JP3206565B2 - Heat treatment apparatus and heat treatment method - Google Patents

Heat treatment apparatus and heat treatment method

Info

Publication number
JP3206565B2
JP3206565B2 JP29399398A JP29399398A JP3206565B2 JP 3206565 B2 JP3206565 B2 JP 3206565B2 JP 29399398 A JP29399398 A JP 29399398A JP 29399398 A JP29399398 A JP 29399398A JP 3206565 B2 JP3206565 B2 JP 3206565B2
Authority
JP
Japan
Prior art keywords
point light
light source
point
heat treatment
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP29399398A
Other languages
Japanese (ja)
Other versions
JPH11195615A (en
Inventor
実 木村
正篤 伊東
滋 竹田
祥司 廣瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Soken Inc
Original Assignee
Nippon Soken Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=12417531&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3206565(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Nippon Soken Inc filed Critical Nippon Soken Inc
Priority to JP29399398A priority Critical patent/JP3206565B2/en
Publication of JPH11195615A publication Critical patent/JPH11195615A/en
Application granted granted Critical
Publication of JP3206565B2 publication Critical patent/JP3206565B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明はランプを用いた熱処
理装置及び熱処理方法に関し、特に半導体ウエハの熱処
理に使用して好適な熱処理装置及び熱処理方法に関す
る。
The present invention relates to a heat treatment apparatus and a heat treatment method using a lamp, and more particularly to a heat treatment apparatus and a heat treatment method suitable for use in heat treatment of a semiconductor wafer.

【0002】[0002]

【従来の技術】イオン注入後の結晶性回復やドーパント
活性化等のために、半導体ウエハの表面をハロゲンラン
プ等の赤外線ランプで急加熱し、その後急冷する熱処理
装置が使用されている。その一例を図30で説明する
と、装置ハウジングH内には石英ガラスのチューブH1
が配設され、該チューブH1内には一端の小径開口より
半導体材料ガスが供給される。そして、チューブH1他
端の大径開口からは支持腕42に支持されて被加熱材た
るウエハ2が装入されている。
2. Description of the Related Art In order to recover crystallinity or activate a dopant after ion implantation, a heat treatment apparatus is used in which the surface of a semiconductor wafer is rapidly heated by an infrared lamp such as a halogen lamp and then rapidly cooled. An example will be described with reference to FIG. 30. A quartz glass tube H1 is provided in an apparatus housing H.
Is provided, and a semiconductor material gas is supplied into the tube H1 from a small-diameter opening at one end. The wafer 2 which is supported by the support arm 42 and is a material to be heated is inserted through the large-diameter opening at the other end of the tube H1.

【0003】上記ハウジングH内には上記チューブH1
を挟んで上下位置に、チューブH1の長手方向へ等間隔
でハロゲンランプ1が設けてある。これらハロゲンラン
プ1は図31に示す如く、反射板15を備えた棒状のも
のが一般に使用されている。
In the housing H, the tube H1 is provided.
The halogen lamps 1 are provided at equal intervals in the longitudinal direction of the tube H1 at the upper and lower positions with respect to. As shown in FIG. 31, these halogen lamps 1 are generally in the form of rods provided with a reflection plate 15.

【0004】[0004]

【発明が解決しようとする課題】ところで、上記従来の
熱処理装置でウエハ2を加熱した場合、ウエハ表面を検
査すると、図32に示す如く、ウエハ板面を横切ってハ
ロゲンランプ1の長手方向(図の上下方向)へ比較的大
きな温度差(最大40℃)が生じ、結晶のすべりや、歪
みによるウエハ2のそりが問題となる。
By the way, when the wafer 2 is heated by the above-mentioned conventional heat treatment apparatus, when the wafer surface is inspected, as shown in FIG. (Up and down direction), a relatively large temperature difference (maximum 40 ° C.) is generated, and the slip of the crystal and the warpage of the wafer 2 due to the distortion become a problem.

【0005】そこで、上下のランプ1を互いに直交方向
へ配設することが考えられ、これによると図33に示す
如く、温度分布は略四角形の同心状となり、かつ温度差
も小さく(最大20℃)はなるが、未だ十分ではない。
Therefore, it is conceivable to arrange the upper and lower lamps 1 in a direction orthogonal to each other. According to this, as shown in FIG. 33, the temperature distribution becomes substantially square concentric and the temperature difference is small (maximum 20 ° C.). ) Will be, but still not enough.

【0006】本発明はかかる課題を解決するもので、ラ
ンプ加熱時に被加熱材に生じる温度分布を十分に小さく
することが可能な熱処理装置及び熱処理方法を提供する
ことを目的とする。
An object of the present invention is to provide a heat treatment apparatus and a heat treatment method capable of sufficiently reducing a temperature distribution generated in a material to be heated during lamp heating.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
になされた請求項1または請求項記載の発明は、板状
の被加熱材の少なくとも一方の面に複数の点状光源を対
向して配置し、前記複数の点状光源を略同心状の複数の
制御ゾーンに区分けし、前記制御ゾーン毎に前記複数の
点状光源の光照射量を設定することで前記被加熱材を加
熱する。この際、前記複数の制御ゾーンの各制御ゾーン
を構成する点状光源のうちの隣接する点状光源の中心
間距離を前記点状光源の直径以上の距離とし、かつ各点
状光源間において各点状光源の周辺には冷却水を導くよ
うにした状態で前記被加熱材を加熱することを特徴とし
ている。
According to a first or third aspect of the present invention, a plurality of point-like light sources are provided so as to face at least one surface of a plate-like material to be heated. The plurality of point light sources are divided into a plurality of substantially concentric control zones, and the material to be heated is heated by setting the light irradiation amounts of the plurality of point light sources for each control zone. . In this case, each center-to-center distance between adjacent spot-like light source of point light sources constituting each control zone of the plurality of control zones to the diameter or distance of the point light source, and each point
Guide cooling water around each point light source between the point light sources.
The method is characterized in that the material to be heated is heated in this state.

【0008】請求項2または請求項記載の発明によれ
ば、請求項1または請求項記載の発明における前記隣
接する点状光源を、さらにその離間距離が前記点状光源
の直径より小さくなるように設定した状態で前記被加熱
材を加熱することを特徴としている。
[0008] According to the second or fourth aspect of the present invention, the neighbor in the first or third aspect of the present invention.
A point light source that is in contact with the light source, and the distance between the point light source and the point light source
The method is characterized in that the material to be heated is heated in a state set to be smaller than the diameter of the material to be heated.

【0009】[0009]

【0010】[0010]

【0011】[0011]

【作用及び発明の効果】上記構成の請求項1または請求
記載の発明によれば、複数の点状光源を略同心状の
複数の制御ゾーンに区分けし、制御ゾーン毎に点状光源
の光照射量を設定して被加熱材を加熱することにより、
被加熱材の半径方向における温度を均一化できる。ここ
で、各制御ゾーンを構成する点状光源のうちの隣接する
点状光源の中心間距離を前記点状光源の直径以上の距
離とし、かつ各点状光源間において各点状光源の周辺に
は冷却水を導くようにしている。したがって、被加熱材
加熱時,すなわち光照射時に自己および隣接する点状光
源の発生する熱により点状光源自体の温度が上昇してし
まうのを抑制することができる。また各点状光源の周辺
へ冷却水を導くことにより、点状光源より奪う熱量を大
きくでき、かつ各点状光源を均一に冷却することがで
き、限られたスペース内に多数の点状光源を配列させた
場合でも大きな冷却効果が期待できる。 当該冷却効果
は、複数の点状光源を上記の距離関係で収容するととも
に、各点状光源間において各点状光源の周辺には水路を
有するように構成された冷却構造を用いて、当該水路に
冷却水を導くようにすることで実現できる。 なお請求項
2または請求項4記載の発明のように、隣接する点状光
源間の離間距離を点状光源の直径より小さく設定して被
加熱材内の周方向における光照射の均一化を図った場合
であっても、各制御ゾーン内において点状光源をより密
に配置させつつ、上記の冷却効果を実現できる。
According to the first or third aspect of the present invention, a plurality of point light sources are substantially concentric.
Divided into multiple control zones, point light source for each control zone
By setting the amount of light irradiation and heating the material to be heated,
The temperature in the radial direction of the material to be heated can be made uniform. here
In, distance of each center-to-center distance between adjacent spot-like light source or the diameter of the point light source of point light sources constituting the respective control zone
Separate, and between each point light source, around each point light source
Is trying to guide the cooling water. Therefore, the material to be heated
During heating, that is, at the time of light irradiation, self and adjacent point light
The temperature of the point light source itself rises due to the heat generated by the source.
It is possible to suppress sowing. Also around each point light source
Guides the cooling water to the
And can cool each point light source uniformly.
Many point light sources are arranged in a limited space
Even in this case, a large cooling effect can be expected. The cooling effect
Can accommodate multiple point light sources with the above distance relationship
In addition, between each point light source, there is a water channel around each point light source.
Using a cooling structure configured to have
This can be realized by introducing cooling water. Claims
As in the second or fourth aspect of the present invention, adjacent point light
The distance between the sources is set smaller than the diameter of the point
In the case of uniform light irradiation in the circumferential direction inside the heating material
The point light source in each control zone
And the above-described cooling effect can be realized.

【0012】[0012]

【0013】[0013]

【0014】[0014]

【0015】[0015]

【発明の実施の形態】〔第1実施例〕図1において、装
置ハウジングH内は平行に配設した石英ガラス板41
A、41Bにより上下に三室に区画されており、上部室
および下部室に赤外光を発する点状光源たる球状ハロゲ
ンランプ1が複数設けてある。中間室は熱処理室となっ
ており、該熱処理室内には支持腕42に支持せしめて被
加熱材たる半導体ウエハ2が装入してある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS [First Embodiment] In FIG. 1, the inside of an apparatus housing H is a quartz glass plate 41 disposed in parallel.
A and 41B are vertically divided into three chambers, and a plurality of spherical halogen lamps 1 as point light sources emitting infrared light are provided in the upper chamber and the lower chamber. The intermediate chamber is a heat treatment chamber, into which the semiconductor wafer 2 as a material to be heated, which is supported by the support arm 42, is loaded.

【0016】上記ウエハ2は円板形であり(図2)、上
記ハロゲンランプ1は、上記ウエハの板面全体をカバー
する領域に、正六角形の同心状をなして上記板面に向け
多数設けてある。ハロゲンランプ1は、不活性ガスとハ
ロゲンガスを封入したガラス球11(図3(1)、
(2))内にタングステンフィラメント12を設けたも
ので、その配光分布は、図4に示す如く、水平面内にお
けるフィラメントの延長方向で弱い。ここで、図中実線
は垂直面内の照度分布であり、鎖線は水平面内の照度分
布である。なお、本発明でいう「点状光源」は、ウエハ
2側から見た時に略円形の射影を有する形状の光源であ
ることが好ましい。
The wafer 2 has a disk shape (FIG. 2), and a large number of halogen lamps 1 are provided in a region covering the entire plate surface of the wafer in a concentric regular hexagon shape toward the plate surface. It is. The halogen lamp 1 has a glass bulb 11 filled with an inert gas and a halogen gas (FIG. 3 (1),
The tungsten filament 12 is provided in (2)), and its light distribution is weak in the extending direction of the filament in the horizontal plane as shown in FIG. Here, the solid line in the figure is the illuminance distribution in the vertical plane, and the chain line is the illuminance distribution in the horizontal plane. The “point light source” in the present invention is preferably a light source having a substantially circular projection when viewed from the wafer 2 side.

【0017】そこで、上記各ハロゲンランプ1は、図5
ないし第6図に示す如く、そのフィラメント12の配設
方向を異ならしめて、照度分布の強弱を互いに補完する
ようにしてある。すなわち、図5では各フィラメント1
2を同心円に沿う方向へ配し、また、図6では放射線に
沿う方向へ配設してある。
Therefore, each of the halogen lamps 1 is shown in FIG.
As shown in FIG. 6, the arrangement direction of the filaments 12 is made different to complement the intensity of the illuminance distribution. That is, in FIG.
2 are arranged in the direction along the concentric circle, and in FIG. 6, they are arranged in the direction along the radiation.

【0018】図1において、上述の如く配設された各ハ
ロゲンランプ1は装置ハウジングHの壁を貫通する配線
により外部の照射量設定装置3に接続されている。
In FIG. 1, each of the halogen lamps 1 arranged as described above is connected to an external irradiation dose setting device 3 by a wiring penetrating the wall of the device housing H.

【0019】照射量設定装置3は、通電回路31、通電
制御回路32、温度調節計33、および放射温度計34
より構成されており、放射温度計34は上記ウエハ2の
中心部温度を測定するようにハウジング底壁に一台設置
されている。本実施例では上記上下の各ハロゲンランプ
1はウエハ2の板面に対してそれぞれ中心より同心状に
3ゾーンに区画され、その各ゾーンについて通電回路3
1と通電制御回路32が設けてある(1ゾーンのみ図
示)。
The irradiation amount setting device 3 includes an energizing circuit 31, an energizing control circuit 32, a temperature controller 33, and a radiation thermometer 34.
The radiation thermometer 34 is installed on the bottom wall of the housing so as to measure the temperature of the central portion of the wafer 2. In this embodiment, each of the upper and lower halogen lamps 1 is concentrically divided into three zones from the center with respect to the plate surface of the wafer 2.
1 and an energization control circuit 32 (only one zone is shown).

【0020】温度調節計33は、上記放射温度計34か
ら得られる測定温度を、中心ゾーンの設定温度(例えば
1150℃)と比較し、その偏差が零になるように、通
電制御回路32中の増幅回路321およびゲートパルス
回路322を介して通電回路31に設けた電源ユニット
311のサイリスタを駆動する。検出回路312から
は、供給電流値が通電制御回路32の変換回路323を
経てフィードバックされている。
The temperature controller 33 compares the measured temperature obtained from the radiation thermometer 34 with the set temperature of the center zone (for example, 1150 ° C.), and controls the current in the power supply control circuit 32 so that the deviation becomes zero. The thyristor of the power supply unit 311 provided in the energizing circuit 31 is driven via the amplifier circuit 321 and the gate pulse circuit 322. The supply current value is fed back from the detection circuit 312 via the conversion circuit 323 of the conduction control circuit 32.

【0021】残る他のゾーンについても電力のフィード
バック制御を行っているが、その設定値は以下のように
決定される。すなわち、ニッケル板やステンレス板で製
作したダミーウエハ上の、上記各ゾーンに対応した所定
位置に熱電対を取付け、この状態でハロゲンランプを点
灯して、各ゾーンの温度が中心ゾーンとほぼ同一温度に
なるような電力設定値の比を決定する。
The power feedback control is also performed for the other remaining zones, and the set value is determined as follows. That is, a thermocouple is attached to a predetermined position corresponding to each of the above zones on a dummy wafer made of a nickel plate or a stainless steel plate, and in this state, a halogen lamp is turned on so that the temperature of each zone becomes substantially the same as the center zone. The power setting value ratio is determined as follows.

【0022】ところで、円板状の被加熱材を一定温度に
保持した場合の、各部からの放射エネルギー密度を一定
条件下で計算すると、図7に示すように、中心から外周
に向かうに従って次第に増加する。したがって、これを
補完するように、円形ウエハに対する供給電力は一般
に、中心部を小さくし、周辺部に向けて大きくすると良
い。
When the radiant energy density from each part when the disk-shaped material to be heated is maintained at a constant temperature is calculated under a certain condition, as shown in FIG. 7, it gradually increases from the center to the outer periphery. I do. Therefore, in order to complement this, it is generally preferable that the power supplied to the circular wafer be reduced toward the center and increased toward the periphery.

【0023】しかして、本実施例では、かかる理論的背
景も踏まえて、上述の熱電対による測定結果より、周辺
の各ゾーンのハロゲンランプ1への供給電力を一定の比
で大きくし、この結果、ウエハ2各部への入射エネルギ
ー密度を、図8に示す如く、中心部より周辺部にむけて
階段的に増加せしめている。
However, in the present embodiment, the power supplied to the halogen lamp 1 in each of the surrounding zones is increased at a constant ratio based on the above-described measurement results using the thermocouples, taking into account such theoretical background. As shown in FIG. 8, the energy density incident on each part of the wafer 2 is increased stepwise from the central part toward the peripheral part.

【0024】かかるランプ照射量の制御によりウエハ2
上の温度分布は、例えば図9に示す如く、同心状の変化
を残しつつもその温度差は小さなものとなる(最大10
℃)。
By controlling the lamp irradiation amount, the wafer 2
In the upper temperature distribution, for example, as shown in FIG. 9, the temperature difference is small while leaving concentric changes (maximum 10).
° C).

【0025】なお、上記ハロゲンランプ1の照射量制御
は、同心状のゾーン数を増すことにより、さらに高精度
になすことが可能であり、この場合はウエハの温度分布
もさらに均一化する。また、上下のランプ群を、中心回
りに互いにずらして配置することにより、ランプ境界部
の温度分布の変動を抑えることができる。 〔第2〜第6実施例〕ハロゲンランプ1の配置は、上記
実施例の如き正六角形の同心状にすると最も設置密度を
大きくできるが、各ランプ1を図10の如く同心円状に
配置すれば、制御ゾーンの区画が容易となる。また、ウ
エハ2の形状に応じて、ランプ配置を図11の如き四角
の同心状とすることも可能である。
The irradiation amount of the halogen lamp 1 can be controlled with higher accuracy by increasing the number of concentric zones. In this case, the temperature distribution of the wafer is further uniformed. Further, by disposing the upper and lower lamp groups so as to be shifted from each other around the center, it is possible to suppress the fluctuation of the temperature distribution at the lamp boundary. [Second to Sixth Embodiment] The arrangement density of the halogen lamps 1 can be maximized by making them concentric with a regular hexagon as in the above embodiment, but if the lamps 1 are arranged concentrically as shown in FIG. In addition, the division of the control zone becomes easy. Further, according to the shape of the wafer 2, the lamp arrangement may be square concentric as shown in FIG.

【0026】さらに、ハロゲンランプ1からの入射エネ
ルギー密度を大きくする必要があるウエハ2外周部で、
これに対向するランプ位置をウエハ2に近接せしめ(図
12)、これより中心部に向けて漸次ウエハ2より遠ざ
かるように配置すれば、階段的なゾーン制御の粗さを補
うことができる。同様の効果は、外周部より中心部に向
けてハロゲンランプ1のワット数を小さくすることによ
っても達成される。
Further, at the outer peripheral portion of the wafer 2 where the incident energy density from the halogen lamp 1 needs to be increased,
If the ramp position opposing this is made closer to the wafer 2 (FIG. 12) and is gradually arranged further away from the wafer 2 toward the center, the stepwise zone control roughness can be compensated. The same effect can be achieved by reducing the wattage of the halogen lamp 1 from the outer periphery toward the center.

【0027】ハロゲンランプ1は、照射効率を向上せし
めるために、図13に示す如く、ガラス球11の後半部
の内面ないし外面に金、クロム、ジルコニア等のコーテ
ィング13を施し、あるいは図14に示す如く、反射傘
14を設ける構造としても良い。
The halogen lamp 1 is provided with a coating 13 of gold, chromium, zirconia or the like on the inner or outer surface of the rear half of the glass bulb 11, as shown in FIG. 13, or as shown in FIG. As described above, a structure in which the reflecting umbrella 14 is provided may be adopted.

【0028】上記構成のランプアニール装置において、
ハロゲンランプは、ウエハの形状に応じて配設し、ウエ
ハ各部の放射熱量を補うように照射制御する。したがっ
て、必ずしも同心状配置される必要はなく、また、ウエ
ハ各部の放射熱量は、ウエハの形状により左右されるこ
とはもちろん、熱処理室に導入したガスの流れによって
も変動するから、これらを考慮する必要がある。
In the lamp annealing apparatus having the above structure,
Halogen lamps are provided according to the shape of the wafer, and irradiation control is performed so as to compensate for the amount of radiant heat of each part of the wafer. Therefore, it is not always necessary to arrange them concentrically, and the amount of radiant heat of each part of the wafer is not only influenced by the shape of the wafer but also fluctuated by the flow of gas introduced into the heat treatment chamber. There is a need.

【0029】なお、ランプ群は上下のいずれか一方のみ
でも良い。 〔第7実施例〕ところで、上記構成のランプアニール装
置において、各ハロゲンランプ1は、通常、図15に示
す如く、フィラメント12を内包するガラス球11とガ
イシ等の絶縁体よりなる口金部16からなり、口金部1
6をランプ受金51に取付けて(図16)、通電するこ
とによりフィラメント12が加熱されるようになしてあ
る。
Note that the lamp group may be only one of the upper and lower lamps. Seventh Embodiment By the way, in the lamp annealing apparatus having the above structure, each of the halogen lamps 1 is usually provided with a glass bulb 11 containing a filament 12 and a base 16 made of an insulator such as insulator as shown in FIG. Nari, base part 1
6 is mounted on a lamp receiver 51 (FIG. 16), and the filament 12 is heated by energizing.

【0030】フィラメント12の両端部には、図17
(1)(2)に示す如く、厚さ数10μmの金属箔を設
けてあり、これを、ガラス球11内に封入されたハロゲ
ンガスと外気を遮断するための壁111に貫通せしめて
封止部17となしてある。
At both ends of the filament 12, FIG.
(1) As shown in (2), a metal foil having a thickness of several tens of μm is provided, and this is penetrated through a wall 111 for shutting off a halogen gas sealed in the glass bulb 11 and the outside air and sealed. It is part 17.

【0031】この封止部17は、フィラメント12が加
熱されるとその熱が伝わって温度上昇するが、その温度
が250〜350℃以上になると、封止部17が酸化し
て断線するおそれがある。あるいは封止部17の熱膨張
によりガラス球11内のハロゲンガスが洩れてハロゲン
ガスの減少および大気のランプ内導入につながり、フィ
ラメント12の断線原因となる。そこで、封止部17が
250℃以上にならないように、図16に示す如く、ガ
ラス球11周りに反射板6を設ける、またはハロゲンラ
ンプ11を空冷することにより温度の上昇を防ぐことが
できる。 〔第8実施例〕一方、ウエハ熱処理時には、ウエハ温度
を250℃/秒の割合で急速に上昇させ、かつウエハの
温度分布が±5℃以内を達成することが望ましい。その
ためにはハロゲンランプ1を、例えば図18のように配
列し、ハロゲンランプ1個あたり300Wの出力でかつ
ハロゲンランプの並びのピッチl(エル)を最大25mm
程度とするのがよい。ところが、通常使用されるハロゲ
ンランプの直径は22mm程度であるので、ランプ周りに
有効な反射板を設けるスペースがない、またハロゲンラ
ンプを空冷しようとすると、ランプが互いの壁となって
空気の流れが届かず、封止部の冷却が十分でないことが
ある。
When the filament 12 is heated, the heat is transmitted and the temperature of the sealing portion 17 rises. However, when the temperature of the sealing portion 17 becomes 250 to 350 ° C. or higher, the sealing portion 17 may be oxidized and disconnected. is there. Alternatively, the halogen gas in the glass bulb 11 leaks due to the thermal expansion of the sealing portion 17, leading to a reduction in the halogen gas and introduction of the atmosphere into the lamp, which causes the filament 12 to break. Therefore, as shown in FIG. 16, the temperature rise can be prevented by providing the reflection plate 6 around the glass bulb 11 or cooling the halogen lamp 11 by air so that the temperature of the sealing portion 17 does not exceed 250 ° C. Eighth Embodiment On the other hand, at the time of heat treatment of a wafer, it is desirable to rapidly raise the wafer temperature at a rate of 250 ° C./sec and to achieve a wafer temperature distribution within ± 5 ° C. For this purpose, the halogen lamps 1 are arranged, for example, as shown in FIG. 18, and the output 1 of the halogen lamps is 300 W and the pitch l of the halogen lamps is 25 mm at the maximum.
It is good to be about. However, since the diameter of a commonly used halogen lamp is about 22 mm, there is no space for providing an effective reflector around the lamp, and when trying to cool the halogen lamp by air, the lamps become walls of each other and the air flows. May not reach, and the sealing portion may not be cooled sufficiently.

【0032】図19はこのようにスペースが限られる場
合の封止部の冷却構造を示す。本実施例では、図20、
図21に示す如く、ハロゲンランプ1の口金部を口金上
部18と口金下部19に分離して、口金上部18を熱伝
導性の良好な物質で構成するとともに、上方に向けて縮
径するテーパ状となしてある。ここでは(図19)、テ
ーパ角θ=2°20′、直径C=16mm、高さD=12
mmの銅製テーパ円筒とした。またハロゲンランプ1間ピ
ッチlは25mmとした。口金上部18の周辺には複数の
水路71を有する水冷箱7を配設してある(図19)。
水冷箱6は、ハロゲンランプ1設置位置に、口金上部1
8に対応するテーパ状の穴72を有し(図22)、該穴
72にハロゲンランプ1を嵌合せしめて、口金上部18
が水冷箱7に密着するようになしてある。このときハロ
ゲンランプ1個あたりの冷却水量は200cc/分とし
た。
FIG. 19 shows a cooling structure of the sealing portion when the space is limited as described above. In this embodiment, FIG.
As shown in FIG. 21, the base portion of the halogen lamp 1 is separated into a base portion 18 and a base portion 19, and the base portion 18 is made of a material having good heat conductivity, and has a tapered shape which is reduced in diameter upward. It has been done. Here (FIG. 19), the taper angle θ = 2 ° 20 ′, the diameter C = 16 mm, and the height D = 12
It was a copper tapered cylinder of mm. The pitch l between the halogen lamps 1 was 25 mm. A water-cooling box 7 having a plurality of water passages 71 is provided around the base 18 (FIG. 19).
The water cooling box 6 is located at the position where the halogen lamp 1 is installed,
8 has a tapered hole 72 (FIG. 22), into which the halogen lamp 1 is fitted.
Are provided so as to adhere to the water-cooled box 7. At this time, the cooling water amount per halogen lamp was 200 cc / min.

【0033】口金下部19はガイシ等の絶縁体からな
り、外周のネジ部にてランプ受金51に装着固定されて
いる。ランプ受金51の下端部にはピン52が一体に設
けてあり、ピン52は受金ホルダ53にバネ54を介し
て支持されている。
The base portion 19 is made of an insulator such as a insulator, and is fixedly mounted on the lamp holder 51 with a screw portion on the outer periphery. A pin 52 is integrally provided at the lower end of the lamp holder 51, and the pin 52 is supported by a holder 53 via a spring 54.

【0034】しかして、バネ力によりピン52、ランプ
受金51、ハロゲンランプ1が一体となって図19矢印
方向に引張られ、口金上部18と水冷箱7との密着性は
より向上する。そして口金上部18からの熱放散がより
良好に行なわれ、封止部の温度上昇を抑制することがで
きる。
However, the pin 52, the lamp receiver 51 and the halogen lamp 1 are integrally pulled by the spring force in the direction of the arrow in FIG. 19, so that the adhesion between the base 18 and the water-cooled box 7 is further improved. Then, the heat dissipation from the upper portion 18 of the base is more favorably performed, and the temperature rise of the sealing portion can be suppressed.

【0035】ここで、封止部の温度が時間とともにどう
変化するかを調べた。図23(a)はハロゲンランプ単
独で点灯させた場合、(b)は図24に示す如く9個の
ハロゲンランプ1(直径d=22mm)をランプ間ピッチ
を25mmとして配した場合で、いずれも水冷箱、反射板
等は設けず、風量2m3 /分の条件で空冷した。ハロゲ
ンランプ1は色温度2700℃、交流100V、300
Wの仕様で、また(b)は中心部に位置するハロゲンラ
ンプについて測定を行なった。
Here, it was examined how the temperature of the sealing portion changes with time. FIG. 23A shows a case where the halogen lamp is turned on alone, and FIG. 23B shows a case where nine halogen lamps 1 (diameter d = 22 mm) are arranged with a pitch between the lamps of 25 mm as shown in FIG. No water-cooling box, reflector, etc. were provided, and air-cooling was performed under the conditions of an air flow of 2 m 3 / min. The halogen lamp 1 has a color temperature of 2700 ° C., AC 100 V, 300
In the specification of W, the measurement was performed for the halogen lamp located at the center in (b).

【0036】図に明らかなように、(a)では封止部の
温度が250℃を越えて350℃前後まで上昇する。
(b)ではランプ点灯から100秒で400℃を越えな
お上昇している。
As is clear from the figure, in (a), the temperature of the sealing portion rises from about 250 ° C. to about 350 ° C.
In (b), the temperature still exceeds 400 ° C. 100 seconds after the lamp is turned on.

【0037】次に、上記(b)の構成において、口金上
部に密着させて水冷箱を設け、同様の実験を行なった。
ハロゲンランプ1個あたりの冷却水量は200cc/分と
した。
Next, in the above configuration (b), a water cooling box was provided in close contact with the upper part of the base, and a similar experiment was performed.
The cooling water amount per halogen lamp was set to 200 cc / min.

【0038】その結果、水冷箱を設けた本実施例の構成
では、図25に示す如く、ランプ点灯後120秒で温度
は定常状態の150℃になった。このように本実施例の
構成では、封止部から奪える熱量が増大し、かつ各ハロ
ゲンランプを均一に冷却し得るので、限られたスペース
内で大きな冷却効果が得られる。 〔第9〜第10実施例〕上記第8実施例において、口金
上部18の形状は円筒テーパ形状に限らず、角筒(図2
6)、円筒(図27)のような他形状とすることも可能
である。また水冷箱も口金形状に合わせて加工すること
が可能である。
As a result, in the configuration of the present embodiment provided with the water-cooled box, as shown in FIG. 25, the temperature reached 150 ° C. in a steady state 120 seconds after the lamp was turned on. As described above, in the configuration of the present embodiment, the amount of heat that can be taken from the sealing portion increases, and each halogen lamp can be uniformly cooled, so that a large cooling effect can be obtained in a limited space. [Ninth and Tenth Embodiments] In the eighth embodiment, the shape of the base portion 18 is not limited to the cylindrical tapered shape, but may be a square tube (FIG. 2).
6), and other shapes such as a cylinder (FIG. 27) are also possible. The water-cooled box can also be processed according to the shape of the base.

【0039】口金上部18の形状を図27の円筒形とし
た場合について、上記と同様の実験を行なった。ハロゲ
ンランプ1は、図28に示す如く、口金上部18を直径
B=16mm、高さD=12mmの銅製円筒とした。
An experiment similar to that described above was conducted for the case where the shape of the upper portion of the base 18 was cylindrical as shown in FIG. In the halogen lamp 1, as shown in FIG. 28, the upper portion 18 of the base was a copper cylinder having a diameter B = 16 mm and a height D = 12 mm.

【0040】ただしこの場合、口金上部18と水冷箱7
が密着せず、水冷箱7との間にギャップGが生ずる。そ
こで、十分な冷却効果を得るためのギャップGを、下記
の熱通過の式により求めた。
In this case, however, the upper part 18 of the base and the water-cooled box 7
Do not adhere to each other, and a gap G is generated between the water-cooled box 7. Therefore, the gap G for obtaining a sufficient cooling effect was determined by the following heat passing equation.

【0041】[0041]

【数1】 L:管長 K:熱通過率 Q:通過熱量(Equation 1) L: Pipe length K: Heat transfer rate Q: Heat passing amount

【0042】[0042]

【数2】 α:流体の熱伝達率 γi :管の最外半径 ρm :γm /γm-1 (γm :各管半径) λ:各管の熱伝導率 上記(1)、(2)式より、封止部が250℃以下にな
るためのギャップGを計算で求めたところ、ギャップG
は0.02mm以下であればよいことがわかった。
(Equation 2) α: heat transfer coefficient of fluid γ i : outermost radius of pipe ρ m : γ m / γ m-1m : radius of each pipe) λ: thermal conductivity of each pipe Formulas (1) and (2) above From the calculation, the gap G required for the sealing portion to be 250 ° C. or less was calculated.
Was found to be 0.02 mm or less.

【0043】ギャップGを0.02mm以下とし、冷却水
量、ランプ仕様は上記実施例と同様にして実験を行なっ
た。その結果、図29に示す如く、ランプ点灯後18秒
で定常温度の220℃となり、十分な冷却効果が得られ
ることがわかる。
An experiment was carried out with the gap G set to 0.02 mm or less and the amount of cooling water and the specifications of the lamp were the same as those in the above embodiment. As a result, as shown in FIG. 29, a steady temperature of 220 ° C. was reached 18 seconds after the lamp was turned on, indicating that a sufficient cooling effect was obtained.

【0044】以上の如く、本実施例のランプアニール装
置によれば、種々の形状の板状被加熱材を均一に加熱す
ることができ、特に半導体ウエハの種々の熱処理に使用
して大きな効果を奏するものである。
As described above, according to the lamp annealing apparatus of this embodiment, it is possible to uniformly heat various shapes of plate-like materials to be heated. To play.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1実施例に係る装置の全体構成図FIG. 1 is an overall configuration diagram of an apparatus according to a first embodiment.

【図2】第1実施例に係るハロゲンランプの配置を示す
平面図
FIG. 2 is a plan view showing an arrangement of the halogen lamp according to the first embodiment.

【図3】(1)、(2)は第1実施例に係るハロゲンラ
ンプの側面図
FIGS. 3A and 3B are side views of the halogen lamp according to the first embodiment.

【図4】第1実施例に係るハロゲンランプの配光特性を
示す図
FIG. 4 is a diagram showing light distribution characteristics of the halogen lamp according to the first embodiment.

【図5】第1実施例に係るハロゲンランプのフィラメン
ト方向を示す図
FIG. 5 is a diagram showing a filament direction of the halogen lamp according to the first embodiment.

【図6】第1実施例に係るハロゲンランプのフィラメン
ト方向を示す図
FIG. 6 is a view showing a filament direction of the halogen lamp according to the first embodiment.

【図7】第1実施例に係る円板ウエハの放射エネルギー
密度を示す図
FIG. 7 is a diagram showing a radiant energy density of a disk wafer according to the first embodiment.

【図8】第1実施例に係る円板ウエハに対する入射エネ
ルギー密度を示す図
FIG. 8 is a view showing an incident energy density with respect to a disk wafer according to the first embodiment.

【図9】第1実施例に係る円板ウエハの温度分布を示す
平面図
FIG. 9 is a plan view showing a temperature distribution of the disk wafer according to the first embodiment.

【図10】第2実施例に係るハロゲンランプの配置を示
す平面図
FIG. 10 is a plan view showing an arrangement of a halogen lamp according to a second embodiment.

【図11】第3実施例に係るハロゲンランプの配置を示
す平面図
FIG. 11 is a plan view showing an arrangement of a halogen lamp according to a third embodiment.

【図12】第4実施例に係るハロゲンランプの他の配置
を示す装置本体の断面図
FIG. 12 is a sectional view of an apparatus main body showing another arrangement of the halogen lamp according to the fourth embodiment.

【図13】第5実施例に係るハロゲンランプの側面図FIG. 13 is a side view of a halogen lamp according to a fifth embodiment.

【図14】第6実施例に係るハロゲンランプの斜視図FIG. 14 is a perspective view of a halogen lamp according to a sixth embodiment.

【図15】第7実施例に係るハロゲンランプの分解図FIG. 15 is an exploded view of a halogen lamp according to a seventh embodiment.

【図16】第7実施例に係るハロゲンランプの側面図FIG. 16 is a side view of a halogen lamp according to a seventh embodiment.

【図17】第7実施例に係るガラス球の拡大図FIG. 17 is an enlarged view of a glass ball according to a seventh embodiment.

【図18】第8実施例に係るハロゲンランプの配置例を
示す図
FIG. 18 is a view showing an arrangement example of a halogen lamp according to an eighth embodiment.

【図19】第8実施例に係るランプアニール装置の部分
断面図
FIG. 19 is a partial sectional view of a lamp annealing apparatus according to an eighth embodiment.

【図20】第8実施例に係るハロゲンランプの分解図FIG. 20 is an exploded view of a halogen lamp according to an eighth embodiment.

【図21】第8実施例に係るハロゲンランプの斜視図FIG. 21 is a perspective view of a halogen lamp according to an eighth embodiment.

【図22】第8実施例に係る水冷箱の部分断面図FIG. 22 is a partial cross-sectional view of a water-cooled box according to an eighth embodiment.

【図23】(a)、(b)は第8実施例に係る封止部の
温度変化を示す図
FIGS. 23A and 23B are diagrams showing a temperature change of a sealing portion according to an eighth embodiment. FIGS.

【図24】第8実施例に係る封止部の温度変化を測定す
るために使用した装置の構成を示す図
FIG. 24 is a diagram showing a configuration of an apparatus used for measuring a temperature change of a sealing portion according to an eighth embodiment.

【図25】第8実施例に係る封止部の温度変化を示す図FIG. 25 is a diagram showing a temperature change of a sealing portion according to the eighth embodiment.

【図26】第9実施例に係るハロゲンランプの斜視図FIG. 26 is a perspective view of a halogen lamp according to a ninth embodiment.

【図27】第10実施例に係るハロゲンランプの斜視図FIG. 27 is a perspective view of a halogen lamp according to a tenth embodiment.

【図28】第10実施例に係るハロゲンランプの側面図FIG. 28 is a side view of the halogen lamp according to the tenth embodiment.

【図29】第10実施例に係る封止部の温度変化を示す
FIG. 29 is a diagram showing a temperature change of a sealing portion according to the tenth embodiment.

【図30】従来例に係る装置本体の断面図FIG. 30 is a sectional view of an apparatus main body according to a conventional example.

【図31】従来例に係るハロゲンランプの斜視図FIG. 31 is a perspective view of a halogen lamp according to a conventional example.

【図32】従来例に係る円板ウエハの温度分布を示す平
面図
FIG. 32 is a plan view showing a temperature distribution of a disk wafer according to a conventional example.

【図33】従来例に係る円板ウエハの温度分布を示す平
面図
FIG. 33 is a plan view showing a temperature distribution of a disk wafer according to a conventional example.

【符号の説明】[Explanation of symbols]

1…ハロゲンランプ(点状光源) 2…ウエハ(被加熱材) 3…照射量設定回路(照射量設定手段) 31…通電回路 32…通電制御回路 33…温度調節計 34…放射温度計 DESCRIPTION OF SYMBOLS 1 ... Halogen lamp (point light source) 2 ... Wafer (material to be heated) 3 ... Irradiation amount setting circuit (irradiation amount setting means) 31 ... Energizing circuit 32 ... Energizing control circuit 33 ... Temperature controller 34 ... Radiation thermometer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 廣瀬 祥司 愛知県西尾市下羽角町岩谷14番地 株式 会社日本自動車部品総合研究所内 (56)参考文献 特開 昭59−36927(JP,A) 米国特許3761678(US,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/26 H01L 21/205 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Shoji Hirose 14 Iwatani, Shimowakaku-cho, Nishio-shi, Aichi Japan Auto Parts Research Institute, Inc. (56) References JP-A-59-36927 (JP, A) (US, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 21/26 H01L 21/205

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 板状の被加熱材の少なくとも一方の面に
対向して配置される複数の点状光源と、前記複数の点状
光源を略同心状の複数の制御ゾーンに区分けし、前記制
御ゾーン毎に前記複数の点状光源の光照射量を設定する
照射量設定手段とを備え、前記複数の点状光源の照射す
る光により前記被加熱材を加熱する熱処理装置であっ
て、 前記複数の制御ゾーンの各制御ゾーンを構成する点状
源のうちの隣接する点状光源の中心間距離が前記点状
光源の直径以上の距離とされた状態で、前記複数の点状
光源を収容するとともに、各点状光源間において各点状
光源の周辺には冷却水を導く水路を有するように構成さ
れた冷却構造を備えることを特徴とする熱処理装置。
A plurality of point light sources arranged to face at least one surface of a plate-shaped material to be heated, and the plurality of point light sources are divided into a plurality of substantially concentric control zones; An irradiation amount setting unit that sets an irradiation amount of the plurality of point light sources for each control zone, and a heat treatment apparatus that heats the material to be heated by light emitted by the plurality of point light sources, in a state in which the center-to-center distance between adjacent spot-like light source is a distance equal to or greater than the diameter of the point light source of the point-like light <br/> source constituting each control zone of the plurality of control zones, said plurality Point-like
Accommodates the light source and each point light source
It is configured so that it has a water channel for cooling water around the light source.
A heat treatment apparatus comprising a cooled structure .
【請求項2】 前記冷却構造は、さらに前記隣接する点
状光源間の離間距離が前記点状光源の直径より小さくな
るように、前記複数の点状光源を収容していることを特
徴とする請求項1記載の熱処理装置。
2. The cooling structure according to claim 1 , further comprising:
The distance between the point light sources is smaller than the diameter of the point light source.
As described above, the plurality of point light sources are housed.
The heat treatment apparatus according to claim 1, wherein
【請求項3】 板状の被加熱材の少なくとも一方の面に
複数の点状光源を対向して配置し、前記複数の点状光源
を略同心状の複数の制御ゾーンに区分けし、前記制御ゾ
ーン毎に前記複数の点状光源の光照射量を設定すること
前記被加熱材を加熱する熱処理方法であって、 前記複数の制御ゾーンの各制御ゾーンを構成する点状
源のうちの隣接する点状光源の中心間距離を前記点状
光源の直径以上の距離とし、かつ各点状光源間において
各点状光源の周辺には冷却水を導くようにした状態で前
記被加熱材を加熱することを特徴とする熱処理方法。
3. A plurality of point-like light sources are arranged on at least one surface of a plate-like material to be heated so as to face each other, and the plurality of point-like light sources are divided into a plurality of substantially concentric control zones. setting the amount of light irradiation of the plurality of point light sources in each zone
In a heat treatment method of heating the material to be heated, the point of each center-to-center distance between adjacent spot-like light sources of punctiform light <br/> source constituting each control zone of the plurality of control zones The distance should be greater than the diameter of the point light source and between each point light source.
Cooling water is led around each point light source.
A heat treatment method characterized by heating the material to be heated .
【請求項4】 前記隣接する点状光源間の離間距離を、
前記点状光源の直径より小さくなるようにした状態で前
記被加熱材を加熱することを特徴とする請求項3記載の
熱処理方法。
4. A distance between the adjacent point light sources,
In the state where the diameter is smaller than the diameter of the point light source,
4. The method according to claim 3, wherein the material to be heated is heated.
Heat treatment method.
JP29399398A 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method Expired - Lifetime JP3206565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29399398A JP3206565B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3455489 1989-02-14
JP1-34554 1989-02-14
JP29399398A JP3206565B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2687190A Division JP2940047B2 (en) 1989-02-14 1990-02-06 Heat treatment apparatus and heat treatment method

Publications (2)

Publication Number Publication Date
JPH11195615A JPH11195615A (en) 1999-07-21
JP3206565B2 true JP3206565B2 (en) 2001-09-10

Family

ID=12417531

Family Applications (5)

Application Number Title Priority Date Filing Date
JP2687190A Expired - Lifetime JP2940047B2 (en) 1989-02-14 1990-02-06 Heat treatment apparatus and heat treatment method
JP29399198A Expired - Lifetime JP3206564B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399498A Expired - Lifetime JP3206566B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399298A Pending JPH11214319A (en) 1989-02-14 1998-10-15 Heat treatment apparatus and method
JP29399398A Expired - Lifetime JP3206565B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2687190A Expired - Lifetime JP2940047B2 (en) 1989-02-14 1990-02-06 Heat treatment apparatus and heat treatment method
JP29399198A Expired - Lifetime JP3206564B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399498A Expired - Lifetime JP3206566B2 (en) 1989-02-14 1998-10-15 Heat treatment apparatus and heat treatment method
JP29399298A Pending JPH11214319A (en) 1989-02-14 1998-10-15 Heat treatment apparatus and method

Country Status (1)

Country Link
JP (5) JP2940047B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197206B1 (en) * 2018-02-19 2021-01-04 주식회사 지아이엘 The pet water bottle
KR102384203B1 (en) * 2019-04-10 2022-04-08 최고은 Dog handy cup

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3972379B2 (en) * 1995-12-14 2007-09-05 信越半導体株式会社 heating furnace
JP3493880B2 (en) * 1996-02-28 2004-02-03 信越半導体株式会社 Radiant heating device and heating method
US6064799A (en) * 1998-04-30 2000-05-16 Applied Materials, Inc. Method and apparatus for controlling the radial temperature gradient of a wafer while ramping the wafer temperature
KR100509085B1 (en) * 2000-04-20 2005-08-18 동경 엘렉트론 주식회사 Thermal processing system
WO2001082349A1 (en) * 2000-04-20 2001-11-01 Tokyo Electron Limited Thermal processing system and thermal processing method
JP2002008410A (en) * 2000-06-20 2002-01-11 Ccs Inc Lighting equipment
JP2002208466A (en) * 2001-01-05 2002-07-26 Tokyo Electron Ltd Heating lamp and heat treatment device
JP2002246318A (en) * 2001-02-16 2002-08-30 Tokyo Electron Ltd Heat treating method and heat treating device
EP1367637A4 (en) * 2001-02-16 2006-01-04 Tokyo Electron Ltd Sheet-type treating device
JP2002270532A (en) * 2001-03-14 2002-09-20 Tokyo Electron Ltd Heating device and thermal treatment apparatus
JP2003059853A (en) * 2001-08-08 2003-02-28 Tokyo Electron Ltd Lamp heater and heat treatment apparatus
JP2005122816A (en) 2003-10-16 2005-05-12 Matsushita Electric Ind Co Ltd Disk loading device
JP2007073636A (en) * 2005-09-05 2007-03-22 Hamamatsu Photonics Kk Laser device and laser system
JP2007095889A (en) 2005-09-28 2007-04-12 Ushio Inc Light irradiation heating method
US9536728B2 (en) * 2007-02-15 2017-01-03 Applied Material, Inc. Lamp for rapid thermal processing chamber
US7612491B2 (en) * 2007-02-15 2009-11-03 Applied Materials, Inc. Lamp for rapid thermal processing chamber
KR100858439B1 (en) * 2007-02-20 2008-09-12 (주)앤피에스 Tungsten halogen lamp which possessed a sealing flange
JP5228495B2 (en) 2008-01-11 2013-07-03 富士通セミコンダクター株式会社 Manufacturing method of semiconductor device
JP2009277868A (en) * 2008-05-14 2009-11-26 Sumitomo Electric Ind Ltd Heating device and method of manufacturing semiconductor substrate
KR100974018B1 (en) * 2008-12-05 2010-08-05 에이피시스템 주식회사 Apparatus and method for controlling heat lamp of rapid thermal processor
KR101809141B1 (en) * 2014-05-29 2018-01-19 에이피시스템 주식회사 Apparatus for heating substrate and heater block
KR101626505B1 (en) * 2015-01-16 2016-06-01 주식회사 하나 Lamp for rapid thermal processing
JP6624876B2 (en) * 2015-10-15 2019-12-25 ルネサスエレクトロニクス株式会社 Monitoring method and method of manufacturing semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102197206B1 (en) * 2018-02-19 2021-01-04 주식회사 지아이엘 The pet water bottle
KR102384203B1 (en) * 2019-04-10 2022-04-08 최고은 Dog handy cup

Also Published As

Publication number Publication date
JPH11195614A (en) 1999-07-21
JPH11214319A (en) 1999-08-06
JPH03218624A (en) 1991-09-26
JP2940047B2 (en) 1999-08-25
JP3206566B2 (en) 2001-09-10
JPH11195615A (en) 1999-07-21
JP3206564B2 (en) 2001-09-10
JPH11195616A (en) 1999-07-21

Similar Documents

Publication Publication Date Title
JP3206565B2 (en) Heat treatment apparatus and heat treatment method
US7860379B2 (en) Temperature measurement and control of wafer support in thermal processing chamber
US7629557B2 (en) Heat treatment apparatus using a lamp for rapidly and uniformly heating a wafer
JP5063995B2 (en) Heat treatment equipment
KR100194267B1 (en) Semiconductor Wafer or Substrate Heating Apparatus and Method
WO2000041223A1 (en) Heating device for heating semiconductor wafers in thermal processing chambers
KR20010073143A (en) Multi-lamp cone reflector for semiconductor wafer heating
US20150071623A1 (en) Circular lamp arrays
JP2781616B2 (en) Semiconductor wafer heat treatment equipment
US20210366745A1 (en) Thermal processing apparatus
JP2008042127A (en) Heat treatment apparatus, and susceptor for heat treatment
JP2011077147A (en) Heat treatment apparatus
KR20120011878A (en) Quartz window having gas feed and processing equipment incorporating same
US20190019697A1 (en) Light irradiation type heat treatment apparatus
US20050213951A1 (en) Heating stage
JP5562529B2 (en) Heat treatment equipment
TW200921754A (en) Filament lamp and light irradiation type heat treatment device
US11430676B2 (en) Heat treatment method of light irradiation type
JP5646864B2 (en) Heat treatment method and heat treatment apparatus
JP2009231676A (en) Heat processing apparatus
JP2008028084A (en) Heat treatment apparatus
US4540911A (en) Halogen lamp unit
JP2012074540A (en) Heat treatment apparatus
JP4879003B2 (en) Heat treatment equipment
JPH04713A (en) Heating apparatus for substrate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010605

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 9