JP3206544U - 分光光度計 - Google Patents
分光光度計 Download PDFInfo
- Publication number
- JP3206544U JP3206544U JP2016003295U JP2016003295U JP3206544U JP 3206544 U JP3206544 U JP 3206544U JP 2016003295 U JP2016003295 U JP 2016003295U JP 2016003295 U JP2016003295 U JP 2016003295U JP 3206544 U JP3206544 U JP 3206544U
- Authority
- JP
- Japan
- Prior art keywords
- divider
- photocathode
- current
- anode
- voltage value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
- Spectrometry And Color Measurement (AREA)
Abstract
【課題】予期しない過大光が光電子増倍管へ入射した場合のみに、光電子増倍管に過大な陽極電流が流れ続けることを防止する分光光度計を提供する。【解決手段】試料からの測定光を受光して電子を放出する光電陰極52と、電子が入射して陽極電流Iを出力する陽極53と、光電陰極52と陽極53との間に配置された複数の二次電子増倍電極54と、光電陰極52及び二次電子増倍電極54に接続されたデバイダ回路55とを有し、光電陰極52に電圧発生部60から印加電圧値が印加されることで二次電子増倍電極54に段階的な電位が形成される光電子増倍管50を備え、さらに、デバイダ電流を検出するデバイダ電流監視回路57と、光電陰極52が過大光を受光したと判定するためのデバイダ電流閾値を記憶する記憶部と、デバイダ電流及びデバイダ電流閾値に基づいて、電圧発生部60を制御する制御部とを備える。【選択図】図2
Description
本考案は、光電子増倍管で測定光を検出する分光光度計に関する。
試料から放出された蛍光(測定光)に基づいて元素の同定等を行う装置として、蛍光分光光度計が開発されている。図4は、従来の蛍光分光光度計を示す概略構成図である。
蛍光分光光度計100は、光を透過しない筐体10と、光源部20と、試料セル30と、光検出部140と、光検出部140に印加電圧値−HVを印加する高電圧発生部160と、蛍光分光光度計100全体を制御するコンピュータ170とを備える。
蛍光分光光度計100は、光を透過しない筐体10と、光源部20と、試料セル30と、光検出部140と、光検出部140に印加電圧値−HVを印加する高電圧発生部160と、蛍光分光光度計100全体を制御するコンピュータ170とを備える。
筐体10の内部には、光源部20と試料セル30と光検出部140とが所定の位置に配置されている。そして、分析者等が筐体10の扉(図示略)を開くことにより、分析済みの試料セル30を新たな試料セル30に交換することができるようになっている。
試料セル30は、例えば試料が収容されたキュベットセルである。
試料セル30は、例えば試料が収容されたキュベットセルである。
光源部20は、光を出射する光源21と、分光器22とを有する。このような光源部20によれば、光源21から発せられた光は分光器22に入射して、分光器22で所望の波長を有する励起光が取り出される。取り出された励起光は試料セル30に照射される。そして、試料セル30から放出された蛍光が光検出部140に送られる。
光検出部140は、光電子増倍管150を備える。図5は、図4に示す光電子増倍管の断面図である。
光電子増倍管150は、真空管51と、光電陰極52と、陽極53と、光電陰極52と陽極53との間に配置された3個のダイノード(二次電子増倍電極)54(54a〜54c)と、光電陰極52及び3個のダイノード54a〜54cに接続されたデバイダ回路155と、陽極53に接続された出力増幅回路56とを有する。
光電子増倍管150は、真空管51と、光電陰極52と、陽極53と、光電陰極52と陽極53との間に配置された3個のダイノード(二次電子増倍電極)54(54a〜54c)と、光電陰極52及び3個のダイノード54a〜54cに接続されたデバイダ回路155と、陽極53に接続された出力増幅回路56とを有する。
デバイダ回路155は、第1のデバイダ抵抗55aと、第2のデバイダ抵抗55bと、第3のデバイダ抵抗55cと、デバイダ抵抗155dとを有する。第1のデバイダ抵抗55aは、光電陰極52と第1のダイノード54aとを接続するように配置され、第2のデバイダ抵抗55bは、第1のダイノード54aと第2のダイノード54bとを接続するように配置され、第3のデバイダ抵抗55cは、第2のダイノード54bと第3のダイノード54cとを接続するように配置され、デバイダ抵抗155dは、第3のダイノード54cとGNDとを接続するように配置されている。これにより、光電陰極52に高電圧発生部160から印加電圧値−HVが印加されることで、3個のダイノード54a〜54cに段階的な電位が形成されるようになっている。
このような光電子増倍管150によれば、蛍光が光電陰極52に受光されると、光電効果によって光量に応じた数の電子を発生させる。このとき、光電陰極52に高電圧発生部160から印加電圧値−HVが印加されると、3個のダイノード54a〜54cに段階的な電位が形成されることにより電子数を増倍していき、光電陰極52に受光された光量に比例する大きさの陽極電流Iが陽極53から出力増幅回路56に出力される。陽極電流Iは、出力増幅回路56により増幅され、一定時間間隔でサンプリングされてデジタル増幅電圧値信号(出力強度信号)Vに変換される。
コンピュータ170は、CPU(制御部)171やメモリ(記憶部)172を備える。また、CPU171が処理する機能をブロック化して説明すると、メモリ172に光検出部140からのデジタル増幅電圧値信号Vを記憶させる記憶制御部171aと、デジタル増幅電圧値信号Vに基づいて試料を分析する分析部71bと、高電圧発生部160を制御する電圧制御部171cとを有する。
ところで、上述した光電子増倍管150では、増倍率が高い(印加電圧値−HVが低い)ほど、光電陰極52に受光された光量に応じた電子数をより大きく増幅した大きさの陽極電流Iを出力することができる。しかし、光電子増倍管150は出力される陽極電流Iの大きさが大きくなるほど劣化度合いが大きくなるという問題がある。
そこで、電圧制御部171cは、陽極電流Iが所定の大きさ以内に収まるように、印加電圧値−HVの印加のON−OFFを制御している。
そこで、電圧制御部171cは、陽極電流Iが所定の大きさ以内に収まるように、印加電圧値−HVの印加のON−OFFを制御している。
例えば、蛍光分光光度計100では、閾値Vbをメモリ172に予め記憶させておき、電圧制御部171cは、デジタル増幅電圧値信号Vと閾値Vbとを比較して、分析者等が筐体10の扉を開いた場合のように、デジタル増幅電圧値信号Vが閾値Vbを超えると、印加電圧値−HVの印加を停止させている。
また、光電子増倍管150の劣化を防止するための対策として、ある時間帯でのデジタル増幅電圧値信号Vを、予測されるデジタル増幅電圧値信号Vの波形に当てはめることにより、次回に受光される光量を予測し、予測結果がAD変換限界値を超える場合には、光電子増倍管150への印加電圧値−HVを上げる方法が開示されている(例えば特許文献1参照)。
ところで、蛍光分光光度計100では、印加電圧値−HVを変更すると光検出部140が安定するまでに時間がかかるため、ひどい劣化を引き起こす状態でない限りは、印加電圧値−HVの印加をOFFしたくないという要求がある。
しかしながら、上述したような蛍光分光光度計100では、外光(過大光)等が入射する場合のように、甚大な劣化を防止するために、印加電圧値−HVの印加をOFFしたい場合と、蛍光(測定光)がAD変換限界値を超えるものの許容できる程度に収まる場合とを区別できなかった。このため、デジタル増幅電圧値信号Vが僅か(許容できる程度)に閾値Vbを超えた場合にも、印加電圧値−HVの印加を停止して再度印加電圧値−HVを印加して光検出部140が安定するまでの時間待機する必要があった。
しかしながら、上述したような蛍光分光光度計100では、外光(過大光)等が入射する場合のように、甚大な劣化を防止するために、印加電圧値−HVの印加をOFFしたい場合と、蛍光(測定光)がAD変換限界値を超えるものの許容できる程度に収まる場合とを区別できなかった。このため、デジタル増幅電圧値信号Vが僅か(許容できる程度)に閾値Vbを超えた場合にも、印加電圧値−HVの印加を停止して再度印加電圧値−HVを印加して光検出部140が安定するまでの時間待機する必要があった。
出願人は、予期しない外光(過大光)が光電子増倍管へ入射した場合のみに、光電子増倍管に過大な陽極電流Iが流れ続けることを防止する分光光度計について検討した。
光電陰極52に蛍光が受光されると、デバイダ抵抗55a〜55cを流れるデバイダ電流iから真空管51内に電荷が供給されるので、デバイダ電流iは減少していく。したがって、光電陰極52に過大光が受光された場合には、通常時に比べて極端に小さなデバイダ電流iがデバイダ抵抗55a〜55cを流れることになる。そこで、試料分析の分解能を大きくするために、出力増幅回路56により増幅されたデジタル増幅電圧値信号Vの変化を観測するのではなく、デバイダ抵抗55a〜55cに流れるデバイダ電流iの変化を観測し、使用条件や回路構成等から決まるデバイダ電流閾値ith未満のデバイダ電流iが流れたときには、光電子増倍管に対する印加電圧値−HVの印加を中止することを見出した。
光電陰極52に蛍光が受光されると、デバイダ抵抗55a〜55cを流れるデバイダ電流iから真空管51内に電荷が供給されるので、デバイダ電流iは減少していく。したがって、光電陰極52に過大光が受光された場合には、通常時に比べて極端に小さなデバイダ電流iがデバイダ抵抗55a〜55cを流れることになる。そこで、試料分析の分解能を大きくするために、出力増幅回路56により増幅されたデジタル増幅電圧値信号Vの変化を観測するのではなく、デバイダ抵抗55a〜55cに流れるデバイダ電流iの変化を観測し、使用条件や回路構成等から決まるデバイダ電流閾値ith未満のデバイダ電流iが流れたときには、光電子増倍管に対する印加電圧値−HVの印加を中止することを見出した。
すなわち、本考案の分光光度計は、試料からの測定光を受光して電子を放出する光電陰極と、電子が入射して陽極電流を出力する陽極と、前記光電陰極と前記陽極との間に配置された複数の二次電子増倍電極と、前記光電陰極及び前記二次電子増倍電極に接続されたデバイダ回路とを有し、前記光電陰極に印加電圧値が印加されることで前記二次電子増倍電極に段階的な電位が形成される光電子増倍管と、前記光電子増倍管に印加電圧値を印加する電圧発生部とを備える分光光度計であって、デバイダ電流を検出するデバイダ電流監視回路と、前記光電陰極が過大光を受光したと判定するためのデバイダ電流閾値を記憶する記憶部と、前記デバイダ電流及び前記デバイダ電流閾値に基づいて、前記電圧発生部を制御する制御部とを備えるようにしている。
ここで、「記憶部」とは、デバイダ電流閾値を記憶するものであり、メモリだけでなく、デバイダ電流閾値が記憶されて用いられてもよく、ロジックやコンパレータ等によって閾値を判別するものも含むことになる。
ここで、「記憶部」とは、デバイダ電流閾値を記憶するものであり、メモリだけでなく、デバイダ電流閾値が記憶されて用いられてもよく、ロジックやコンパレータ等によって閾値を判別するものも含むことになる。
以上のように、本考案の分光光度計によれば、予期しない過大光が光電子増倍管へ入射した場合に、光電子増倍管の深刻な劣化を防止することができる。
(他の課題を解決するための手段及び効果)
また、上記の考案では、前記陽極電流を増幅して出力強度信号を出力する出力増幅回路と、前記出力強度信号に基づいて、前記試料を分析する分析部とを備えるようにしている。
本考案の分光光度計によれば、陽極電流Iが出力増幅回路を介して取得されるため、試料分析の分解能を大きくすることができる。
また、上記の考案では、前記陽極電流を増幅して出力強度信号を出力する出力増幅回路と、前記出力強度信号に基づいて、前記試料を分析する分析部とを備えるようにしている。
本考案の分光光度計によれば、陽極電流Iが出力増幅回路を介して取得されるため、試料分析の分解能を大きくすることができる。
そして、判定のための電流値が出力増幅回路を介さず取得されるため、通常電流値よりもかなり小さな電流値を電流閾値として設定することが可能となり、陽極電流Iが通常陽極電流値を多少上回った程度の変化では、印加電圧値−HVの印加を中止(OFF)しなくても済むようになる。
さらに、上記の考案では、前記試料が収容される試料セルと、前記試料セルに光を出射する光源部とを備えるようにしている。
以下、本考案の実施形態について図面を用いて説明する。なお、本考案は、以下に説明するような実施形態に限定されるものではなく、本考案の趣旨を逸脱しない範囲で種々の態様が含まれる。
本考案に係る分光光度計の一実施形態として、蛍光分光光度計を例にして図1にその概略構成図を示す。また、図2は、図1に示す光電子増倍管の断面図である。なお、上述した蛍光分光光度計100と同様のものについては、同じ符号を付すことにより説明を省略する。
蛍光分光光度計1は、光を透過しない筐体10と、光源部20と、試料セル30と、光電子増倍管50を備える光検出部40と、光検出部40に印加電圧値−HVを印加する高電圧発生部60と、蛍光分光光度計1全体を制御するコンピュータ70とを備える。
蛍光分光光度計1は、光を透過しない筐体10と、光源部20と、試料セル30と、光電子増倍管50を備える光検出部40と、光検出部40に印加電圧値−HVを印加する高電圧発生部60と、蛍光分光光度計1全体を制御するコンピュータ70とを備える。
光電子増倍管50は、真空管51と、光電陰極52と、陽極53と、光電陰極52と陽極53との間に配置された3個のダイノード(二次電子増倍電極)54(54a〜54c)と、光電陰極52及び3個のダイノード54a〜54cに接続されたデバイダ回路55と、陽極53に接続された出力増幅回路56と、デバイダ回路55に接続されたデバイダ電流監視回路57とを有する。
デバイダ回路55は、第1のデバイダ抵抗55aと、第2のデバイダ抵抗55bと、第3のデバイダ抵抗55cと、デバイダ抵抗55d、55eとを有する。第1のデバイダ抵抗55aは、光電陰極52と第1のダイノード54aとを接続するように配置され、第2のデバイダ抵抗55bは、第1のダイノード54aと第2のダイノード54bとを接続するように配置され、第3のデバイダ抵抗55cは、第2のダイノード54bと第3のダイノード54cとを接続するように配置され、デバイダ抵抗55d、55eは、第3のダイノード54cとGNDとを接続するように配置されている。これにより、光電陰極52に高電圧発生部60から印加電圧値−HVが印加されることで、3個のダイノード54a〜54cに段階的な電位が形成されるようになっている。
デバイダ電流監視回路57は、デバイダ抵抗55dとデバイダ抵抗55eとの間に接続されている。これにより、第3のデバイダ抵抗55cを流れた第3のデバイダ電流i3のうち、第3のダイノード54cから真空管51内に供給されなかった電荷(第4のデバイダ電流i4)がデバイダ電流監視回路57に流れるようになっている。
このような光電子増倍管50によれば、蛍光が光電陰極52に受光されると、光電効果によって光量に応じた数の電子を発生させる。このとき、光電陰極52に高電圧発生部60から印加電圧値−HVが印加されると、3個のダイノード54a〜54cに段階的な電位が形成されて、第1のデバイダ抵抗55aを流れる第1のデバイダ電流i1や、第2のデバイダ抵抗55bを流れる第2のデバイダ電流i2や、第3のデバイダ抵抗55cを流れる第3のデバイダ電流i3から真空管51内に電荷が供給されることで、電子数を増倍していき、光電陰極52に受光された光量に比例する大きさの陽極電流Iが陽極53から出力増幅回路56に出力される。一方、真空管51内に供給されなかった電荷に対応する大きさの第4のデバイダ電流i4は、デバイダ電流監視回路57に出力される。
陽極電流Iは、出力増幅回路56により増幅され、一定時間間隔でサンプリングされてデジタル増幅電圧値信号(出力強度信号)Vに変換される。一方、第4のデバイダ電流i4は、デバイダ電流監視回路57より一定時間間隔でサンプリングされてデジタル電圧値信号v4に変換される。図3は、デジタル電圧値信号v4の時間変化の一例を示すグラフである。
コンピュータ70は、CPU(制御部)71やメモリ(記憶部)72を備える。また、CPU71が処理する機能をブロック化して説明すると、メモリ72に光検出部40からのデジタル増幅電圧値信号V及びデジタル電圧値信号v4を記憶させる記憶制御部71aと、デジタル増幅電圧値信号Vに基づいて試料を分析する分析部71bと、高電圧発生部60を制御する電圧制御部71cとを有する。
さらに、メモリ72には、光電陰極52が過大光を受光したと判定するための限界閾値v4th(デバイダ電流閾値ith)が予め記憶されている。限界閾値v4thとしては、例えば、通常時の第4のデバイダ電流i4の大きさを示すデジタル電圧値信号(約−3.0V)の2/15程度の大きさを示すデジタル電圧値信号(約−0.4V)等が挙げられる。
電圧制御部71cは、印加電圧値−HVを決定するとともに、デジタル電圧値信号v4と限界閾値v4thとに基づいて印加電圧値−HVの印加を中止する制御を行う。例えば、電圧制御部71cは、デジタル電圧値信号v4が限界閾値v4th未満であるときには、光電子増倍管50への印加電圧値−HVの印加を中止する。つまり、通常時に比べて極端に小さなデバイダ電流i4が流れていると判定して、過大な陽極電流Iが流れ続けることを防止する。
以上のように、本考案に係る構成を有した蛍光分光光度計1によれば、予期しない過大光が光電子増倍管50へ入射した場合に、光電子増倍管50の深刻な劣化を防止することができる。このとき、過大光を受光したと判定するための第4のデバイダ電流i4が出力増幅回路56を介さず取得され、一方、陽極電流Iは出力増幅回路56を介して取得されるため、試料分析の分解能を大きくすることができる。
<他の実施形態>
(1)上述した蛍光分光光度計1において、デジタル電圧値信号v4に基づいて印加電圧値−HVの印加を中止する制御を行う構成を示したが、これに代えて、第4のデバイダ電流i4に基づいて印加電圧値−HVの印加を中止する制御を行う構成としてもよく、また、デバイダ電流i1、i2、i3に基づいて印加電圧値−HVの印加を中止する制御を行う構成としてもよい。
(1)上述した蛍光分光光度計1において、デジタル電圧値信号v4に基づいて印加電圧値−HVの印加を中止する制御を行う構成を示したが、これに代えて、第4のデバイダ電流i4に基づいて印加電圧値−HVの印加を中止する制御を行う構成としてもよく、また、デバイダ電流i1、i2、i3に基づいて印加電圧値−HVの印加を中止する制御を行う構成としてもよい。
(2)上述した蛍光分光光度計1において、電子増倍管50は3個のダイノード54(54a〜54c)を有する構成を示したが、これに代えて、4個以上や3個未満のダイノードを有する光電子増倍管を備える構成としてもよい。
1 蛍光分光光度計(分光光度計)
50 光電子増倍管
52 光電陰極
53 陽極
54 ダイノード(二次電子増倍電極)
55 デバイダ回路
57 デバイダ電流監視回路
60 高電圧発生部(電圧発生部)
71 CPU(制御部)
72 メモリ(記憶部)
50 光電子増倍管
52 光電陰極
53 陽極
54 ダイノード(二次電子増倍電極)
55 デバイダ回路
57 デバイダ電流監視回路
60 高電圧発生部(電圧発生部)
71 CPU(制御部)
72 メモリ(記憶部)
Claims (3)
- 試料からの測定光を受光して電子を放出する光電陰極と、電子が入射して陽極電流を出力する陽極と、前記光電陰極と前記陽極との間に配置された複数の二次電子増倍電極と、前記光電陰極及び前記二次電子増倍電極に接続されたデバイダ回路とを有し、前記光電陰極に印加電圧値が印加されることで前記二次電子増倍電極に段階的な電位が形成される光電子増倍管と、
前記光電子増倍管に印加電圧値を印加する電圧発生部とを備える分光光度計であって、
デバイダ電流を検出するデバイダ電流監視回路と、
前記光電陰極が過大光を受光したと判定するためのデバイダ電流閾値を記憶する記憶部と、
前記デバイダ電流及び前記デバイダ電流閾値に基づいて、前記電圧発生部を制御する制御部とを備えることを特徴とする分光光度計。 - 前記陽極電流を増幅して出力強度信号を出力する出力増幅回路と、
前記出力強度信号に基づいて、前記試料を分析する分析部とを備えることを特徴とする請求項1に記載の分光光度計。 - 前記試料が収容される試料セルと、
前記試料セルに光を出射する光源部とを備えることを特徴とする請求項1又は請求項2に記載の分光光度計。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016003295U JP3206544U (ja) | 2016-07-08 | 2016-07-08 | 分光光度計 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016003295U JP3206544U (ja) | 2016-07-08 | 2016-07-08 | 分光光度計 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP3206544U true JP3206544U (ja) | 2016-09-23 |
Family
ID=56959164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016003295U Active JP3206544U (ja) | 2016-07-08 | 2016-07-08 | 分光光度計 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3206544U (ja) |
-
2016
- 2016-07-08 JP JP2016003295U patent/JP3206544U/ja active Active
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10892149B2 (en) | Optical detectors and methods of using them | |
EP3279624B1 (en) | Light quantity detection device, and immunoanalysis device and charged particle beam device using same | |
US10930480B2 (en) | Ion detectors and methods of using them | |
US20190304762A1 (en) | Detectors and methods of using them | |
US8022355B2 (en) | Scintillation detector gain control system using reference radiation | |
US9322711B2 (en) | Light signal detecting circuit, light amount detecting device, and charged particle beam device | |
JP2000356594A (ja) | ダイナミック・レンジの広い光検出システム | |
JP5251729B2 (ja) | 分光光度計 | |
US6188473B1 (en) | Method and system for photodetection of photon-counting and current operation | |
US4825066A (en) | Photomultiplier with secondary electron shielding means | |
JP2015021957A (ja) | X線分析用信号処理装置 | |
Bülter | Single-photon counting detectors for the visible range between 300 and 1,000 nm | |
JP7412331B2 (ja) | 光電子増倍管を用いて光子を計数するための方法 | |
US20040109536A1 (en) | X-ray detector for feedback stabilization of an X-ray tube | |
JP3206544U (ja) | 分光光度計 | |
CN102507517B (zh) | 一种光子计数全谱直读荧光光谱仪 | |
JP6409604B2 (ja) | 光子又は荷電粒子の計数装置 | |
WO2023286353A1 (ja) | 演算装置、光検出装置、及びゲイン算出方法 | |
JP5902883B2 (ja) | 分光蛍光光度計 | |
KR101836997B1 (ko) | 섬광체 기반 감마선 검출 장치 및 그 방법 | |
CN106712758A (zh) | 一种门控光电倍增管的控制电路 | |
JP2000304697A (ja) | 蛍光寿命測定方法および装置 | |
JPH09159527A (ja) | 蛍光物質定量装置 | |
JP7444294B2 (ja) | 蛍光x線分析装置 | |
US10712201B2 (en) | Optical emission spectrometer with cascaded charge storage devices |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R150 | Certificate of patent (=grant) or registration of utility model |
Ref document number: 3206544 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |