.Tran, H., Johnson, C., Rasky, D. and Hui, F., “Phenolic Impregnated Carbon Ablators (PICA) for Discovery Missions”, AIAA-96-1191, 31ST AIAA Thermophysics Conference ”June 17-20 , 1996. Metzger, J. W., Engel, M. J. and Diaconis, N. S., “Oxidation and Sublimation of Graphite in Simulated Re-entry Environments”, AIAA Journal, Vol. 5, No. 3, March 1967.Metzger, J. W., Engel, M. J. and Diaconis, N. S., “Oxidation and Sublimation of Graphite in Simulated Re-entry Environments”, AIAA Journal, Vol. 5, No. 3, March 1967. 奥山圭一, 加藤純郎, 山田哲也, 座古勝、”炭化したCFRP表面の酸化損耗に影響を与える熱化学的パラメータ”, 炭素、2004 [No.213]、pp.128-133.Shinichi Okuyama, Junro Kato, Tetsuya Yamada, Masaru Zako, “Thermochemical parameters affecting the oxidative wear of carbonized CFRP surfaces”, Carbon, 2004 [No.213], pp.128-133. 奥山圭一, 加藤純郎, 山田哲也、”アーク加熱によるREVアブレータの研究開発”, 宇宙航空研究開発機構研究開発報告, USERS/REVカプセルの開発研究および飛行後解析, JAXA-RR-04-045, ISSN 1349-1113, 2005年3月, PP.55-75.Junichi Okuyama, Junro Kato, Tetsuya Yamada, “Research and development of REV ablator by arc heating”, Japan Aerospace Exploration Agency research and development report, USERS / REV capsule development research and post-flight analysis, JAXA-RR-04-045, ISSN 1349-1113, March 2005, PP.55-75.

しかしながら、積層型のアブレータでは積層されている各層のあいだの接着力が不十分なことにより、剪断力、ピール力、熱応力等によって破断が運用形態によっては発生し易い可能性もある。また、超軽量アブレータPICAと同程度の耐熱性能を達成することが困難という問題もあった。   However, in the laminated type ablator, the adhesive force between the laminated layers is insufficient, so that the breakage may easily occur depending on the operation mode due to the shearing force, the peel force, the thermal stress, and the like. There is also a problem that it is difficult to achieve the same heat resistance as that of the ultralight ablator PICA.

したがって本発明は、応力破断の問題が発生しにくく、かつ超軽量アブレータPICAと同等又はより優れた耐熱性能を達成することができる積層型アブレータを簡便な手法で製造する方法を提供することを目的とする。 Accordingly, an object of the present invention is to provide a method for producing a multilayer ablator by a simple technique that is less likely to cause a stress rupture problem and can achieve heat resistance equivalent to or superior to that of an ultralight ablator PICA. And

本発明者らは、上記課題を解決すべく検討した結果、積層型の熱防御複合材を加熱成形するにあたって電気炉を用いた焼結による一体成形法を採用すると共に、短繊維をマット化したフェルト状の繊維を用いることによって、前記課題を解決できることを見出し、本発明を完成するに至った。 As a result of studying to solve the above-mentioned problems, the present inventors adopted an integral molding method by sintering using an electric furnace in thermoforming a laminated heat protection composite material and matted short fibers. The present inventors have found that the above problems can be solved by using felt-like fibers, and have completed the present invention.

すなわち本発明は、樹脂が含浸した強化繊維からなる熱防御複合材の製造方法であって、前記強化繊維は、短繊維をマット化したフェルト状の繊維であり、前記強化繊維に熱硬化性樹脂を含浸させてなる複合シート(プリプレグ)を複数枚準備し、当該複数枚の複合シートを積層して、電気炉を用いた焼結による一体成形を行うことによって前記熱防御複合材を得ることを特徴とする。 That is, the present invention is a method for producing a heat-protective composite material comprising reinforcing fibers impregnated with a resin, wherein the reinforcing fibers are felt-like fibers obtained by matting short fibers, and the reinforcing fibers are thermosetting resins. Preparing a plurality of composite sheets (prepregs) impregnated with the above, laminating the plurality of composite sheets, and obtaining the heat protection composite material by performing integral molding by sintering using an electric furnace Features.

前記強化繊維は炭素繊維であることが好ましい。   The reinforcing fibers are preferably carbon fibers.

前記フェルト状の繊維は、ニードルパンチ加工により、又は有機質バインダーを用いることによって短繊維をマット化したものであることが好ましい。 It is preferable that the felt-like fibers are formed by matting short fibers by needle punching or by using an organic binder .

前記熱硬化性樹脂はフェノール樹脂であることが好ましい。   The thermosetting resin is preferably a phenol resin.

前記熱防御複合材は密度が1.0g/cm以下の軽量であることが望ましい。 The heat protection composite material is desirably lightweight with a density of 1.0 g / cm 3 or less.

なお、複合シートの積層枚数は熱防御複合材の所望の厚みを考慮して適宜に決定することができる。また、一つの熱防御複合材を形成する複数枚の複合シートは、互いに厚さや含浸量が同一であっても、あるいは、異なるものであってもよい。
さらに、本発明は、上述した製造方法により製造した熱防御複合材にも関する。
Note that the number of laminated composite sheets can be appropriately determined in consideration of the desired thickness of the heat protection composite material. Further, the plurality of composite sheets forming one heat protection composite material may have the same thickness or impregnation amount, or may be different from each other.
Furthermore, this invention relates also to the heat protection composite material manufactured by the manufacturing method mentioned above.

本発明では、積層された各層間の接着力が向上して、剪断力、ピール力、熱応力等により破断されにくい機械的に優れた積層型の軽量熱防御複合材を簡便に製造することができ、また、現在NASAで惑星探査機等に採用されている超軽量アブレータPICAと比較して耐表面損耗性能が優れている軽量熱防御複合材を製造することが可能になった。さらに樹脂の含有量を制御することでアブレータの密度を容易にコントロールすることの出来る軽量熱防御複合材を製造することが可能になった。 In the present invention, the adhesive strength between the laminated layers is improved, and a mechanically superior laminated lightweight heat protection composite material that is not easily broken by shearing force, peel force, thermal stress, etc. can be easily produced. In addition, it has become possible to produce a lightweight thermal protection composite material that has superior surface wear resistance compared to the ultralight ablator PICA currently used for planetary probes and the like by NASA. Furthermore, it became possible to manufacture a lightweight thermal protection composite material in which the density of the ablator can be easily controlled by controlling the resin content.

実施例1および実施例2における軽量熱防御材料のホットプレスおよび電気炉焼結における熱処理条件(温度、時間)を示すグラフThe graph which shows the heat processing conditions (temperature, time) in the hot press and electric furnace sintering of the lightweight thermal protection material in Example 1 and Example 2 実施例1のアーク加熱実験で使用した供試体の断面図Sectional view of the specimen used in the arc heating experiment of Example 1 実施例1のアーク加熱実験で使用した供試体の断面図Sectional view of the specimen used in the arc heating experiment of Example 1 実施例1の軽量熱防御材料及びPICAの表面質量損耗率と(Pe/RB)0.5の関係を示すグラフGraph showing the relationship between the light-weight heat protective material and the surface mass attrition rate of PICA and (Pe / R B) 0.5 Example 1 PICAの表面質量損耗率と(Pe/RB)0.5の関係を示すグラフGraph showing the relationship between the PCA surface mass wear rate and (Pe / R B ) 0.5 実施例1の軽量熱防御材料及びPICAの熱伝導率と温度の関係を示すグラフThe graph which shows the thermal conductivity of Example 1 and the thermal conductivity of PICA, and the relationship of temperature. 実施例1の軽量熱防御材料の曲げ強さ及び曲げ弾性率と温度の関係を示すグラフThe graph which shows the relationship between the bending strength and bending elastic modulus, and temperature of the lightweight thermal protection material of Example 1. 実施例1の軽量熱防御材料の圧縮強さ及び圧縮弾性率と温度の関係を示すグラフThe graph which shows the relationship between the compression strength of the lightweight thermal protection material of Example 1, and a compression elastic modulus, and temperature. 実施例2の軽量熱防御材料(密度約0.4g/cm程度)の表面質量損耗率と(Pe/RB)0.5の関係を示すグラフThe graph which shows the relationship between the surface mass wear rate of the lightweight thermal protection material of Example 2 (a density of about 0.4 g / cm 3 ) and (Pe / R B ) 0.5. 実施例2の軽量熱防御材料(密度約0.6g/cm程度)の表面質量損耗率と(Pe/RB)0.5の関係を示すグラフThe graph which shows the relationship between the surface mass wear rate of the lightweight thermal protection material of Example 2 (a density of about 0.6 g / cm 3 ) and (Pe / R B ) 0.5.

以下、本発明について詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、樹脂を含浸した強化繊維からなる熱防御複合材の製造方法において、強化繊維に熱硬化性樹脂を含浸させてなる複合シートを複数枚準備し、当該複数枚の複合シートを積層して、ホットプレスなどの加熱・加圧により一体成形を行うことによって前記熱防御複合材を得ることを特徴とするものである。   The present invention provides a method for producing a heat-protective composite material comprising reinforcing fibers impregnated with a resin, preparing a plurality of composite sheets obtained by impregnating reinforcing fibers with a thermosetting resin, and laminating the composite sheets. Thus, the heat protection composite material is obtained by performing integral molding by heating and pressing such as hot pressing.

前記強化繊維としては、アブレータにおいて使用可能なものであればよく、特に限定されないが、具体的には炭素繊維、シリカ繊維等が挙げられる。なかでも、アブレータとしての優れた性能から炭素繊維が好ましい。   The reinforcing fiber is not particularly limited as long as it can be used in an ablator, and specific examples thereof include carbon fiber and silica fiber. Among these, carbon fiber is preferable because of its excellent performance as an ablator.

炭素繊維の形態としては、一般に、長繊維状のもの、短繊維状のもの、布状のもの、フェルト状のもの等が知られており、本発明ではこれらを使用することが可能であるが、特に、フェルト状のものを使用することが好ましい。フェルト状の炭素繊維においては、これを構成する各繊維間への熱硬化性樹脂の含浸がより均一になり、熱防御複合材の耐表面損耗性能をより高レベルにすることが可能になる。また、フェルト表面同士の接触によって、積層した各層間の結合力をより一層向上することも可能になる。なお、ここでいうフェルトとは、ニードルパンチ加工により、又は有機質バインダーを用いること等によって短繊維をマット化したものをいう。   As the form of carbon fiber, generally, long fiber, short fiber, cloth, felt, and the like are known, and these can be used in the present invention. In particular, it is preferable to use a felt-like material. In the felt-like carbon fiber, the impregnation of the thermosetting resin between the fibers constituting the carbon fiber becomes more uniform, and the surface wear resistance performance of the heat protection composite material can be made higher. Further, the contact force between the felt surfaces can further improve the bonding force between the laminated layers. In addition, the felt here means what formed the short fiber into the mat by needle punch processing or using an organic binder.

使用する強化繊維の厚さとしては特に限定されず、熱防御複合材の所望の密度を考慮して決定すればよいが、通常、約1〜約100mmの範囲である。強化繊維の厚さ方向への熱硬化性樹脂の均質含浸を達成するには、できる限り薄くしたほうが好ましい。   The thickness of the reinforcing fiber to be used is not particularly limited, and may be determined in consideration of the desired density of the heat protection composite material, but is usually in the range of about 1 to about 100 mm. In order to achieve homogeneous impregnation of the thermosetting resin in the thickness direction of the reinforcing fiber, it is preferable to make it as thin as possible.

本発明で使用する熱硬化性樹脂としては、アブレータにおいて使用可能なものであればよく特に限定されない。具体的には、フェノール樹脂、シリコン樹脂、エポキシ樹脂等が挙げられるが、特にフェノール樹脂は、軽量で耐損耗性能に優れたアブレータを与えることができるため好ましい。   The thermosetting resin used in the present invention is not particularly limited as long as it can be used in an ablator. Specifically, phenol resin, silicon resin, epoxy resin, and the like can be given. In particular, phenol resin is preferable because it can provide an ablator that is lightweight and excellent in wear resistance.

本発明では、まず、強化繊維に熱硬化性樹脂を含浸させることによって複合シート(いわゆるプリプレグ)を複数枚準備する。含浸にあたっては、熱硬化性樹脂の粘性を低減するために、ジエチレングリコール等の希釈剤と熱硬化性樹脂を混合したものを使用することもできる。強化繊維中での熱硬化性樹脂の三次元的な拡散を促進するための含浸時の温度は室温でよく、圧力は減圧条件に設定することが好ましい。熱硬化性樹脂の含浸量は、熱防御複合材の所望の性質、特に密度を考慮して適切な量に決定すればよい。   In the present invention, first, a plurality of composite sheets (so-called prepregs) are prepared by impregnating a reinforcing fiber with a thermosetting resin. In the impregnation, in order to reduce the viscosity of the thermosetting resin, a mixture of a diluent such as diethylene glycol and the thermosetting resin can be used. The temperature at the time of impregnation for promoting the three-dimensional diffusion of the thermosetting resin in the reinforcing fiber may be room temperature, and the pressure is preferably set to a reduced pressure condition. The amount of the thermosetting resin impregnated may be determined to an appropriate amount in consideration of the desired properties of the heat protection composite material, particularly the density.

以上のようにして作製された複数枚の複合シート(プリプレグ)を積層する。積層枚数は熱防御複合材の所望の厚さを考慮して適宜決定することができ、通常、2枚〜数十枚の範囲である。しかしながら、少なすぎると含浸量のコントロールや、厚さ、密度等の調整を行うのに不都合があり、多すぎても製造工程が煩雑になるので、好ましくは、3枚〜10枚程度の範囲である。1つの熱防御複合材を形成する複数枚の複合シートは、互いに、厚さや含浸量が同一であってもよいし、異なるものであってもよい。   A plurality of composite sheets (prepregs) produced as described above are laminated. The number of laminated layers can be appropriately determined in consideration of the desired thickness of the heat protection composite material, and is usually in the range of 2 to several tens. However, if the amount is too small, there is an inconvenience for controlling the amount of impregnation and adjusting the thickness, density, etc., and if the amount is too large, the manufacturing process becomes complicated. Therefore, preferably in the range of about 3 to 10 sheets. is there. The plurality of composite sheets forming one heat protection composite material may have the same thickness or impregnation amount, or may be different.

次に、複数枚積層された前記複合シートを、ホットプレスによる加圧・加熱に付することによって一体成形を行う。これによって、各層間の結合を強固にして、層間剥離が発生しにくい熱防御複合材を得ることができる。従来行われているようなオートクレーブ内での加熱による一体成形では、得られる熱防御複合材の各層間の結合力が十分ではなく、熱防御複合材としての強度が十分なレベルに達しない。ここで、ホットプレスとは、例えば1軸加圧等により、高温下で圧力を加えて圧縮する加工法のことをいう。この場合、加圧方向は2軸あるいは3軸であっても構わない。本発明では、複数枚積層された複合シートをホットプレス機にかけることによって、熱硬化性樹脂を硬化させると同時に一体成形を行う。   Next, integral molding is performed by subjecting the composite sheets stacked in a plurality of layers to pressurization and heating by a hot press. As a result, it is possible to obtain a heat protection composite material in which the bonding between the layers is strengthened and delamination hardly occurs. In the conventional integral molding by heating in an autoclave, the bonding strength between the layers of the obtained heat protection composite material is not sufficient, and the strength as the heat protection composite material does not reach a sufficient level. Here, the hot press refers to a processing method in which pressure is applied and compressed at a high temperature by, for example, uniaxial pressing. In this case, the pressing direction may be biaxial or triaxial. In the present invention, the thermosetting resin is cured at the same time as the integral molding is performed by applying a composite sheet laminated a plurality of sheets to a hot press machine.

ホットプレスを行う際の条件に関しては、通常、圧力及び温度が経時的に変化するものであるが、圧力の経時的変化は熱防御複合材の所望の密度に合わせて調整すればよく、温度の経時的変化は、使用する熱硬化性樹脂の性質を考慮して調整すればよい(具体的には、当該樹脂の製造者が、硬化時の温度として推薦する値を参考にすればよい)。熱防御複合材において各層間の結合力をより向上させるには、ホットプレス時の温度として、フェノール樹脂を用いた場合、90℃〜180℃の範囲を採用し、圧力としてはゲージ圧で1kPa〜5MPaの範囲を採用することが好ましい。   Regarding the conditions for hot pressing, the pressure and temperature usually change with time, but the change with time of pressure may be adjusted according to the desired density of the heat protection composite material. The change with time may be adjusted in consideration of the properties of the thermosetting resin to be used (specifically, a value recommended by the manufacturer of the resin as the temperature at the time of curing may be referred to). In order to further improve the bonding strength between the layers in the heat protection composite material, when phenol resin is used as the temperature at the time of hot pressing, a range of 90 ° C. to 180 ° C. is adopted, and the pressure is 1 kPa as a gauge pressure. It is preferable to employ a range of 5 MPa.

また、ホットプレスによる加熱・加圧一体成形の代わりに、電気炉による焼結によって一体成形することによっても、耐熱特性の良好な熱防御複合材を得ることが出来る。電気炉で焼結する際の温度としては、フェノール樹脂を用いた場合、90℃〜180℃程度の範囲を採用し、熱防御複合材の所望の密度を考慮して適宜調整すればよい。   Moreover, a heat-protective composite material with good heat resistance can be obtained by integral molding by sintering using an electric furnace instead of heating / pressurizing integral molding by hot pressing. As a temperature at the time of sintering in an electric furnace, when a phenol resin is used, a range of about 90 ° C. to 180 ° C. is adopted, and the temperature may be appropriately adjusted in consideration of a desired density of the heat protection composite material.

フェノール樹脂を用いる場合、本発明によって得られる熱防御複合材は、厳しい加熱環境下に曝されることによって、マトリクス樹脂(硬化した熱硬化性樹脂)と、強化繊維の一部が熱分解し炭化することによって機体を熱的に防御する炭化アブレータである。積層型の熱防御複合材であるので、複合材の厚さ方向に対して均質に樹脂を含浸させることが可能となり、これによって耐熱性能を向上することができる。また、場合によって、積層するプリプレグ毎に樹脂の含浸量を変更することによって、複合材の厚さ方向に対して、樹脂の含浸量を意図的に分布させることも容易である。また、熱防御複合材の厚さ及び密度を所定の値に調整することも容易である。   When a phenol resin is used, the heat protection composite material obtained by the present invention is exposed to a severe heating environment, and a matrix resin (cured thermosetting resin) and a part of the reinforcing fiber are thermally decomposed and carbonized. This is a carbonized ablator that thermally protects the aircraft. Since it is a laminated heat protection composite material, it becomes possible to impregnate the resin uniformly with respect to the thickness direction of the composite material, thereby improving the heat resistance performance. In some cases, it is easy to intentionally distribute the resin impregnation amount in the thickness direction of the composite material by changing the resin impregnation amount for each prepreg to be laminated. It is also easy to adjust the thickness and density of the heat protection composite material to predetermined values.

本発明では、後の実施例で実証しているように、密度が1.0g/cm以下の超軽量タイプを含む軽量な熱防御材を製造することができ、これに加えて、従来の超軽量アブレータPICAと同程度の密度及び熱伝導率を持ちながら、かつ耐表面損耗性能においてはPICAよりも優れている熱防御複合材を製造することができる。また、積層型の熱防御複合材でありながら、層間剥離が発生することなく、強度上の問題も回避している。 In the present invention, as demonstrated in a later example, a lightweight heat protection material including an ultralight type having a density of 1.0 g / cm 3 or less can be manufactured. A heat-protective composite material having a density and thermal conductivity comparable to that of the ultralight ablator PICA and superior to PICA in surface wear resistance can be produced. Moreover, although it is a laminated heat-protective composite material, delamination does not occur, and strength problems are avoided.

以下に実施例を掲げて本発明をさらに詳細に説明するが、本発明はこれら実施例に限定されるものではない。   The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples.

(実施例1)
厚さ5mmのフェルト状の炭素繊維(日本カーボン(株)製のカーボンフェルト)を縦160mm横180mmの寸法で5枚切り出した。切り出したフェルト状の炭素繊維の重量を1枚ずつ計測し、同重量のフェノール樹脂(SC-1008:Borden Chemical Inc. 製)に含浸した。この際、容器に樹脂を入れ、これに炭素繊維を浸した。樹脂が均等に染み込むようにローラを使用した。また、表と裏の樹脂を分けて別々に染み込ませた。
Example 1
Five pieces of felt-like carbon fibers (carbon felt manufactured by Nippon Carbon Co., Ltd.) having a thickness of 5 mm were cut out in a size of 160 mm in length and 180 mm in width. The weight of the cut-out felt-like carbon fibers was measured one by one and impregnated with the same weight of phenol resin (SC-1008: manufactured by Borden Chemical Inc.). At this time, a resin was put in a container, and carbon fibers were immersed therein. A roller was used so that the resin penetrated evenly. Also, the front and back resins were separately soaked separately.

こうして得られた5枚のプリプレグを積層して成形用治具にセットし、ホットプレスで圧力をかけながら加熱した。ホットプレス時の温度、圧力条件を図1に示す。ホットプレス時の圧力はゲージ圧で0.1MPaであり、温度は90〜180℃の範囲で段階的に昇温し、およそ4時間程度加熱を継続した。以上によって、密度が約0.2g/cm程度の矩形状の軽量熱防御材料を製造した。なお当該密度は、前述した公知のアブレータPICAの密度(0.25〜0.35g/cm)と同程度である。 The five prepregs thus obtained were laminated and set on a forming jig, and heated while applying pressure with a hot press. The temperature and pressure conditions during hot pressing are shown in FIG. The pressure during hot pressing was 0.1 MPa as a gauge pressure, the temperature was raised stepwise in the range of 90 to 180 ° C., and heating was continued for about 4 hours. As described above, a rectangular lightweight heat protection material having a density of about 0.2 g / cm 3 was manufactured. In addition, the said density is comparable as the density (0.25-0.35 g / cm < 3 >) of the well-known ablator PICA mentioned above.

次に、前記の矩形状軽量熱防御材料を切削し、直径34mm、厚さ10mmの円柱形の軽量熱防御材料を得た。   Next, the rectangular lightweight heat protection material was cut to obtain a cylindrical lightweight heat protection material having a diameter of 34 mm and a thickness of 10 mm.

以下では、アーク加熱実験装置を用いてこの軽量熱防御材料の耐熱特性を評価した。   Below, the heat resistance characteristics of this lightweight thermal protection material were evaluated using an arc heating experimental apparatus.

アーク加熱実験装置とは、大気組成のガス、窒素ガス、アルゴンガスをアーク加熱器で加熱し真空槽中へ吹き出し、この高温・高速気流中に供試体を置き、材料の耐熱性や表面損耗度を評価する装置である。   The arc heating experimental device is a gas of atmospheric composition, nitrogen gas, and argon gas heated by an arc heater and blown out into a vacuum chamber. The specimen is placed in this high-temperature, high-speed air stream, and the heat resistance and surface wear of the material. It is a device that evaluates.

アーク加熱実験を行うため、図2及び3に示す構造を持つ供試体を製作した。まず、製作した材料に深さ5mmの穴を二つあけ熱電対を取り付けた。次にこれをベークライトにいれる。製作した材料の直径は34mm、ベークライトの内径は33mmであるため、ベークライト製のチューブに材料がはいるように内径をマイクログラインダーで削った。その後、断熱材を詰めて供試体を製作した。
上述した軽量熱防御材料による供試体および試験装置を用いたアーク加熱試験を実施して、軽量熱防御材料の損耗質量等のデータを取得した。この加熱試験に基づいて得られた表面質量損耗率mDSの計測結果と、(Pe/RB)0.5の関係を図4に示す。また非特許文献2に基づいて求めた、PICAに関するmDSと(Pe/RB)0.5との関係を図5に示す。
In order to conduct an arc heating experiment, a specimen having the structure shown in FIGS. 2 and 3 was manufactured. First, two holes with a depth of 5 mm were drilled in the manufactured material, and a thermocouple was attached. Then put this in bakelite. Since the diameter of the manufactured material was 34 mm and the inner diameter of the bakelite was 33 mm, the inner diameter was shaved with a micro grinder so that the material was stuck in the bakelite tube. After that, a test piece was made by filling the heat insulating material.
An arc heating test using the above-described specimen and test apparatus with the lightweight thermal protection material was performed, and data such as the wear mass of the lightweight thermal protection material was obtained. FIG. 4 shows the relationship between the measurement result of the surface mass wear rate m DS obtained based on this heating test and (Pe / R B ) 0.5 . Also shown were determined on the basis of the non-patent document 2, the relation between m DS and (Pe / R B) 0.5 about PICA in FIG.

材料がグラファイトの場合、拡散律速酸化領域(約1500Kから約3000K)の表面質量損耗率mDS(kg/(s・m2))と(Pe/RB)0.5との関係は式1で表すことができる(非特許文献3を参照)。 When the material is graphite, the relationship between the surface mass wear rate m DS (kg / (s · m 2 )) and (Pe / R B ) 0.5 in the diffusion-limited oxidation region (about 1500K to about 3000K) is expressed by Equation 1. (See Non-Patent Document 3).

Figure 0005590686
Figure 0005590686

上式において、表面質量損耗率mDSは、下式で定義されるもので、アブレータ表面の加熱による損耗速度を表すパラメータである。 In the above equation, the surface mass wear rate m DS is defined by the following equation and is a parameter representing the wear rate due to heating of the ablator surface.

Figure 0005590686
Figure 0005590686

ここで、△h: 加熱によるアブレータの表面損耗厚さ(m), ρv: アブレータの加熱前の母材密度 (kg/m3)、t::加熱時間(s)、C:拡散依存酸化定数 (Diffusion-controlled mass-transfer constant. kg/(s・m3/2・Pa1/2) )、Pe:よどみ点圧力(Pa) 、RB :供試体先端の鈍頭半径(m)である。供試体の先端が平板状である場合、RB は供試体円筒径の1/2を2.463(=1/0.6372)倍した値が用いられている。 Where Δh: surface wear thickness of the ablator due to heating (m), ρv: density of base material before heating of ablator (kg / m 3 ), t: heating time (s), C 0 : diffusion dependent oxidation Constant (Diffusion-controlled mass-transfer constant. Kg / (s ・ m 3/2・ Pa 1/2 )), P e : Stagnation point pressure (Pa), R B : Blunt radius (m) of the specimen tip It is. If the tip of the specimen is flat, R B is the half of the specimen cylinder diameter 2.463 (= 1 / 0.637 2) times the value is used.

本実施例1の軽量熱防御材料(アブレータ材料)について、近似的に式(1)が成り立つものとして求めたCの値(非特許文献4, 5を参照)を図4に示す。なお、本実施例の供試体は平板状であるため、RB は供試体円筒径の1/2を2.463(=1/0.6372)倍した値を使用した。また図4、図5には、非特許文献2に基づいて、上記と同様の方法で求めたPICAの拡散依存酸化定数Cもあわせて示す。図より、(Pe/RB)0.5の値が100〜200の範囲では、本実施例1の軽量熱防御材のCは4.74×10−5kg/(s・m3/2・Pa1/2)であり、PICAのCは9.45×10−5kg/(s・m3/2・Pa1/2)であることがわかる。すなわち、本実施例1の軽量熱防御材料の拡散依存酸化定数はPICAの約50%程度であり、本実施例1の軽量熱防御材料はPICAと同等の密度を持ちながら耐表面損耗性能に優れていることが分かった。
さらに上記のアーク試験結果より、加熱後のアブレータ供試体には層間剥離等が見られなかった。これにより積層された各層間の接着力が向上して、剪断力、ピール力、熱応力等により破断されにくい積層型の熱防御複合材であることを確認した。
FIG. 4 shows the value of C 0 (see Non-Patent Documents 4 and 5) obtained by assuming that Equation (1) is approximately established for the lightweight thermal protection material (ablator material) of Example 1. Incidentally, specimens of the present embodiment, since a flat plate, R B is using 1/2 2.463 (= 1 / 0.637 2) times the value of the specimen cylinder diameter. 4 and 5 also show the PICA diffusion-dependent oxidation constant C 0 obtained by the same method as described above based on Non-Patent Document 2. From the figure, when the value of (Pe / R B ) 0.5 is in the range of 100 to 200, C 0 of the lightweight thermal protection material of Example 1 is 4.74 × 10 −5 kg / (s · m 3/2 · Pa 1/2) a and, C 0 of PICA is found to be 9.45 × 10 -5 kg / (s · m 3/2 · Pa 1/2). That is, the diffusion-dependent oxidation constant of the lightweight thermal protection material of Example 1 is about 50% of PICA, and the lightweight thermal protection material of Example 1 has excellent surface wear resistance while having a density equivalent to PICA. I found out.
Furthermore, from the above arc test results, no delamination or the like was observed in the heated ablator specimen. As a result, it was confirmed that the adhesive strength between the laminated layers was improved, and the laminated thermal barrier composite material was not easily broken by shearing force, peel force, thermal stress, and the like.

この軽量熱防御材料の熱伝導率を、レーザーフラッシュ法を用いて種々の温度条件下で測定した。その結果を、PICAの熱伝導率とともに図6に示す。図6より、本実施例1の軽量熱防御材料は、PICAと同程度の熱伝導率を有していることが分かる。   The thermal conductivity of this lightweight thermal protection material was measured under various temperature conditions using a laser flash method. The result is shown in FIG. 6 together with the thermal conductivity of PICA. From FIG. 6, it can be seen that the lightweight thermal protection material of Example 1 has the same thermal conductivity as PICA.

以下では、軽量熱防御材料の曲げ及び圧縮強度試験を行い、温度を変化させた場合の機械的特性を確認した。   Below, the bending and the compressive strength test of the lightweight thermal protection material were performed, and the mechanical characteristic at the time of changing temperature was confirmed.

曲げ試験品としては5×10×50mmのサイズの材料を使用し、圧縮試験品としては5×10×15mmのサイズの材料を使用した。   A material having a size of 5 × 10 × 50 mm was used as the bending test product, and a material having a size of 5 × 10 × 15 mm was used as the compression test product.

曲げおよび圧縮強度試験の結果を図7及び図8に示す。   The results of bending and compressive strength tests are shown in FIGS.

図7及び図8より、本実施例の軽量熱防御材料が、設計及び運用上に問題ない範囲の曲げ強さ、曲げ弾性率、圧縮強さ、及び、圧縮弾性率を有していることが分かる。なお、軽量熱防御材料は約150℃を超える温度で樹脂が熱分解して炭化することにより熱の流入を防止するものであるので、温度が上昇するほど炭化により密度が減少することに起因して、圧縮強さ及び圧縮弾性率が減少するものと考えられる。   From FIG.7 and FIG.8, the lightweight thermal protection material of a present Example has bending strength, bending elastic modulus, compressive strength, and compressive elastic modulus in the range which does not have a problem in design and operation. I understand. The lightweight thermal protection material prevents the inflow of heat by thermal decomposition and carbonization of the resin at a temperature exceeding about 150 ° C., and this is because the density decreases due to carbonization as the temperature rises. Thus, it is considered that the compressive strength and the compressive elastic modulus are reduced.

(実施例2)
実施例1と同様にして得た5枚のプリプレグを電気炉内に置いて焼結を行った。その際の温度条件は、まず、炭素繊維に含まれている水分を飛ばすために120分間比較的低温を保持し、次いで熱硬化性樹脂を炭素繊維に留まらせるためにさらに120分間、より高温で加熱した。その後、電気炉の電源を切り、徐冷した。以上によって、密度が約0.4g/cm程度の矩形状の軽量熱防御材料を製造した。
(Example 2)
Five prepregs obtained in the same manner as in Example 1 were placed in an electric furnace and sintered. The temperature conditions at that time are first kept at a relatively low temperature for 120 minutes in order to dissipate moisture contained in the carbon fibers, and then at a higher temperature for an additional 120 minutes in order to keep the thermosetting resin on the carbon fibers. Heated. Thereafter, the electric furnace was turned off and gradually cooled. Thus, a rectangular lightweight heat protection material having a density of about 0.4 g / cm 3 was manufactured.

次に、製造した軽量熱防御材料を用いて、実施例1と同様の供試体を製作するとともに、実施例1と同様のアーク加熱実験装置を用いて耐熱特性を評価した。表面質量損耗率mDSの測定結果と、(Pe/RB)0.5の関係および拡散依存酸化定数Cを図9に示す。図より、(Pe/RB)0.5の値が80〜140の範囲では、本実施例2のCは7.7×10−5kg/(s・m3/2・Pa1/2)であることがわかる。PICAのCは9.45×10−5kg/(s・m3/2・Pa1/2)であるため、本実施例2の軽量熱防御材料の拡散依存酸化定数はPICAの数値の約80%程度であり、本実施例2の軽量熱防御材料の密度はPICAに比べて少し高い値ではあるが、耐表面損耗性能はより優れていることが分かった。 Next, while using the manufactured lightweight thermal protection material, a specimen similar to that in Example 1 was manufactured, and heat resistance characteristics were evaluated using an arc heating experimental apparatus similar to that in Example 1. FIG. 9 shows the measurement results of the surface mass wear rate m DS , the relationship of (Pe / R B ) 0.5 and the diffusion-dependent oxidation constant C 0 . From the figure, when the value of (Pe / R B ) 0.5 is in the range of 80 to 140, C 0 of Example 2 is 7.7 × 10 −5 kg / (s · m 3/2 · Pa 1/2 ). It can be seen that it is. For C 0 of PICA is 9.45 × 10 -5 kg / (s · m 3/2 · Pa 1/2), diffusion-dependent oxidation constants lightweight thermal protection components of the second embodiment of figures PICA The density of the lightweight thermal protection material of Example 2 is about 80%, which is slightly higher than that of PICA, but the surface wear resistance performance is more excellent.

さらに、上記の密度0.4g/cm程度の軽量熱防御材料の場合と同様の方法で、密度0.6g/cm程度の軽量熱防御材料を製造した。さらに、製造した軽量熱防御材料を用いて、実施例1と同様の供試体を製作するとともに、実施例1と同様のアーク加熱実験装置を用いて耐熱特性を評価した。表面質量損耗率mDSの測定結果と、(Pe/RB)0.5の関係および拡散依存酸化定数Cを図10に示す。図より、本実施例のCは9.0×10−5kg/(s・m3/2・Pa1/2)であることがわかる。PICAのCは9.45×10−5kg/(s・m3/2・Pa1/2)であるため、本実施例2の軽量熱防御材料(密度約0.6g/cm程度)の拡散依存酸化定数はPICAと同程度または、少々優れていることがわかった。 Further, a light-weight heat protection material having a density of about 0.6 g / cm 3 was manufactured by the same method as that for the light-weight heat protection material having a density of about 0.4 g / cm 3 . Furthermore, while using the manufactured lightweight thermal protection material, the same test body as Example 1 was manufactured, and the heat resistance characteristics were evaluated using the same arc heating experimental apparatus as Example 1. FIG. 10 shows the measurement result of the surface mass wear rate m DS , the relationship of (Pe / R B ) 0.5 and the diffusion dependent oxidation constant C 0 . From the figure, it is understood that C 0 of this example is 9.0 × 10 −5 kg / (s · m 3/2 · Pa 1/2 ). For C 0 of PICA is 9.45 × 10 -5 kg / (s · m 3/2 · Pa 1/2), lightweight thermal protection material of the present Example 2 (a density of about 0.6 g / cm 3 approximately ) Diffusion-dependent oxidation constant was found to be comparable or slightly better than PICA.

本発明によって製造される熱防御複合材は、軽量で良好な耐熱特性を持ち、かつ層間剥離を生じないため、惑星突入機や回収カプセルの外面、ロケットやミサイル等の高速飛翔体のフェアリングや推進系ノズル等を被覆するのに使用することができる。   The heat protection composite material produced by the present invention is lightweight and has good heat resistance characteristics, and does not cause delamination, so that the outer surface of planetary entry machines and recovery capsules, fairing of high-speed flying objects such as rockets and missiles, It can be used to coat propulsion system nozzles and the like.

1 軽量熱防御材料
2 ベークライトチューブ
3 断熱材
4 K型熱電対
1 Lightweight thermal protection material 2 Bakelite tube 3 Insulation 4 K-type thermocouple

Claims (6)

樹脂を含浸した強化繊維からなる熱防御複合材の製造方法であって、
前記強化繊維は、短繊維をマット化したフェルト状の繊維であり、前記強化繊維に熱硬化性樹脂を含浸させてなる複合シートを複数枚準備し、当該複数枚の複合シートを積層して、電気炉を用いた焼結による一体成形を行うことによって前記熱防御複合材を得ることを特徴とする、熱防御複合材の製造方法。
A method for producing a thermal protection composite material comprising a reinforcing fiber impregnated with a resin,
The reinforcing fibers are felt-like fibers obtained by matting short fibers, preparing a plurality of composite sheets obtained by impregnating the reinforcing fibers with a thermosetting resin, laminating the plurality of composite sheets, A method for producing a thermal protection composite material, comprising obtaining the thermal protection composite material by performing integral molding by sintering using an electric furnace.
前記フェルト状の繊維は、ニードルパンチ加工により、又は有機質バインダーを用いることによって短繊維をマット化したものである請求項記載の製造方法。 The felt-like fibers by needle punching, or process according to claim 1, wherein by using an organic binder in which the short fibers was matted. 前記熱硬化性樹脂はフェノール樹脂である請求項1又は2に記載の製造方法。 The process according to claim 1 or 2 wherein the thermosetting resin is a phenolic resin. 前記フェルト状の繊維は、炭素繊維である請求項1〜3のいずれか1項に記載の製造方法。 The manufacturing method according to claim 1, wherein the felt-like fibers are carbon fibers. 前記熱防御複合材は密度が1.0g/cm以下の超軽量のものである請求項1〜のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 4 , wherein the heat protection composite material is an ultralight material having a density of 1.0 g / cm 3 or less. 請求項1〜のいずれかに記載の製造方法により製造した熱防御複合材。 The heat protection composite material manufactured by the manufacturing method in any one of Claims 1-5 .
JP2012165090A 2012-07-25 2012-07-25 Method for producing thermal protection composite material Active JP5590686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012165090A JP5590686B2 (en) 2012-07-25 2012-07-25 Method for producing thermal protection composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012165090A JP5590686B2 (en) 2012-07-25 2012-07-25 Method for producing thermal protection composite material

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008183922A Division JP5263737B2 (en) 2008-07-15 2008-07-15 Method for producing thermal protection composite material

Publications (2)

Publication Number Publication Date
JP2013028166A JP2013028166A (en) 2013-02-07
JP5590686B2 true JP5590686B2 (en) 2014-09-17

Family

ID=47785683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012165090A Active JP5590686B2 (en) 2012-07-25 2012-07-25 Method for producing thermal protection composite material

Country Status (1)

Country Link
JP (1) JP5590686B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496927A (en) * 2016-11-03 2017-03-15 华东理工大学 A kind of low-density ablation heat insulation type composite and preparation method thereof

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014125827A1 (en) 2013-02-15 2014-08-21 信越ポリマー株式会社 Conductive composition, conductive composition production method, anti-static resin composition and antistatic resin film
JP6353686B2 (en) * 2014-04-10 2018-07-04 三菱重工業株式会社 Re-entry machine manufacturing method
JP6368874B1 (en) * 2017-07-25 2018-08-01 アイティテクノ 株式会社 Manufacturing method of molded products
JP7142873B2 (en) 2017-09-14 2022-09-28 国立研究開発法人宇宙航空研究開発機構 Ablator, prepreg, method for manufacturing ablator, and method for manufacturing prepreg for ablator
CN114953507B (en) * 2022-05-26 2024-05-03 咸阳华清设备科技有限公司 Preparation method of surface layer continuous braiding body ablation-resistant local heat protection material

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2775766B2 (en) * 1988-04-28 1998-07-16 三菱化学株式会社 Carbon fiber reinforced carbon composite and use thereof
JPH03253499A (en) * 1990-03-02 1991-11-12 Mitsubishi Kasei Corp Manufacture of thermal protecting member for space shuttle
JPH05148062A (en) * 1991-11-25 1993-06-15 Kawasaki Steel Corp Production of carbon material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106496927A (en) * 2016-11-03 2017-03-15 华东理工大学 A kind of low-density ablation heat insulation type composite and preparation method thereof

Also Published As

Publication number Publication date
JP2013028166A (en) 2013-02-07

Similar Documents

Publication Publication Date Title
JP5590686B2 (en) Method for producing thermal protection composite material
EP3689840B1 (en) A method for forming a ceramic matrix composite
JP5263737B2 (en) Method for producing thermal protection composite material
CN100503518C (en) Process for preparing heat guarding plate of Cf/SiC high temp, resistant and washing resistant by pioneer method
CN106882974A (en) A kind of preparation method of HfC contents C/HfC-SiC composites high
US20180111338A1 (en) Hybrid multifunctional composite material and method of making the same
JP6742855B2 (en) Molded heat insulating material and manufacturing method thereof
JP2017172790A (en) Molding heat insulation material with surface layer and its process of manufacture
JP2015174807A (en) Carbon fiber-based heat insulation material, and manufacturing method of the same
Kumar et al. Fabrication of 2D C/C-SiC composites using PIP based hybrid process and investigation of mechanical properties degradation under cyclic heating
JP7029288B2 (en) Cured Hybrid Insulated Non-Oxide Insulation Systems, and Methods of Producing Non-Oxide Ceramic Composites for Manufacturing Cured Hybrid Insulated Non-Oxide Insulation Systems
Wang et al. Gradient fiber-reinforced aerogel composites using surface ceramicizable-resin densification with outstanding ablation resistance for high-temperature thermal protection
JPWO2019087846A1 (en) Molded insulation with surface layer and its manufacturing method
Silva et al. Shear properties of carbon fiber/phenolic resin composites heat treated at high temperatures
CN106882976A (en) A kind of preparation method of C/HfC-ZrC-SiC composites
Sun et al. Laminated biomorphous SiC/Si porous ceramics made from wood veneer
CN107984774A (en) A kind of composite material empennage technology of preparing
JP6261275B2 (en) Method for producing laminated ceramic-based ceramic textile composite material
US10427807B1 (en) Method of fabricating a flexible, low-density thermal protection material
JP6914002B2 (en) Ceramic matrix composite article and method of forming it
JP5769519B2 (en) Fiber material for reinforcement, fiber-reinforced ceramic composite material using fiber material for reinforcement, and method for producing the same
JP6353686B2 (en) Re-entry machine manufacturing method
CN107522499A (en) The preparation method of C/C composites
JP5862234B2 (en) Ceramic matrix composite member having smooth surface and method for producing the same
Stackpoole et al. Flexible ablators

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131028

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140701

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140725

R150 Certificate of patent or registration of utility model

Ref document number: 5590686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250