JP3208595B2 - Charge transfer device - Google Patents

Charge transfer device

Info

Publication number
JP3208595B2
JP3208595B2 JP09302792A JP9302792A JP3208595B2 JP 3208595 B2 JP3208595 B2 JP 3208595B2 JP 09302792 A JP09302792 A JP 09302792A JP 9302792 A JP9302792 A JP 9302792A JP 3208595 B2 JP3208595 B2 JP 3208595B2
Authority
JP
Japan
Prior art keywords
transfer
transfer electrodes
electrodes
charge
drive pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP09302792A
Other languages
Japanese (ja)
Other versions
JPH05291310A (en
Inventor
英治 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP09302792A priority Critical patent/JP3208595B2/en
Priority to KR1019930005933A priority patent/KR100317726B1/en
Publication of JPH05291310A publication Critical patent/JPH05291310A/en
Priority to US08/291,493 priority patent/US5414467A/en
Application granted granted Critical
Publication of JP3208595B2 publication Critical patent/JP3208595B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/148Charge coupled imagers
    • H01L27/14831Area CCD imagers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/70Circuitry for compensating brightness variation in the scene
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/60Noise processing, e.g. detecting, correcting, reducing or removing noise
    • H04N25/62Detection or reduction of noise due to excess charges produced by the exposure, e.g. smear, blooming, ghost image, crosstalk or leakage between pixels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith
    • H04N25/71Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
    • H04N25/713Transfer or readout registers; Split readout registers or multiple readout registers

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電荷転送部分がCCD
で構成された電荷転送装置に関し、特にCCDイメージ
センサやCCDリニアセンサ等に用いて好適なものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention
This is particularly suitable for use in a CCD image sensor, a CCD linear sensor, or the like.

【0002】[0002]

【従来の技術】電荷転送部分がCCDで構成されたもの
として、CCDイメージセンサ、CCDリニアセンサ及
びCCD遅延線等があげられる。
2. Description of the Related Art A CCD image sensor, a CCD linear sensor, a CCD delay line, and the like can be cited as examples in which a charge transfer portion is constituted by a CCD.

【0003】その中で、例えばインターライン方式のC
CDイメージセンサは、図9に示すように、フォトダイ
オードで構成された受光部21が水平及び垂直方向にマ
トリクス状に配列され、夫々共通の垂直ライン上の受光
部21に対応して共通に設けられた垂直レジスタ22
と、各垂直レジスタ22に対して共通に設けられた水平
レジスタ23が設けられて構成されている。
[0003] Among them, for example, an interline type C
In the CD image sensor, as shown in FIG. 9, light receiving sections 21 each composed of a photodiode are arranged in a matrix in the horizontal and vertical directions, and are provided in common corresponding to the light receiving sections 21 on a common vertical line. Vertical register 22
And a horizontal register 23 provided commonly to each vertical register 22.

【0004】そして、電荷蓄積期間において受光部21
で蓄積された信号電荷を、次の読出し期間において、垂
直レジスタ22に読出し、水平ブランキング期間におい
て、信号電荷を行ごとに転送し、垂直レジスタ22の最
終段に蓄積されている信号電荷を水平レジスタ23に転
送する。そして、次の水平出力期間(テレビジョンの1
水平走査期間に相当する)において、水平レジスタ23
上の信号電荷を順次出力部24側に転送し、出力部24
から撮像信号Sとして取り出すという動作を行う。
In the charge accumulation period, the light receiving section 21
Is read out to the vertical register 22 in the next readout period, the signal charge is transferred row by row in the horizontal blanking period, and the signal charge stored in the last stage of the vertical register 22 is read out horizontally. Transfer to register 23. Then, in the next horizontal output period (1 of the television)
(Corresponding to a horizontal scanning period).
The upper signal charges are sequentially transferred to the output unit 24 side, and
Is performed as an image pickup signal S.

【0005】特に、上記垂直レジスタ22は、例えば4
枚の転送電極を1組とする転送段が垂直方向に配列さ
れ、各転送電極に互いに位相の異なる駆動パルスを印加
することにより、受光部21から垂直レジスタ22に読
み出された信号電荷を水平レジスタ23側に転送する。
In particular, the vertical register 22 is, for example, 4
Transfer stages each having one set of transfer electrodes are arranged in the vertical direction. By applying drive pulses having different phases to each transfer electrode, the signal charges read from the light receiving unit 21 to the vertical register 22 are horizontally transferred. Transfer to the register 23 side.

【0006】また、最近では、信号電荷の転送効率を向
上させるために、各転送電極に同じ値の抵抗を接続し、
各転送電極と垂直レジスタ22との間に形成される付加
容量との時定数により、各転送電極に印加される駆動パ
ルス(方形パルス)の波形をなまらせるようにしてい
る。
In recent years, in order to improve the transfer efficiency of signal charges, a resistor having the same value is connected to each transfer electrode.
The waveform of the drive pulse (square pulse) applied to each transfer electrode is blunted by the time constant of the additional capacitance formed between each transfer electrode and the vertical register 22.

【0007】[0007]

【発明が解決しようとする課題】ところで、各転送電極
を垂直レジスタ22上に形成する場合、受光部21間の
配線形成領域を利用して行われるが、4枚の転送電極を
全て同じパターンで形成することは不可能である。そこ
で、配線形成上、どうしても各転送電極における垂直レ
ジスタ22との接触面積にばらつきが生じる。
When each transfer electrode is formed on the vertical register 22, the transfer electrode is formed using the wiring formation area between the light receiving sections 21, but all the four transfer electrodes are formed in the same pattern. It is impossible to form. Therefore, in forming the wiring, the contact area of each transfer electrode with the vertical register 22 inevitably varies.

【0008】例えば、図10に示すように、駆動パルス
V1及びV3が印加される転送電極G1及びG3が、駆
動パルスV2及びV4が印加される転送電極G2及びG
4よりも幅広に形成されて垂直レジスタ22との接触面
積が大きい場合、転送電極G1及びG3の付加容量が転
送電極G2及びG4の付加容量よりも大きくなり、時定
数の関係から駆動パルスV1及びV3が、駆動パルスV
2及びV4よりもなまった波形になる。
For example, as shown in FIG. 10, the transfer electrodes G1 and G3 to which the driving pulses V1 and V3 are applied are changed to the transfer electrodes G2 and G to which the driving pulses V2 and V4 are applied.
4, the additional capacitance of the transfer electrodes G1 and G3 becomes larger than the additional capacitance of the transfer electrodes G2 and G4 when the contact area with the vertical register 22 is larger than that of the drive pulse V1 and the drive pulse V1 due to the time constant. V3 is the drive pulse V
2 and V4.

【0009】従って、図11に示すように、例えばt1
時において、転送電極G1に印加される駆動パルスV1
が下がり切らないうちに、隣接する転送電極G4に印加
される駆動パルスV4が立ち上がり、またt2 時におい
て、転送電極G2に印加される駆動パルスV2が下がり
切らないうちに、隣接する転送電極G1に印加される駆
動パルスV1が立ち上がることになり、垂直レジスタ2
2での最大取扱い電荷量が減少し、特性の劣化を引き起
こすという問題がある。
Accordingly, as shown in FIG. 11, for example, t 1
At the time, the driving pulse V1 applied to the transfer electrode G1
While no Kira lowered, the rise drive pulse V4 is applied to the transfer electrodes G4 adjacent, and in time t 2, while the drive pulse V2 applied to the transfer electrode G2 is not Kira lowered, the transfer electrodes adjacent G1 Drive pulse V1 applied to the vertical register 2 rises.
2 has a problem that the maximum amount of charge to be handled is reduced and the characteristics are deteriorated.

【0010】本発明は、このような課題に鑑み成された
もので、その目的とするところは、電荷転送領域の最大
取扱い電荷量を減少させることなく、信号電荷の転送効
率を向上させることができる電荷転送装置を提供するこ
とにある。
SUMMARY OF THE INVENTION The present invention has been made in view of the above problems, and an object of the present invention is to improve the transfer efficiency of signal charges without reducing the maximum amount of charges handled in the charge transfer region. It is an object of the present invention to provide a charge transfer device which can be used.

【0011】[0011]

【課題を解決するための手段】本発明は、基体1に形成
された電荷転送領域2上に、所定枚数の転送電極G1,
G2,G3及びG4を1組とする転送段が多段に配列さ
れ、各転送段の各転送電極G1,G2,G3及びG4に
夫々位相の異なる駆動パルスV1,V2,V3及びV4
を印加することにより、電荷転送領域2内の信号電荷e
を出力部側に順次転送する電荷転送装置において、各転
送電極G1,G2,G3及びG4に、各転送電極G1,
G2,G3及びG4の付加容量C1,C2,C3及びC
4に応じた値を有する抵抗R1,R2,R3及びR4を
イメージエリア11の周辺部で接続して構成する。
According to the present invention, a predetermined number of transfer electrodes G1 and G2 are provided on a charge transfer region 2 formed in a substrate 1.
G2, G3, and G4 as a set are arranged in multiple stages, and drive pulses V1, V2, V3, and V4 having different phases are respectively applied to the transfer electrodes G1, G2, G3, and G4 of each transfer stage.
Is applied, the signal charge e in the charge transfer region 2
Transfer device sequentially transfers the transfer electrodes G1, G2, G3, and G4 to the transfer electrodes G1, G2, G3, and G4.
Additional capacity C1, C2, C3 and C of G2, G3 and G4
Resistances R1, R2, R3 and R4 having a value corresponding to
The connection is made at the periphery of the image area 11 .

【0012】[0012]

【作用】上述の本発明の構成によれば、各転送電極G
1,G2,G3及びG4に、各転送電極G1,G2,G
3及びG4の付加容量C1,C2,C3及びC4に応じ
た値を有する抵抗R1,R2,R3及びR4をイメージ
エリア11の周辺部で接続するようにしたので、各転送
電極G1,G2,G3及びG4に印加される駆動パルス
V1,V2,V3及びV4のなまり具合いをほぼ同じに
することができる。このことから、例えば駆動パルスV
1が印加される転送電極G1の上記駆動パルスV1が下
がり切らないうちに、その隣接する転送電極G4に印加
される駆動パルスV4が立ち上がるという不都合がなく
なり、電荷転送領域2の最大取扱い電荷量を減少させる
ことなく、信号電荷eの転送効率を向上させることがで
きる。
According to the configuration of the present invention described above, each transfer electrode G
, G2, G3, and G4 to transfer electrodes G1, G2, G
Image of resistors R1, R2, R3 and R4 having values corresponding to the additional capacitances C1, C2, C3 and C4 of G3 and G4
Since the connection is made at the periphery of the area 11, the driving pulses V1, V2, V3 and V4 applied to the transfer electrodes G1, G2, G3 and G4 can be made almost the same. From this, for example, the drive pulse V
Before the drive pulse V1 applied to the transfer electrode G1 to which 1 is applied falls, the drive pulse V4 applied to the adjacent transfer electrode G4 does not rise, and the maximum handled charge amount of the charge transfer region 2 is reduced. The transfer efficiency of the signal charges e can be improved without reducing the transfer rate.

【0013】[0013]

【実施例】以下、図1〜図8を参照しながら本発明の実
施例を説明する。図1は、本実施例に係るCCDイメー
ジセンサの特にその垂直転送部分の原理構造を示す概略
構成図である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. FIG. 1 is a schematic configuration diagram showing a principle structure of a CCD image sensor according to the present embodiment, particularly, a vertical transfer portion thereof.

【0014】本例に係る垂直転送部分の構成は、図示す
るように、例えばP型のシリコン基板1にN型の不純物
拡散領域帯による垂直レジスタ2が形成され、この垂直
レジスタ2上にゲート絶縁膜3を介して4枚の転送電極
G1,G2,G3及びG4を1組とする転送段が垂直方
向(Y方向)に配列されて構成されている。
As shown in the figure, the vertical transfer portion according to the present embodiment has a structure in which, for example, a vertical register 2 formed of an N-type impurity diffusion region band is formed on a P-type silicon substrate 1, and a gate insulating layer is formed on the vertical register 2. A transfer stage having a set of four transfer electrodes G1, G2, G3 and G4 via the film 3 is arranged in the vertical direction (Y direction).

【0015】そして、各転送電極G1,G2,G3及び
G4は、その形成パターンにより、夫々垂直レジスタ2
との接触面積が異なる場合が生じる。図示の例では、各
転送電極G1,G2,G3及びG4の垂直レジスタ2と
の接触面積を夫々A1,A2,A3,A4とすると、A
1>A2>A3>A4の場合を想定している。従って、
各転送電極G1,G2,G3及びG4の付加容量C1,
C2,C3,C4は、C1>C2>C3>C4の関係と
なる。
The transfer electrodes G1, G2, G3 and G4 are respectively connected to the vertical registers 2 according to the formation pattern.
There is a case where the contact area differs from the contact area. In the illustrated example, if the contact areas of the transfer electrodes G1, G2, G3, and G4 with the vertical register 2 are A1, A2, A3, and A4, respectively, A
It is assumed that 1>A2>A3> A4. Therefore,
The additional capacitance C1, of the transfer electrodes G1, G2, G3 and G4
C2, C3, and C4 have a relationship of C1>C2>C3> C4.

【0016】このような場合において、本例では、各転
送電極G1,G2,G3及びG4に夫々値の異なる抵抗
R1,R2,R3,R4を接続する。各抵抗の大小関係
は、R1<R2<R3<R4である。これらの抵抗R
1,R2,R3,R4の値は、各転送電極G1,G2,
G3及びG4の夫々の時定数C1・R1、C2・R2、
C3・R3、C4・R4がほぼ同一となるように設定す
る。
In such a case, in this example, resistors R1, R2, R3, and R4 having different values are connected to the transfer electrodes G1, G2, G3, and G4, respectively. The magnitude relationship between the resistors is R1 <R2 <R3 <R4. These resistors R
1, R2, R3, and R4 are values of the transfer electrodes G1, G2,
The respective time constants C1 · R1, C2 · R2 of G3 and G4,
C3 · R3 and C4 · R4 are set to be substantially the same.

【0017】その結果、各転送電極G1,G2,G3及
びG4の入力端子φ1,φ2,φ3及びφ4に、図2A
で示すような、夫々位相の異なる方形の駆動パルスV
1,V2,V3及びV4を印加すると、上記時定数によ
り、駆動パルスV1,V2,V3及びV4はほぼ同じ割
合でなまり、各駆動パルスV1,V2,V3及びV4の
波形は、図2Bに示すようになる。一般に、信号電荷の
転送効率は、各駆動パルスV1,V2,V3及びV4の
例えば高レベルから低レベルに切り替わる期間に依存し
ており、その切り替わる期間が長いほど転送効率が良く
なる。
As a result, the input terminals φ1, φ2, φ3, and φ4 of the transfer electrodes G1, G2, G3, and G4 are applied to FIG.
Square driving pulses V having different phases as shown by
When V1, V2, V3, and V4 are applied, the drive pulses V1, V2, V3, and V4 are turned at substantially the same ratio due to the time constant, and the waveforms of the drive pulses V1, V2, V3, and V4 are shown in FIG. 2B. Become like In general, the transfer efficiency of the signal charge depends on, for example, a period during which each of the driving pulses V1, V2, V3, and V4 switches from a high level to a low level. The longer the switching period, the higher the transfer efficiency.

【0018】従って、本例においては、各駆動パルスV
1,V2,V3及びV4が付加容量C1,C2,C3及
びC4と付加抵抗R1,R2,R3及びR4による時定
数によって波形がなまり、例えば高レベルから低レベル
に切り替わる期間が方形のパルス波形の場合よりも長く
なり、信号電荷の転送効率が向上する。
Therefore, in this embodiment, each drive pulse V
The waveforms of 1, V2, V3 and V4 are distorted by the time constants of the additional capacitors C1, C2, C3 and C4 and the additional resistors R1, R2, R3 and R4. This is longer than in the case, and the transfer efficiency of the signal charge is improved.

【0019】また、各駆動パルスV1,V2,V3及び
V4がほぼ同じ割合でなまることから、例えば図2Bの
2 時において、駆動パルスV1が下がり切らないうち
に、転送パルスV4が立ち上がるという現象が確率的に
少なくなる。しかも、各駆動パルスV1,V2,V3及
びV4の出力タイミングを容易に予測することができる
ため、各駆動パルスV1,V2,V3及びV4の例えば
立ち上がりから立ち下がりまでの最適な期間を容易に設
定することができ、上記現象を完全になくすことが可能
となる。
Further, since each drive pulse V1, V2, V3 and V4 are rounded at approximately the same rate, for example at t 2:00 in Figure 2B, while the drive pulse V1 is not Kira lowered, that the transfer pulse V4 rises The phenomenon decreases stochastically. In addition, since the output timing of each of the drive pulses V1, V2, V3, and V4 can be easily predicted, an optimum period from the rise to the fall of each of the drive pulses V1, V2, V3, and V4 can be easily set. The above phenomenon can be completely eliminated.

【0020】ここで、図2Bで示す各駆動パルスV1,
V2,V3及びV4の印加によって信号電荷がどのよう
に転送されるかを図3に基いて説明する。
Here, each drive pulse V1, shown in FIG.
How the signal charges are transferred by applying V2, V3 and V4 will be described with reference to FIG.

【0021】まず、t0 時において、駆動パルスV1及
びV2が高レベルであることから、転送電極G1及びG
2下に連続するポテンシャル井戸が形成され、信号電荷
eはこのポテンシャル井戸に転送・蓄積される。
First, at time t 0 , since the driving pulses V 1 and V 2 are at a high level, the transfer electrodes G 1 and G 2
2, a continuous potential well is formed, and the signal charge e is transferred and accumulated in this potential well.

【0022】次のt1 時において、駆動パルスV3が高
レベルになることから、転送電極G3下のポテンシャル
が深くなって、転送電極G1、G2及びG3下に連続す
るポテンシャル井戸が形成され、信号電荷eはこのポテ
ンシャル井戸に転送・蓄積される。t0 からt1 時にか
けて駆動パルスV3の高レベルへの切り替え期間が転送
電極G3の時定数により長くなっているため、信号電荷
eは、転送電極G1及びG2から転送電極G3下にわた
って効率よく転送される。
[0022] At time following t 1, since the drive pulse V3 goes high, the potential under the transfer electrode G3 becomes deeper, the transfer electrodes G1, G2 and G3 potential wells successively beneath is formed, the signal The charge e is transferred and accumulated in this potential well. Since the switching period from t 0 to the high level of the drive pulse V3 subjected at t 1 is longer by the time constant of the transfer electrode G3, the signal charges e are efficiently over the lower transfer electrodes G3 from the transfer electrodes G1 and G2 Transfer Is done.

【0023】次に、t2 時において、駆動パルスV1が
低レベルになることから、転送電極G1下のポテンシャ
ルが浅くなり、信号電荷eは、転送電極G2及びG3下
に連続形成されているポテンシャル井戸に転送・蓄積さ
れる。このとき、t1 からt 2 時にかけて駆動パルスV
1の低レベルへの切り替え期間が転送電極G1の時定数
により長くなっているため、転送電極G1下にあった信
号電荷eは、転送電極G2及びG3下に連続形成されて
いるポテンシャル井戸に効率よく転送される。
Next, tTwoAt the time, the driving pulse V1 is
Since the level becomes low, the potential below the transfer electrode G1 is reduced.
And the signal charge e is below the transfer electrodes G2 and G3.
Transferred to and accumulated in the potential well
It is. At this time, t1To t TwoDrive pulse V over time
1 is a time constant of the transfer electrode G1 during the switching period to the low level.
Is longer, the signal under the transfer electrode G1 is
The signal charge e is continuously formed below the transfer electrodes G2 and G3.
Efficiently transferred to the potential well.

【0024】次に、t3 時において、駆動パルスV4が
高レベルになることから、転送電極G4下のポテンシャ
ルが深くなって、転送電極G2、G3及びG4下に連続
するポテンシャル井戸が形成され、信号電荷eはこのポ
テンシャル井戸に転送・蓄積される。t2 からt3 時に
かけて駆動パルスV4の高レベルへの切り替え期間が転
送電極G4の時定数により長くなっているため、信号電
荷eは、転送電極G2及びG3から転送電極G4下にわ
たって効率よく転送される。
Next, at time t 3 , since the driving pulse V4 is at a high level, the potential below the transfer electrode G4 is deepened, and a continuous potential well is formed below the transfer electrodes G2, G3 and G4. The signal charge e is transferred and stored in the potential well. Since the switching period from t 2 to the high level of the drive pulse V4 toward at t 3 is longer by the time constant of the transfer electrodes G4, the signal charges e are efficiently over the lower transfer electrode G4 from the transfer electrodes G2 and G3 Transfer Is done.

【0025】次に、t4 時において、駆動パルスV2が
低レベルになることから、転送電極G2下のポテンシャ
ルが浅くなり、信号電荷eは、転送電極G3及びG4下
に連続形成されているポテンシャル井戸に転送・蓄積さ
れる。このとき、t3 からt 4 時にかけて駆動パルスV
2の低レベルへの切り替え期間が転送電極G2の時定数
により長くなっているため、転送電極G2下にあった信
号電荷eは、転送電極G3及びG4下に連続形成されて
いるポテンシャル井戸に効率よく転送される。
Next, tFourAt the time, the driving pulse V2 is
Since the level becomes low, the potential below the transfer electrode G2
And the signal charge e is below the transfer electrodes G3 and G4.
Transferred to and accumulated in the potential well
It is. At this time, tThreeTo t FourDrive pulse V over time
2 is the time constant of the transfer electrode G2
, The signal under the transfer electrode G2
The signal charge e is continuously formed below the transfer electrodes G3 and G4.
Efficiently transferred to the potential well.

【0026】次に、t5 時において、駆動パルスV1が
高レベルになることから、転送電極G1下のポテンシャ
ルが深くなって、転送電極G3、G4及びG1下に連続
するポテンシャル井戸が形成され、信号電荷eはこのポ
テンシャル井戸に転送・蓄積される。t4 からt5 時に
かけて駆動パルスV1の高レベルへの切り替え期間が転
送電極G1の時定数により長くなっているため、信号電
荷eは、転送電極G3及びG4から転送電極G1下にわ
たって効率よく転送される。
Next, the time t 5, the drive pulse V1 from becoming high, becomes deeper the potential under the transfer electrodes G1, transfer electrodes G3, G4 and potential wells successively under G1 are formed, The signal charge e is transferred and stored in the potential well. Since the switching period from t 4 to the high level of the drive pulse V1 toward times t 5 becomes longer by the time constant of the transfer electrodes G1, the signal charges e are efficiently over lower G1 transfer electrodes from the transfer electrodes G3 and G4 transfers Is done.

【0027】次に、t6 時において、駆動パルスV3が
低レベルになることから、転送電極G3下のポテンシャ
ルが浅くなり、信号電荷eは、転送電極G4及びG1下
に連続形成されているポテンシャル井戸に転送・蓄積さ
れる。このとき、t5 からt 6 時にかけて駆動パルスV
3の低レベルへの切り替え期間が転送電極G3の時定数
により長くなっているため、転送電極G3下にあった信
号電荷eは、転送電極G4及びG1下に連続形成されて
いるポテンシャル井戸に効率よく転送される。
Next, t6At the time, the driving pulse V3 is
Since the level is low, the potential below the transfer electrode G3
The signal charge e is below the transfer electrodes G4 and G1.
Transferred to and accumulated in the potential well
It is. At this time, tFiveTo t 6Drive pulse V over time
3 is a time constant of the transfer electrode G3 during the period of switching to the low level.
, The signal under transfer electrode G3
The signal charge e is continuously formed below the transfer electrodes G4 and G1.
Efficiently transferred to the potential well.

【0028】次に、t7 時において、駆動パルスV2が
高レベルになることから、転送電極G2下のポテンシャ
ルが深くなって、転送電極G4、G1及びG2下に連続
するポテンシャル井戸が形成され、信号電荷eはこのポ
テンシャル井戸に転送・蓄積される。t6 からt7 時に
かけて駆動パルスV2の高レベルへの切り替え期間が転
送電極G2の時定数により長くなっているため、信号電
荷eは、転送電極G4及びG1から転送電極G2下にわ
たって効率よく転送される。
Next, the time t 7, the drive pulse V2 is from becoming high level, the potential under the transfer electrode G2 becomes deeper, the transfer electrodes G4, G1 and G2 potential wells successively beneath is formed, The signal charge e is transferred and stored in the potential well. Since the switching period from t 6 to the high level of the drive pulse V2 toward at t 7 is longer by the time constant of the transfer electrodes G2, the signal charges e are efficiently over the lower transfer electrode G2 from the transfer electrodes G4 and G1 transfers Is done.

【0029】次に、t8 時において、駆動パルスV4が
低レベルになることから、転送電極G4下のポテンシャ
ルが浅くなり、信号電荷eは、転送電極G1及びG2下
に連続形成されているポテンシャル井戸に転送・蓄積さ
れる。このとき、t7 からt 8 時にかけて駆動パルスV
4の低レベルへの切り替え期間が転送電極G4の時定数
により長くなっているため、転送電極G4下にあった信
号電荷eは、転送電極G1及びG2下に連続形成されて
いるポテンシャル井戸に効率よく転送される。
Next, t8At the time, the driving pulse V4 is
Since the level becomes low, the potential below the transfer electrode G4
And the signal charge e is below the transfer electrodes G1 and G2.
Transferred to and accumulated in the potential well
It is. At this time, t7To t 8Drive pulse V over time
4 is a time constant of the transfer electrode G4 during the period of switching to the low level.
, The signal under transfer electrode G4
The signal charge e is continuously formed below the transfer electrodes G1 and G2.
Efficiently transferred to the potential well.

【0030】上記一連の動作により、1つの転送段にあ
った信号電荷eが隣の転送段に転送されることになる。
そして、上記一連の動作を繰り返すことにより、垂直レ
ジスタ2上の信号電荷eを水平レジスタ(図示せず)側
に順次転送する。
By the above-described series of operations, the signal charge e in one transfer stage is transferred to the next transfer stage.
Then, by repeating the series of operations, the signal charges e on the vertical register 2 are sequentially transferred to the horizontal register (not shown).

【0031】次に、上記実施例に係る構成を実際のCC
Dイメージセンサに適用した場合について図4〜図8を
参照しながら説明する。
Next, the configuration according to the above embodiment is replaced with an actual CC.
A case where the present invention is applied to a D image sensor will be described with reference to FIGS.

【0032】図4は、本実施例に係るCCDイメージセ
ンサの特にその垂直転送部分を一部破断して示す斜視図
である。この図において、4は受光部を示す。また、図
1と対応するものについては同符号を記す。
FIG. 4 is a perspective view of the CCD image sensor according to the present embodiment, particularly showing a vertical transfer portion thereof partially cut away. In this figure, reference numeral 4 denotes a light receiving section. In addition, the same reference numerals are given to those corresponding to FIG.

【0033】このCCDイメージセンサの垂直転送部分
は、図示するように、駆動パルスV1が印加される第1
の転送電極G1と駆動パルスV3が印加される第3の転
送電極G3が夫々同じパターンで形成され、駆動パルス
V2が印加される第2の転送電極G2と駆動パルスV4
が印加される第4の転送電極G4が夫々同じパターンで
形成され、上記第1及び第3の転送電極G1及びG3
は、その配線幅が第2及び第4の転送電極G2及びG4
の配線幅よりも狭く、また、垂直レジスタ2との接触面
積が広く形成されている。このことから、第1及び第3
の転送電極G1及びG3は、その配線抵抗及び垂直レジ
スタ2との付加容量による時定数が第2及び第4の転送
電極G2及びG4よりも大きくなる。
As shown in the figure, the vertical transfer portion of this CCD image sensor has a first drive pulse V1 applied thereto.
And the third transfer electrode G3 to which the drive pulse V3 is applied is formed in the same pattern, respectively, and the second transfer electrode G2 and the drive pulse V4 to which the drive pulse V2 is applied.
Are formed in the same pattern, respectively, and the first and third transfer electrodes G1 and G3 are applied.
Have a wiring width of the second and fourth transfer electrodes G2 and G4
, And the contact area with the vertical register 2 is widened. From this, the first and third
The transfer electrodes G1 and G3 have a larger time constant due to the wiring resistance and the additional capacitance with the vertical register 2 than the second and fourth transfer electrodes G2 and G4.

【0034】従って、本例では、第1及び第3の転送電
極G1及びG3に接続する抵抗R1及びR3の値を互い
に同じにし(R1=R3)、第2及び第4の転送電極G
2及びG4に接続する抵抗R2及びR4の値を互いに同
じにし(R2=R4)、更に、抵抗R1及びR3の値を
抵抗R2及びR4よりも小さくして構成する(R1,R
3<R2,R4)。
Therefore, in this example, the values of the resistors R1 and R3 connected to the first and third transfer electrodes G1 and G3 are made equal to each other (R1 = R3), and the second and fourth transfer electrodes G
2 and G4 have the same value of the resistors R2 and R4 (R2 = R4), and the values of the resistors R1 and R3 are smaller than the resistors R2 and R4 (R1, R4).
3 <R2, R4).

【0035】ここで、一つの実験例を示す。図4の構成
において、第1及び第3の転送電極G1及びG3のみに
同じ値の抵抗を接続した場合をサンプル1、各転送電極
G1,G2,G3及びG4に同じ値の抵抗を接続した場
合をサンプル2、第2及び第4の転送電極G2及びG4
のみに同じ値の抵抗を接続した場合をサンプル3とし
て、各サンプル1,2及び3における信号電荷の転送残
り量を測定すると、図5に示すように、サンプル1は、
接続される抵抗の値に関係なく、転送残り量が多いこと
から、この構成を採用することはできない。
Here, one experimental example will be described. In the configuration of FIG. 4, the case where the same value resistor is connected only to the first and third transfer electrodes G1 and G3 is a sample 1, and the case where the same value resistor is connected to each of the transfer electrodes G1, G2, G3 and G4. To sample 2, the second and fourth transfer electrodes G2 and G4
When the remaining amount of signal charge transfer in each of Samples 1, 2, and 3 was measured with Sample 3 having the same value of resistance connected to only Sample 1, as shown in FIG.
This configuration cannot be adopted irrespective of the value of the connected resistor because the remaining transfer amount is large.

【0036】一方、サンプル2とサンプル3について
は、接続される抵抗の値を上げるにしたがって、転送残
り量が減り、転送効率の向上がみられる。しかし、取扱
い電荷量の変化をみた場合、図6に示すように、サンプ
ル2は、抵抗値20Ωくらいから取扱い電荷量が減少す
るのに対し、サンプル3は、抵抗値60Ωくらいから減
少傾向にあり、90Ωくらいから基準の取扱い電荷量1
000mVよりも減少することがわかる。
On the other hand, with respect to Samples 2 and 3, as the value of the connected resistor increases, the remaining transfer amount decreases, and the transfer efficiency is improved. However, as shown in FIG. 6, when the change in the amount of handled charge is observed, the amount of handled charge of Sample 2 decreases from a resistance value of about 20Ω, whereas the amount of sample 3 tends to decrease from a resistance value of about 60Ω. , About 90Ω, the standard handling charge 1
It turns out that it decreases below 000 mV.

【0037】このことから、付加容量の小さい第2及び
第4の転送電極G2及びG4に値の大きい抵抗を接続
し、付加容量の大きい第1及び第3の転送電極G1及び
G3に値の小さい抵抗を接続すれば、取扱い電荷量を犠
牲にせずに、転送効率を大きく向上させることができる
ことがわかる。
Accordingly, a large-value resistor is connected to the second and fourth transfer electrodes G2 and G4 having a small additional capacitance, and a small value is connected to the first and third transfer electrodes G1 and G3 having a large additional capacitance. It can be seen that the transfer efficiency can be significantly improved by connecting a resistor without sacrificing the amount of charge handled.

【0038】図4で示す実施例では、第1及び第3の転
送電極G1及びG3に値が20Ωの抵抗R1及びR3を
接続し、第2及び第4の転送電極G2及びG4に値が6
0Ωの抵抗R2及びR4を接続して構成した。
In the embodiment shown in FIG. 4, resistors R1 and R3 having a value of 20Ω are connected to the first and third transfer electrodes G1 and G3, and a value of 6 is connected to the second and fourth transfer electrodes G2 and G4.
It was configured by connecting 0Ω resistors R2 and R4.

【0039】ところで、各転送電極G1,G2,G3及
びG4への抵抗R1,R2,R3及びR4の接続は、C
CDイメージセンサを例にとると、そのイメージエリア
の周辺部における配線引き回し用の領域で行うことが好
ましい。即ち、図7に示すように、受光部がマトリクス
状に配列されたイメージエリア11内における垂直レジ
スタ上の各転送電極は、イメージエリア11の周辺部に
おける配線引き回し領域にて、対応する入力端子φ1,
φ2,φ3及びφ4と配線12a,12b,12c及び
12dを介して電気的に接続されるわけだが、ここで上
記各配線12a,12b,12c及び12dを以下のよ
うに構成する。
Incidentally, the connection of the resistors R1, R2, R3 and R4 to the transfer electrodes G1, G2, G3 and G4
Taking a CD image sensor as an example, it is preferable to perform the operation in a wiring routing area in the periphery of the image area. That is, as shown in FIG. 7, each transfer electrode on the vertical register in the image area 11 in which the light receiving sections are arranged in a matrix is connected to the corresponding input terminal φ1 in the wiring routing area in the periphery of the image area 11. ,
Although they are electrically connected to φ2, φ3, and φ4 via the wirings 12a, 12b, 12c, and 12d, the wirings 12a, 12b, 12c, and 12d are configured as follows.

【0040】各転送電極G1,G2,G3及びG4から
延びる配線層(通常、多結晶シリコン層が用いられる)
12a,12b,12c及び12dと入力端子φ1,φ
2,φ3及びφ4のインナー側を同じ線幅及び長さを有
する抵抗線13a,13b,13c及び13dで電気的
に接続する。
A wiring layer extending from each of the transfer electrodes G1, G2, G3 and G4 (usually a polycrystalline silicon layer is used)
12a, 12b, 12c and 12d and input terminals φ1, φ
2, the inner sides of φ3 and φ4 are electrically connected by resistance wires 13a, 13b, 13c and 13d having the same line width and length.

【0041】そして、各配線層12a,12b,12c
及び12dと各抵抗線13a,13b,13c及び13
dとを例えばAl配線14a,14b,14c及び14
dにて接続する。このとき、Al配線14a,14b,
14c及び14dと抵抗線13a,13b,13c及び
13dとの各接続位置a,b,c及びdを各転送電極G
1,G2,G3及びG4の付加容量に応じて適宜選定す
ることによって、各転送電極G1,G2,G3及びG4
に付加容量に応じた抵抗R1,R2,R3及びR4が接
続されたことと等価になる。
Then, each of the wiring layers 12a, 12b, 12c
And 12d and the respective resistance lines 13a, 13b, 13c and 13
d with, for example, Al wirings 14a, 14b, 14c and 14
Connect with d. At this time, the Al wirings 14a, 14b,
The connection positions a, b, c and d of the resistance wires 13a, 13b, 13c and 13d with the transfer electrodes G
1, G2, G3, and G4, the transfer electrodes G1, G2, G3, and G4 are appropriately selected.
Is connected to the resistors R1, R2, R3 and R4 according to the additional capacitance.

【0042】各転送電極G1,G2,G3及びG4が図
4の構成を有する場合、第1及び第3の転送電極G1及
びG3に関しては、Al配線14a及び14cにおける
抵抗線13a及び13cとの接続位置a及びcを夫々入
力端子φ1及びφ3のインナー側に設定して、各抵抗R
1及びR3の値を小さくし、第2及び第4の転送電極G
2及びG4に関しては、Al配線14b及び14dにお
ける抵抗線13b及び13dとの接続位置b及びdを夫
々配線層12b及び12d側に設定して、各抵抗R2及
びR4の値を大きくする。
When each of the transfer electrodes G1, G2, G3 and G4 has the configuration shown in FIG. 4, the connection between the first and third transfer electrodes G1 and G3 is made to the resistance lines 13a and 13c in the Al wirings 14a and 14c. Positions a and c are set on the inner side of input terminals φ1 and φ3, respectively,
1 and R3, the second and fourth transfer electrodes G
Regarding 2 and G4, the connection positions b and d of the Al wirings 14b and 14d with the resistance lines 13b and 13d are set on the wiring layers 12b and 12d side, respectively, and the values of the resistors R2 and R4 are increased.

【0043】上記の方法によれば、簡単に各転送電極G
1,G2,G3及びG4にその付加容量に応じた抵抗R
1,R2,R3及びR4を接続することができる。
According to the above method, each transfer electrode G can be simply
1, G2, G3, and G4 each have a resistor R according to the added capacitance.
1, R2, R3 and R4 can be connected.

【0044】上記例では、CCDイメージセンサに適用
した例を示したが、その他、CCDリニアセンサやCC
D遅延線にも適用させることができる。
In the above example, an example in which the present invention is applied to a CCD image sensor is shown.
It can be applied to a D delay line.

【0045】[0045]

【発明の効果】本発明に係る電荷転送装置によれば、電
荷転送領域の最大取扱い電荷量を減少させることなく、
信号電荷の転送効率を向上させることができる。
According to the charge transfer device of the present invention, the maximum handled charge amount of the charge transfer region is not reduced.
The transfer efficiency of signal charges can be improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例に係るCCDイメージセンサの特にそ
の垂直転送部分の原理構造を示す概略構成図。
FIG. 1 is a schematic configuration diagram showing a principle structure of a CCD image sensor according to an embodiment, particularly, a vertical transfer portion thereof.

【図2】Aは、本実施例の入力端子に供給される駆動パ
ルス(方形パルス)を示す波形図。Bは、本実施例にお
ける実際の駆動パルスの波形図。
FIG. 2A is a waveform diagram showing a drive pulse (square pulse) supplied to an input terminal of the present embodiment. 7B is a waveform diagram of an actual driving pulse in the present embodiment.

【図3】本実施例に係る信号電荷の転送動作を示す動作
概念図。
FIG. 3 is an operation conceptual diagram showing a signal charge transfer operation according to the embodiment.

【図4】本実施例に係る転送電極の実際の形成パターン
例を一部破断して示す斜視図。
FIG. 4 is a perspective view showing an example of an actual formation pattern of a transfer electrode according to the present embodiment, partially cut away;

【図5】各サンプルの抵抗値に対する転送残り量の変化
を示す特性図。
FIG. 5 is a characteristic diagram showing a change in a transfer remaining amount with respect to a resistance value of each sample.

【図6】サンプル1及び2の抵抗値に対する取扱い電荷
量の変化を示す特性図。
FIG. 6 is a characteristic diagram showing a change in a handled charge amount with respect to a resistance value of Samples 1 and 2.

【図7】本実施例に係るイメージエリア周辺部の構成を
示す概略平面図。
FIG. 7 is a schematic plan view showing a configuration of a peripheral portion of an image area according to the embodiment.

【図8】本実施例に係る抵抗の接続方法(形成方法)を
示す説明図。
FIG. 8 is an explanatory view showing a connection method (forming method) of the resistor according to the embodiment.

【図9】CCDイメージセンサの一般的な構成を示す概
略平面図。
FIG. 9 is a schematic plan view showing a general configuration of a CCD image sensor.

【図10】従来例に係るCCDイメージセンサの垂直転
送部分を示す概略構成図。
FIG. 10 is a schematic configuration diagram showing a vertical transfer portion of a conventional CCD image sensor.

【図11】従来例の不都合点を示す波形図。FIG. 11 is a waveform chart showing inconvenience points of the conventional example.

【符号の説明】[Explanation of symbols]

G1〜G4 転送電極 C1〜C4 付加容量 R1〜R4 付加抵抗 V1〜V4 駆動パルス 1 基板 2 垂直レジスタ 3 ゲート絶縁膜 G1 to G4 Transfer electrodes C1 to C4 Additional capacitance R1 to R4 Additional resistance V1 to V4 Drive pulse 1 Substrate 2 Vertical register 3 Gate insulating film

フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01L 21/339 H01L 27/14 H01L 27/148 H01L 29/762 H04N 5/335 Continued on the front page (58) Fields surveyed (Int.Cl. 7 , DB name) H01L 21/339 H01L 27/14 H01L 27/148 H01L 29/762 H04N 5/335

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基体に形成された電荷転送領域上に、所
定枚数の転送電極を1組とする転送段が多段に配列さ
れ、各転送段の各転送電極に夫々位相の異なる駆動パル
スを印加することにより、上記電荷転送領域内の信号電
荷を出力部側に順次転送する電荷転送装置において、 上記各転送電極に、各転送電極の付加容量に応じた値を
有する抵抗がイメージエリアの周辺部で接続されている
ことを特徴とする電荷転送装置。
1. A transfer stage having a predetermined number of transfer electrodes as a set is arranged in multiple stages on a charge transfer region formed on a base, and drive pulses having different phases are applied to each transfer electrode of each transfer stage. by, in the charge transfer device sequentially transferred to the output side of the signal charges of the charge transfer region, in each of the transfer electrodes, the peripheral portion of the image area resistor having a value corresponding to the additional capacitance of each transfer electrode in a charge transfer device, characterized in that connected.
JP09302792A 1992-04-13 1992-04-13 Charge transfer device Expired - Lifetime JP3208595B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP09302792A JP3208595B2 (en) 1992-04-13 1992-04-13 Charge transfer device
KR1019930005933A KR100317726B1 (en) 1992-04-13 1993-04-09 Charge transfer device and solid state image sensing device including the same
US08/291,493 US5414467A (en) 1992-04-13 1994-08-17 Charge transfer device wherein the time constant between the clock means and the transfer gate electrodes are substantially equal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09302792A JP3208595B2 (en) 1992-04-13 1992-04-13 Charge transfer device

Publications (2)

Publication Number Publication Date
JPH05291310A JPH05291310A (en) 1993-11-05
JP3208595B2 true JP3208595B2 (en) 2001-09-17

Family

ID=14071015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09302792A Expired - Lifetime JP3208595B2 (en) 1992-04-13 1992-04-13 Charge transfer device

Country Status (3)

Country Link
US (1) US5414467A (en)
JP (1) JP3208595B2 (en)
KR (1) KR100317726B1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10047168A1 (en) * 2000-09-22 2002-04-18 Eupec Gmbh & Co Kg Controllable semiconductor device
US7750964B2 (en) 2005-09-30 2010-07-06 Sony Corporation Method and apparatus for driving a semiconductor device including driving of signal charges within and outside an effective transfer period
JP4872779B2 (en) * 2007-04-24 2012-02-08 ソニー株式会社 Transfer pulse supply circuit and solid-state imaging device
JP2010063176A (en) * 2009-12-14 2010-03-18 Sony Corp Method and apparatus for driving semiconductor device having capacitive load, and electronic apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5518151A (en) * 1978-07-26 1980-02-08 Canon Inc Input device of photo electric conversion information
NL8203870A (en) * 1982-10-06 1984-05-01 Philips Nv SEMICONDUCTOR DEVICE.
US4617471A (en) * 1983-12-27 1986-10-14 Kabushiki Kaisha Toshiba Image sensing device
FR2582136B1 (en) * 1985-05-14 1987-06-26 Labo Electronique Physique LOAD TRANSFER DEVICE HAVING SEELFIED ORGANS
JPH02266537A (en) * 1989-04-07 1990-10-31 Mitsubishi Electric Corp Charge transfer device

Also Published As

Publication number Publication date
JPH05291310A (en) 1993-11-05
KR100317726B1 (en) 2002-06-20
US5414467A (en) 1995-05-09
KR930022853A (en) 1993-11-24

Similar Documents

Publication Publication Date Title
US5060042A (en) Photoelectric conversion apparatus with reresh voltage
JP3579194B2 (en) Driving method of solid-state imaging device
KR0149734B1 (en) Solid state image pickup device comprising power feeding wires each divided into plural ones
US5393997A (en) CCD having transfer electrodes of 3 layers
JP3208595B2 (en) Charge transfer device
US4654865A (en) CCD device with electrostatic protective means
JPH061829B2 (en) Two-dimensional CCD image sensor
JP3200899B2 (en) Solid-state imaging device
JP2524451B2 (en) HCCD
CN100468761C (en) Solid-state imaging device, method for driving the same, method for manufacturing the same, camera, and method for driving the same
US6683647B2 (en) Method for driving solid-state image sensing device
JP2714001B2 (en) Solid-state imaging device
US7173298B2 (en) Solid-state image pickup device
US5477069A (en) Charge transfer device and driving method for the same
JP3349202B2 (en) Charge transfer element
JP3277621B2 (en) Solid-state imaging device
JPH06268923A (en) Drive method for solid-state image pickup device
EP0297921B1 (en) Photoelectric conversion device
JP2803171B2 (en) Signal output circuit of charge transfer element
JPH05326914A (en) Solid-state image sensing device
JPH04282868A (en) Solid-state image pickup device
JPH0520892A (en) Ccd element
JP3477727B2 (en) Solid-state imaging device
JPH07106545A (en) Solid-state image sensing element
JPH06252376A (en) Wiring structure of solid-state image pickup element

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080713

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090713

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110713

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120713

Year of fee payment: 11