JP3200137B2 - Giant magnetostrictive alloy - Google Patents

Giant magnetostrictive alloy

Info

Publication number
JP3200137B2
JP3200137B2 JP04769392A JP4769392A JP3200137B2 JP 3200137 B2 JP3200137 B2 JP 3200137B2 JP 04769392 A JP04769392 A JP 04769392A JP 4769392 A JP4769392 A JP 4769392A JP 3200137 B2 JP3200137 B2 JP 3200137B2
Authority
JP
Japan
Prior art keywords
magnetostriction
giant magnetostrictive
alloy
magnetostrictive alloy
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP04769392A
Other languages
Japanese (ja)
Other versions
JPH05148594A (en
Inventor
知己 船山
勲 酒井
忠彦 小林
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP04769392A priority Critical patent/JP3200137B2/en
Publication of JPH05148594A publication Critical patent/JPH05148594A/en
Application granted granted Critical
Publication of JP3200137B2 publication Critical patent/JP3200137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、低磁界でも大きな磁歪
特性を示す超磁歪合金に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a giant magnetostrictive alloy exhibiting a large magnetostrictive property even in a low magnetic field.

【0002】[0002]

【従来の技術】磁性体は外部から磁場を印加すると磁歪
によって変形するため、この磁歪を応用して以下のよう
な磁気−機械変位変換デバイス(以下「デバイス」とい
う)が開発された。すなわち、振動分野では磁歪振動子
としてスピーカ、ソナー、パーツフィーダ、超音波遅延
線、超音波加工機、モータの除振・防振機構などへ応用
でき、機械応用分野では変位制御アクチュエータとして
精密位置決め機構、バルブ制御弁、機械スイッチ、マイ
クロポンプ、プリンタヘッドなどへ応用できる。また磁
歪センサとして、圧力センサ、ノックセンサ、音圧セン
サなどに使用可能であり、さらには表面弾性波応用素子
への応用など工業上極めて有用な材料となる。
2. Description of the Related Art Since a magnetic substance is deformed by magnetostriction when a magnetic field is applied from the outside, the following magneto-mechanical displacement conversion device (hereinafter referred to as "device") has been developed by applying this magnetostriction. In other words, in the field of vibration, it can be applied to speakers, sonars, parts feeders, ultrasonic delay lines, ultrasonic processing machines, vibration isolation / vibration prevention mechanisms for motors, etc. in magnetostrictive transducers, and in precision positioning mechanisms as displacement control actuators in machine applications. It can be applied to valve control valves, mechanical switches, micro pumps, printer heads, etc. Further, it can be used as a magnetostrictive sensor for a pressure sensor, a knock sensor, a sound pressure sensor, and the like, and is a very industrially useful material for application to a surface acoustic wave application element.

【0003】そして、これらデバイスに用いられる磁歪
材料としては、従来からNi基合金、Fe−Co合金、
フェライト系材料などが知られていたが、最近ではこれ
らの磁歪材料より磁歪の絶対量(磁歪量)においてはる
かに優れた(飽和磁歪λが1000×10-6以上)希
土類−鉄系のラーベス型金属間化合物(一般式AB
で、MgCu(立方晶系)の結晶構造をもつ合金相
で、磁歪を示す)が報告されている(特公昭61−33
892号など)。
[0003] The magnetostrictive materials used in these devices have conventionally been Ni-based alloys, Fe-Co alloys,
Although such a ferrite-based material has been known, much better (saturation magnetostriction lambda s is 1000 × 10 -6 or higher) in the absolute amount of magnetostriction than these magnetostrictive materials recently (magnetostriction) rare earth - Laves ferrous Type intermetallic compound (general formula AB
No. 2 , an alloy phase having a crystal structure of MgCu 2 (cubic system, showing magnetostriction) was reported (JP-B-61-33).
No. 892).

【0004】[0004]

【発明が解決しようとする課題】ところが、実用上は数
kOeの低磁界でも大きな磁歪を示すことが必要である
が、このような低磁界では、上記の希土類−鉄系合金を
含め、未だ満足すべき磁歪量をもつ磁歪合金は開発され
ていない。
However, in practice, it is necessary to show a large magnetostriction even in a low magnetic field of several kOe. However, such a low magnetic field is still unsatisfactory, including the rare earth-iron alloy. A magnetostrictive alloy having a magnetostrictive amount to be developed has not been developed.

【0005】本発明は上記事情に鑑みてなされたもの
で、低磁界でも大きな磁歪量(磁歪特性)を示す超磁歪
合金を提供することを目的とする。
The present invention has been made in view of the above circumstances, and has as its object to provide a giant magnetostrictive alloy exhibiting a large amount of magnetostriction (magnetostrictive characteristics) even in a low magnetic field.

【0006】[0006]

【課題を解決するための手段および作用】本発明は上記
課題を解決するために、第一の発明として、一般式Tb
x y Dy1-x-y (Fe1-z Mnz w (RはY,L
a,Ce,Pr,NdおよびSmからなる群より選ばれ
る少なくとも一種の希土類元素、x+y<1,0.00
5≦y≦0.9,0.005≦z≦0.5,1.5≦w
≦2.5)で示される超磁歪合金を提供する。
In order to solve the above-mentioned problems, the present invention provides, as a first invention, a general formula Tb
x R y Dy 1-xy ( Fe 1-z Mn z) w (R is Y, L
at least one rare earth element selected from the group consisting of a, Ce, Pr, Nd and Sm, x + y <1,0.00
5 ≦ y ≦ 0.9, 0.005 ≦ z ≦ 0.5, 1.5 ≦ w
≦ 2.5) is provided.

【0007】また本発明は、第二の発明として、一般式
REFep (REは少なくとも一種の希土類元素、1.
5≦p≦2.5)で示され、かつ面指数〈110〉方向
に成長した超磁歪合金を提供する。
The present invention provides, as a second invention, a compound represented by the general formula REFe p (where RE is at least one kind of rare earth element;
5 ≦ p ≦ 2.5) and a giant magnetostrictive alloy grown in the <110> plane index.

【0008】さらに本発明は、第三の発明として、一般
式RE(Fe1-q-r Mnq r s (REは少なくとも
一種の希土類元素、MはAlおよびGaからなる群より
選ばれる少なくとも一種の金属元素、0.005≦q≦
0.5,0.005≦r≦0.2,1.90≦s≦2.
10)で示され、異相となる1−3相の含有量が5容量
%以下である超磁歪合金も提供する。
Furthermore the present invention comprises at least one a third aspect, the general formula RE (Fe 1-qr Mn q M r) s (RE is at least one rare earth element, M is selected from the group consisting of Al and Ga Metal element of 0.005 ≦ q ≦
0.5, 0.005 ≦ r ≦ 0.2, 1.90 ≦ s ≦ 2.
The present invention also provides a giant magnetostrictive alloy represented by 10), wherein the content of the 1-3 phase that is a different phase is 5% by volume or less.

【0009】本発明に係る第一の発明Tbx y Dy
1-x-y (Fe1-z Mnz w において、TbとDyはラ
ンタン系列に属し、Fe,Ni等の3d遷移元素と異な
り、4f電子の強い軌道角運動量のため極めて大きな結
晶磁気異方性を有するとともに、大きな磁歪特性を発揮
する基になる。またR元素は、Pr等比較的安価に入手
できる元素であるが、このR元素で高価なTbとDyを
一部代替すると、これら両希土類原子の磁気異方性が変
化して低磁界磁歪特性が向上する。
The first invention according to the present invention, Tb x R y Dy
In 1-xy (Fe 1-z Mn z ) w , Tb and Dy belong to the lanthanum series and, unlike 3d transition elements such as Fe and Ni, have extremely large crystal magnetic anisotropy due to the strong orbital angular momentum of 4f electrons. And a group exhibiting large magnetostriction characteristics. The R element is an element such as Pr which can be obtained relatively inexpensively. However, when the R element partially replaces the expensive Tb and Dy, the magnetic anisotropy of both rare earth atoms changes and the low magnetic field magnetostriction characteristic is reduced. Is improved.

【0010】そして、FeはTb,DyおよびR元素の
希土類元素とラーベス(Laves)型金属間化合物(ラーベ
ス相)を形成し、著しい磁歪特性を発揮させる。またF
eの他にMnを含有させると、希土類原子の磁気異方性
が変化し、このラーベス型金属間化合物は高磁界のみな
らず低磁界においても優れた磁気特性を示すようにな
る。
[0010] Fe forms a Laves-type intermetallic compound (Laves phase) with rare earth elements such as Tb, Dy and R elements, and exhibits remarkable magnetostriction characteristics. Also F
When Mn is contained in addition to e, the magnetic anisotropy of the rare earth atom changes, and the Laves-type intermetallic compound exhibits excellent magnetic properties not only in a high magnetic field but also in a low magnetic field.

【0011】さて第一の発明に係る超磁歪合金は、T
b、R、Dy、FeおよびMnが、x,y,zおよびw
の原子比で規定されるが、Dyは必須であり、x+y<
1とする。なおTbは磁歪特性に有効であり、好ましく
はx≧0.05である。また、xが0.5を超えるとこ
の合金の磁気異方性エネルギーが大きくなって磁歪特性
が低下するおそれがあるため、x≦0.5が好ましい。
またyが0.005未満だとR原子の上述の磁気異方性
に及ぼす影響力が不足し、他方0.5を超えると磁歪特
性を担うラーベス相が減少して異相である1−3相(希
土類と鉄の原子比が1:3の結晶構造をもつ合金相で、
磁歪が非常に小さい)等が増加し、ともに磁歪特性の劣
化を招く。
The giant magnetostrictive alloy according to the first invention has a T
b, R, Dy, Fe and Mn are x, y, z and w
Where Dy is indispensable and x + y <
Let it be 1. Note that Tb is effective for magnetostriction characteristics, and preferably, x ≧ 0.05. When x exceeds 0.5, the magnetic anisotropy energy of the alloy may be increased and the magnetostrictive properties may be reduced. Therefore, x ≦ 0.5 is preferable.
When y is less than 0.005, the influence of the R atom on the above-described magnetic anisotropy is insufficient, and when y exceeds 0.5, the Laves phase responsible for the magnetostrictive property decreases and the 1-3 phase which is a different phase is formed. (An alloy phase having a crystal structure in which the atomic ratio of rare earth to iron is 1: 3,
Magnetostriction is very small), etc., and both cause deterioration of magnetostriction characteristics.

【0012】一方、zが0.005未満だとMnの上述
の磁気異方性に及ぼす影響力が足りなくなり、他方0.
5を超えるとキュリー温度が低下して、ともに磁歪特性
の劣化を招く。さらにwは、1.5未満であったり2.
5を超えると、ともに主相となるべきラーベス相が減少
して磁歪特性が低下する。
On the other hand, if z is less than 0.005, the influence of Mn on the above-mentioned magnetic anisotropy becomes insufficient, and on the other hand, the value of 0.
If it exceeds 5, the Curie temperature lowers, and both of them cause deterioration of magnetostriction characteristics. Further, w is less than 1.5 or 2.
If it exceeds 5, the Laves phase that should be the main phase decreases, and the magnetostriction characteristics deteriorate.

【0013】なお、この超磁歪合金の耐蝕性を向上させ
るため、Feの一部をT元素(Co,Ni)で置換する
ことができる。しかし、あまり置換量が多くなるとキュ
リー温度が低下して磁歪特性が劣化するため、Fe1-a
a として考えたときは、a≦0.5が限度である。
Incidentally, in order to improve the corrosion resistance of the giant magnetostrictive alloy, a part of Fe can be replaced with a T element (Co, Ni). However, if the substitution amount is too large, the Curie temperature decreases and the magnetostriction characteristics deteriorate, so that Fe 1-a
When considered as T a is, a ≦ 0.5 is the limit.

【0014】さらにこの超磁歪合金は、材料強度、飽和
磁歪、耐蝕性の改善のため、Mnの一部をM′元素(M
g,Al,Ga,Ru,Rh,Pd,Ag,Cd,I
n,Sn,Sb,Os,Ir,Pt,Au,Hg,Tl
およびPb)で置換することができる。しかしこのM′
元素も、あまり置換量が多いと磁歪特性が劣化するため
Fe1-z-z1Mnz M′z1として考えたときは、Z1≦
0.2が限界である。
Further, in this giant magnetostrictive alloy, part of Mn is changed to the element M ′ (M ′) in order to improve material strength, saturation magnetostriction and corrosion resistance.
g, Al, Ga, Ru, Rh, Pd, Ag, Cd, I
n, Sn, Sb, Os, Ir, Pt, Au, Hg, Tl
And Pb). But this M '
Element also, when considered as Fe 1-z-z1 Mn z M 'z1 to deteriorate magnetostriction and very substitution amount is large, Z1 ≦
0.2 is the limit.

【0015】なお、この第一の発明に係る超磁歪合金
は、立方晶の特定方位である〈110〉および〈11
1〉方向のどれかに優先的に配向している(結晶軸が揃
っている)と、この方向における磁歪特性は他の方位に
比べ大きくなる。
The giant magnetostrictive alloy according to the first invention has a specific orientation of <110> and <11> which are cubic.
1> If the crystal is preferentially oriented in one of the directions (the crystal axes are aligned), the magnetostriction characteristics in this direction are larger than those in other directions.

【0016】つぎに本発明に係る第二の発明において
は、先に説明した理由で希土類元素(RE)と鉄のラー
ベス型金属間化合物を形成する超磁歪合金REFe
p (1.5≦p≦2.5)について結晶方位を〈11
0〉方向に成長させた。
Next, in the second invention according to the present invention, a giant magnetostrictive alloy REFe forming a Laves-type intermetallic compound of a rare earth element (RE) and iron for the above-described reason.
For p (1.5 ≦ p ≦ 2.5), the crystal orientation is set to <11
0> direction.

【0017】すなわち本発明者らは、この希土類−鉄系
超磁歪合金は、単結晶・多結晶ともに〈110〉方向に
成長しやすいことを見出した。したがって、デバイス化
のため例えばロッド状に形成するときは、フローディン
グゾーン法(加熱成形の際被成形品の加熱箇所を移動さ
せながら徐々に被成形品全体を成形する方法)や熱勾配
をつけた鋳造などにおいて、この〈110〉方向に成長
させて製造すれば、製造時間が短縮する(例えばフロー
ディングゾーン法の場合は、ロッドの一端から他端まで
順次加熱するパスの繰返し回数を大幅に減らすことがで
きる。)。
That is, the present inventors have found that this rare earth-iron based giant magnetostrictive alloy is easy to grow in the <110> direction in both single crystal and polycrystal. Therefore, when the device is formed into a rod shape, for example, in the form of a rod, a flooding zone method (a method of gradually molding the entire molded product while moving a heated portion of the molded product during heat molding) or a thermal gradient is applied. In the casting or the like, if the growth is performed in the <110> direction, the manufacturing time is shortened (for example, in the case of the floating zone method, the number of repetitions of the pass for sequentially heating from one end to the other end of the rod is greatly increased. Can be reduced.).

【0018】そして、このように〈110〉方向に結晶
方位に揃えて製造された超磁歪合金REFep (1.5
≦p≦2.5)は、低磁界においても磁歪特性が高い。
なお原子比pは,1.5に満たないと希土類過剰相が増
加し、他方2.5を超えるとラーベス相が減少して、と
もに磁歪特性が不良になる。
Then, the giant magnetostrictive alloy REFe p (1.5
≦ p ≦ 2.5), the magnetostriction is high even in a low magnetic field.
When the atomic ratio p is less than 1.5, the rare earth excess phase increases, and when it exceeds 2.5, the Laves phase decreases, and both have poor magnetostrictive characteristics.

【0019】ところで、この第二の発明に係る超磁歪合
金は、RE(Fe1-c Mnc p (1.5≦p≦2.
5、0.005≦c≦0.5)のように、Feを原子比
cだけMnで置換すると、結晶の〈110〉方向への優
先成長を促進させることができる。なお、原子比cは、
0.005未満だとこの効果が得られず、他方0.5を
超えるとキュリー温度が低下して磁歪特性が劣化する。
By the way, the giant magnetostrictive alloy according to the second aspect of the present invention has an RE (Fe 1 -cM n c ) p (1.5 ≦ p ≦ 2.
(5, 0.005 ≦ c ≦ 0.5), substitution of Fe by Mn by the atomic ratio c can promote preferential growth of the crystal in the <110> direction. Note that the atomic ratio c is
If it is less than 0.005, this effect cannot be obtained. On the other hand, if it exceeds 0.5, the Curie temperature lowers and the magnetostriction characteristics deteriorate.

【0020】また、この第二の発明に係る超磁歪合金
も、第一の発明に係る超磁歪合金と同じくT元素(C
o,Ni)とM′元素(Mg,Al,Ga,Ru,R
h,Pd,Ag,Cd,In,Sn,Sb,Os,I
r,Pt,Au,Hg,TlおよびPb)を第一の発明
と同じ置換量だけ含めると、同様の効果を上げることが
できる。
Further, the giant magnetostrictive alloy according to the second invention also has the same element T (C) as the giant magnetostrictive alloy according to the first invention.
o, Ni) and M 'element (Mg, Al, Ga, Ru, R
h, Pd, Ag, Cd, In, Sn, Sb, Os, I
When r, Pt, Au, Hg, Tl and Pb) are included in the same amount as in the first invention, the same effect can be obtained.

【0021】また磁化容易軸と結晶軸が揃っている場合
に、特に低磁界で優れた磁歪特性を得ることができる。
したがって〈110〉磁化容易軸で〈110〉方向に成
長していることが好ましい。また〈110〉方向に成長
させた場合、板状に結晶が成長するが、板面が同方向に
揃うようにすれば、〈110〉方向に垂直な〈111〉
方向にも揃えることができる。したがって〈110〉方
向に成長した合金から〈111〉方向の合金片を得るこ
とができる。このときは磁化容易軸が〈111〉方向で
あると磁歪特性上好ましい。
Further, when the axis of easy magnetization and the crystal axis are aligned, excellent magnetostriction characteristics can be obtained particularly at a low magnetic field.
Therefore, it is preferable to grow in the <110> direction with the <110> easy axis. When the crystal is grown in the <110> direction, the crystal grows in a plate shape. However, if the plate surfaces are aligned in the same direction, the <111> perpendicular to the <110> direction is formed.
It can be aligned in any direction. Therefore, an alloy piece in the <111> direction can be obtained from the alloy grown in the <110> direction. In this case, the axis of easy magnetization is preferably in the <111> direction in terms of magnetostriction characteristics.

【0022】最後に、本発明に係る第三の発明のRE
(Fe1-q-r Mnq r s (0.005≦q≦0.
5,0.005≦r≦0.2,1.90≦s≦2.1
0)超磁歪合金は、原子比sにより先に説明したと同様
の希土類−鉄のラーベス相を有するが、この超磁歪合金
は、Feの一部をまずMnで置換したため、ラーベス型
金属間化合物を形成する際避けられなかった1−3相の
析出が抑えられ(5容量%以下)、成形後長時間に渡る
均質化処理(異相の消滅・偏析の解消処理)をしなくて
も直ちに使用できる。そしてM元素(C,Mg,Al,
Si,Ca,Zr,Y,Ga,Bの少なくとも一種)
は、1−2相を優先して析出させる効果を有し、前記M
nの機能を補助する。なおM元素と同じ原子比の範囲で
前述のM′元素を含むこともできる。
Finally, the RE of the third invention according to the present invention
(Fe 1-qr Mn q M r) s (0.005 ≦ q ≦ 0.
5,0.005 ≦ r ≦ 0.2, 1.90 ≦ s ≦ 2.1
0) The giant magnetostrictive alloy has the same rare earth-iron Laves phase as described above due to the atomic ratio s. However, since this giant magnetostrictive alloy first substituted a part of Fe with Mn, the Laves-type intermetallic compound Prevents the inevitable precipitation of 1-3 phases (5% by volume or less), which is unavoidable when forming, and is used immediately without performing homogenizing treatment (elimination of heterogeneous phase / segregation) for a long time after molding. it can. And M element (C, Mg, Al,
At least one of Si, Ca, Zr, Y, Ga and B)
Has the effect of preferentially precipitating the 1-2 phase,
n function. Note that the above-mentioned M 'element can be contained in the same atomic ratio range as the M element.

【0023】原子比のqは、もし0.005未満だと1
−3相の析出抑制効果が得られず、他方0.5を超える
とキュリー温度が低下して磁歪特性が劣化する。また原
子比rも、0.005未満だと先のM元素の効果が得ら
れず、逆に0.2を超えると磁歪量が減少する。
The atomic ratio q is 1 if it is less than 0.005.
The effect of suppressing the precipitation of the -3 phase cannot be obtained. On the other hand, if it exceeds 0.5, the Curie temperature decreases and the magnetostriction characteristics deteriorate. If the atomic ratio r is less than 0.005, the effect of the element M cannot be obtained, and if it exceeds 0.2, the magnetostriction decreases.

【0024】なお原子比のsは、1.9未満の場合はM
nがなくても1−3相の析出はほとんどないが、希土類
過剰相が増加する。また2.1を超えるとMnによる1
−3相析出抑制効果が得られなくなる。
When the atomic ratio s is less than 1.9, M
Even if n is not present, there is almost no precipitation of the 1-3 phase, but the rare earth excess phase increases. On the other hand, if it exceeds 2.1, 1
The effect of suppressing -3 phase precipitation cannot be obtained.

【0025】この第三の発明に係る超磁歪合金も、第
一、第二の発明に係る超磁歪合金と同じくT元素(C
o,Ni)を同じ置換量だけ含んで同様の効果を上げる
ことができる。また、特性を損ねない範囲で白金属元素
などの前記M′元素を含有することも可能である。そし
て、第三の発明に係る超磁歪合金も、第一の発明に係る
超磁歪合金と同様、立方晶の特定方位である〈110〉
および〈111〉方向のどれかに優先的に配向している
(結晶軸が揃っている)と、この方向における磁歪特性
は他の方位に比べ大きい。
The giant magnetostrictive alloy according to the third invention also has the same element T (C) as the giant magnetostrictive alloy according to the first and second inventions.
The same effect can be obtained by including the same substitution amount of (o, Ni). Further, it is possible to contain the above-mentioned M 'element such as a white metal element as long as the characteristics are not impaired. And the giant magnetostrictive alloy according to the third invention also has a specific orientation of cubic <110> like the giant magnetostrictive alloy according to the first invention.
If it is preferentially oriented in one of the <111> directions and the <111> direction (the crystal axes are aligned), the magnetostriction in this direction is larger than in other directions.

【0026】この合金を結晶成長の際の母合金として用
いたとき、結晶方位を一方向に揃える一方向凝固化およ
び単結晶の製造が容易に行えることが分った。
When this alloy was used as a master alloy during crystal growth, it was found that unidirectional solidification for aligning the crystal orientation in one direction and production of a single crystal could be easily performed.

【0027】[0027]

【実施例】以下添付の図面を参照して本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to the accompanying drawings.

【0028】〈実施例1〜17〉下記表1に示す本発明
の第一の発明に係る組成を有する実施例1〜17と、従
来の希土類−鉄系の組成を有する比較例1〜5の磁歪合
金から、10mm×10mm×5mmの試験片を形成した。す
なわち、同じく表1に示したように実施例1〜7,15
〜17および比較例1〜5の合金については、アルゴン
雰囲気下における水冷銅ボート中でのア−ク溶解法によ
り合金インゴットをつくり、実施例8〜11の合金につ
いては、一方向凝固法により一方向凝固体を得、また実
施例12〜14の合金については多結晶粉末を磁場を印
加しながら焼き固めて焼結体とし、さらに900℃下で
1週間の均質化処理を施す。そして、これら合金インゴ
ット、一方向凝固体および焼結体をそれぞれ切削加工し
て上記寸法の試験片を得た。
<Examples 1 to 17> Examples 1 to 17 having the compositions according to the first invention of the present invention shown in Table 1 below and Comparative Examples 1 to 5 having the conventional rare earth-iron composition were used. Test pieces of 10 mm × 10 mm × 5 mm were formed from the magnetostrictive alloy. That is, as shown in Table 1, Examples 1 to 7, 15
The alloys of Examples 8 to 11 and Comparative Examples 1 to 5 were prepared by an arc melting method in a water-cooled copper boat in an argon atmosphere, and the alloys of Examples 8 to 11 were prepared by the unidirectional solidification method. A directionally solidified body is obtained, and for the alloys of Examples 12 to 14, the polycrystalline powder is sintered by applying a magnetic field to obtain a sintered body, and further subjected to a homogenization treatment at 900 ° C. for one week. Then, these alloy ingots, unidirectionally solidified bodies, and sintered bodies were individually cut to obtain test pieces having the above dimensions.

【0029】この試験片について、室温下で対向磁極型
電磁石により2kOeの低磁界を印加して歪みゲージに
より磁歪量(磁歪特性)を測定し、さらにDyFe2
磁歪量で規格化した。この結果を併せて表1に示す。
With respect to this test piece, a low magnetic field of 2 kOe was applied by a facing magnetic pole type electromagnet at room temperature, the amount of magnetostriction (magnetostriction characteristic) was measured by a strain gauge, and further normalized by the amount of magnetostriction of DyFe 2 . The results are shown in Table 1.

【0030】[0030]

【表1】 [Table 1]

【0031】同表から明らかなように、本実施例の超磁
歪合金は、低磁界において、いずれも従来の希土類−鉄
系磁歪合金(規格化した磁歪特性が1〜5)より格段に
大きな磁歪特性(規格化した磁歪特性が8〜18)を有
する。そして、本実施例の超磁歪合金の中では、一方向
凝固体(実施例8〜11)が特に大きな磁歪特性を示し
た。
As is clear from the table, the giant magnetostrictive alloy of the present embodiment has a much larger magnetostriction in a low magnetic field than the conventional rare earth-iron based magnetostrictive alloy (standardized magnetostrictive characteristics are 1 to 5). Characteristics (standardized magnetostriction characteristics are 8 to 18). And, among the giant magnetostrictive alloys of the present example, the unidirectionally solidified bodies (Examples 8 to 11) showed particularly large magnetostrictive characteristics.

【0032】〈実施例18〜31〉下記表2に示す各組
成を調製した後、本発明の第二の発明に係る実施例18
〜31については一方向凝固法により立方晶の〈11
0〉方向にまたは〈111〉方向に結晶が配向した一方
向凝固体を得、また比較例6〜9については結晶方位が
ランダムな磁歪合金片を得た。そしてそれぞれ切削加工
によって10mm×10mm×5mmの試験片を形成した。
<Examples 18 to 31> After preparing each composition shown in Table 2 below, Example 18 according to the second invention of the present invention was prepared.
For 〜31, the cubic <11
Unidirectional solids in which crystals were oriented in the <0> direction or in the <111> direction were obtained, and in Comparative Examples 6 to 9, magnetostrictive alloy pieces with random crystal orientations were obtained. Then, test pieces of 10 mm × 10 mm × 5 mm were formed by cutting.

【0033】この試験片について、室温下で対向磁極型
電磁石により配向方向に2kOeの低磁界を印加して歪
みゲージにより磁歪量(磁歪特性)を測定し、さらにDy
Fe2 の磁歪量で規格化した。この結果を併せて表2に示
す。
With respect to this test piece, a low magnetic field of 2 kOe was applied in the orientation direction at room temperature by a facing magnetic pole type electromagnet, and the amount of magnetostriction (magnetostriction characteristics) was measured by a strain gauge.
Normalized by the magnetostriction of the Fe 2. The results are shown in Table 2.

【0034】ここで、<110>配向とは、例えば、Here, the <110> orientation means, for example,

【数1】Px=I220 /I311 ≧ 1 (I220 :<220>X線回折強度、I311 :<311
>X線回折強度)と定義される。
Px = I 220 / I 311 ≧ 1 (I 220 : <220> X-ray diffraction intensity, I 311 : <311
> X-ray diffraction intensity).

【0035】同様に<111>配向もSimilarly, the <111> orientation

【数2】Px=I222 /I311 ≧ 1 と定義される。## EQU2 ## It is defined that Px = I 222 / I 311 ≧ 1.

【0036】[0036]

【表2】 [Table 2]

【0037】この表から明らかなように、本実施例の超
磁歪合金は、低磁界において、いずれも従来の希土類−
鉄系磁歪合金(規格化した磁歪特性が1〜8)より格段
に大きな磁歪特性(規格化した磁歪特性が17〜22な
いし−14〜−17)を示す。
As is clear from the table, the giant magnetostrictive alloy of the present embodiment shows that the conventional rare earth-
It shows much higher magnetostriction characteristics (standardized magnetostriction characteristics are 17-22 to -14 to -17) than iron-based magnetostrictive alloys (standardized magnetostriction characteristics are 1 to 8).

【0038】また、図1は上記実施例28の超磁歪合金
の結晶方位をX線回折によって見たものであるが、低磁
界磁歪特性の高い本実施例の超磁歪合金は、確かに〈1
10〉方向(〈110〉の偶数倍である〈220〉およ
び〈440〉として観測される)に配向していることが
分る。
FIG. 1 shows the crystal orientation of the giant magnetostrictive alloy of Example 28 by X-ray diffraction. The giant magnetostrictive alloy of this example having a high low-field magnetostrictive property is certainly <1.
It can be seen that they are oriented in the 10> direction (observed as <220> and <440>, which are even multiples of <110>).

【0039】〈実施例32〜36〉下記表3に示す各組
成を調製した後、本発明の第三の発明に係る実施例32
〜36と比較例10〜14について、アーク溶解により
合金インゴットを得た後、それぞれ切削加工によって1
0mm×10mm×5mmの試験片を形成した。
<Examples 32 to 36> After the respective compositions shown in Table 3 below were prepared, Example 32 according to the third invention of the present invention was carried out.
About 36 and Comparative Examples 10-14, after obtaining an alloy ingot by arc melting, 1
A test piece of 0 mm × 10 mm × 5 mm was formed.

【0040】この試験片について、室温下で対向磁極型
電磁石により2kOeの低磁界を印加して歪みゲージに
より磁歪量(磁歪特性)を測定し、さらにDyFe2
磁歪量で規格化した。この結果を併せて表3に示す。
With respect to this test piece, a low magnetic field of 2 kOe was applied by a facing magnetic pole type electromagnet at room temperature, the amount of magnetostriction (magnetostriction characteristic) was measured by a strain gauge, and the value was normalized by the amount of magnetostriction of DyFe 2 . Table 3 also shows the results.

【0041】[0041]

【表3】 [Table 3]

【0042】この表から明らかなように、本実施例の超
磁歪合金は、低磁界において、いずれも従来の希土類−
鉄系磁歪合金(規格化した磁歪特性が1〜8)より格段
に大きな磁歪特性(規格化した磁歪特性が10〜18)
を示す。そして、これら本実施例の超磁歪合金は、1−
3相の含有量が○(ほとんど0)または△(1〜5容量
%)で、比較例10〜15の×(5容量%を超える)に
比べて圧倒的に少ない。したがって、本実施例の超磁歪
合金は、磁歪特性が非常に小さい異相としての1−3相
を除く均質化用の装備が不要で、均質化に時間をとられ
ることなく、製造後直ちに使用できる。
As is clear from the table, the giant magnetostrictive alloy of the present embodiment shows that the conventional rare earth-
Magnetostrictive properties significantly larger than iron-based magnetostrictive alloys (standardized magnetostrictive properties are 1 to 8) (standardized magnetostrictive properties are 10 to 18)
Is shown. And, the giant magnetostrictive alloy of the present embodiment is 1-
The content of the three phases is ○ (almost 0) or △ (1 to 5% by volume), which is overwhelmingly smaller than × (exceeding 5% by volume) in Comparative Examples 10 to 15. Therefore, the giant magnetostrictive alloy of this example does not require equipment for homogenization except for the 1-3 phase as a heterophase having a very small magnetostriction property, and can be used immediately after production without taking time for homogenization. .

【0043】図2と図3は、それぞれSEM(電圧25
kV)によって撮影した、本発明の第三の発明に係る実
施例32と、比較例11の金属組織の顕微鏡写真である
が、図2の実施例32の超磁歪合金には、図3の比較例
11の磁歪合金に多数見られる針状の1−3相がまった
く存在しないことが確認できる。
FIGS. 2 and 3 show SEM (voltage 25
3 is a photomicrograph of a metallographic structure of Example 32 according to the third invention of the present invention and a metal structure of Comparative Example 11 taken at kV). The giant magnetostrictive alloy of Example 32 of FIG. It can be confirmed that many of the acicular 1-3 phases found in the magnetostrictive alloy of Example 11 do not exist.

【0044】[0044]

【発明の効果】以上説明したように、本発明の超磁歪合
金は、第一、第二および第三の発明に係る合金がいずれ
も低磁界で良好な磁歪特性を示し、かつ第一の発明にお
いては材料の経済性、第二の発明においては製造の容易
性、第三の発明においては均質化処理の不要という利点
を有する。
As described above, according to the giant magnetostrictive alloy of the present invention, the alloys according to the first, second and third inventions all show good magnetostriction characteristics in a low magnetic field, and Has the advantage that the material is economical, the second invention is easy to manufacture, and the third invention does not require a homogenization treatment.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例28に係る超磁歪合金のX線回
折パターン図。
FIG. 1 is an X-ray diffraction pattern diagram of a giant magnetostrictive alloy according to Example 28 of the present invention.

【図2】本発明の実施例32に係る超磁歪合金の金属組
織を示す顕微鏡写真。
FIG. 2 is a micrograph showing a metal structure of a giant magnetostrictive alloy according to Example 32 of the present invention.

【図3】比較例11の磁歪合金の金属組織を示す顕微鏡
写真。
FIG. 3 is a micrograph showing the metal structure of the magnetostrictive alloy of Comparative Example 11.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 佐橋 政司 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝 総合研究所内 (56)参考文献 特開 平5−43992(JP,A) 特開 平3−115540(JP,A) 特開 平2−170942(JP,A) 特開 昭64−73050(JP,A) 特開 平4−362159(JP,A) 特開 平3−37182(JP,A) 特開 平1−123021(JP,A) 特開 昭59−158574(JP,A) 特開 平2−145753(JP,A) 特開 昭55−134150(JP,A) (58)調査した分野(Int.Cl.7,DB名) C22C 38/00 C22C 38/04 H01L 41/20 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Masashi Sabashi 1 Toshiba, Komukai Toshiba-cho, Saisaki-ku, Kawasaki City, Kanagawa Prefecture (56) References JP-A-5-43992 (JP, A) JP-A-3-115540 (JP, A) JP-A-2-170942 (JP, A) JP-A-64-73050 (JP, A) JP-A-4-362159 (JP, A) JP-A-3-37182 (JP) JP-A-1-130221 (JP, A) JP-A-59-158574 (JP, A) JP-A-2-1455753 (JP, A) JP-A-55-134150 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) C22C 38/00 C22C 38/04 H01L 41/20

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 一般式Tbx y Dy1-x-y (Fe1-z
Mnz w (RはY,La,Ce,Pr,NdおよびS
mからなる群より選ばれる少なくとも一種の希土類元
素、x+y<1,0.005≦y≦0.9,0.005
≦z≦0.5,1.5≦w≦2.5)で示される超磁歪
合金。
1. The general formula Tb x R y Dy 1-xy (Fe 1-z
Mn z ) w (R is Y, La, Ce, Pr, Nd and S
at least one rare earth element selected from the group consisting of m, x + y <1,0.005 ≦ y ≦ 0.9,0.005
≦ z ≦ 0.5, 1.5 ≦ w ≦ 2.5).
【請求項2】 一般式REFep (REは少なくとも一
種の希土類元素、1.5≦p≦2.5)で示され、かつ
面指数〈110〉方向に成長した超磁歪合金。
2. A giant magnetostrictive alloy represented by a general formula REFe p (RE is at least one rare earth element, 1.5 ≦ p ≦ 2.5) and grown in a plane index <110> direction.
【請求項3】 一般式RE(Fe1-q-r Mnq r s
(REは少なくとも一種の希土類元素、MはC,Mg,
Al,Si,Ca,Zr,Y,Ga,Bからなる群より
選ばれる少なくとも一種の金属元素、0.005≦q≦
0.5,0.005≦r≦0.2,1.90≦s≦2.
10)で示され、異相となる1−3相の含有量が5容量
%以下である超磁歪合金。
3. A general formula RE (Fe 1-qr Mn q M r) s
(RE is at least one rare earth element, M is C, Mg,
At least one metal element selected from the group consisting of Al, Si, Ca, Zr, Y, Ga and B, 0.005 ≦ q ≦
0.5, 0.005 ≦ r ≦ 0.2, 1.90 ≦ s ≦ 2.
A giant magnetostrictive alloy represented by 10), wherein the content of the 1-3 phase, which is a different phase, is 5% by volume or less.
JP04769392A 1991-02-05 1992-02-04 Giant magnetostrictive alloy Expired - Fee Related JP3200137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04769392A JP3200137B2 (en) 1991-02-05 1992-02-04 Giant magnetostrictive alloy

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-35522 1991-02-05
JP3552291 1991-02-05
JP04769392A JP3200137B2 (en) 1991-02-05 1992-02-04 Giant magnetostrictive alloy

Publications (2)

Publication Number Publication Date
JPH05148594A JPH05148594A (en) 1993-06-15
JP3200137B2 true JP3200137B2 (en) 2001-08-20

Family

ID=26374521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04769392A Expired - Fee Related JP3200137B2 (en) 1991-02-05 1992-02-04 Giant magnetostrictive alloy

Country Status (1)

Country Link
JP (1) JP3200137B2 (en)

Also Published As

Publication number Publication date
JPH05148594A (en) 1993-06-15

Similar Documents

Publication Publication Date Title
JP3033127B2 (en) Rare earth magnet alloy with good hot workability
JPH01103805A (en) Permanent magnet
JP3311907B2 (en) Permanent magnet material, permanent magnet, and method of manufacturing permanent magnet
KR100345995B1 (en) Method of manufacturing thin plate magnet having microcrystalline structrue
US5527398A (en) Magnetostrictive materials and methods of making such materials
US20030010405A1 (en) Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys
JP3452210B2 (en) Manufacturing method of magnetostrictive material
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
JP2586198B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2576671B2 (en) Rare earth-Fe-B permanent magnet powder and bonded magnet with excellent magnetic anisotropy and corrosion resistance
JP2893265B2 (en) Rare earth permanent magnet alloy and its manufacturing method
JP2861074B2 (en) Permanent magnet material
JP3200137B2 (en) Giant magnetostrictive alloy
JP2000003808A (en) Hard magnetic material
JP2848643B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
JP3196224B2 (en) Rare earth-Fe-Co-B anisotropic magnet
JP3105929B2 (en) Magnetostrictive material
JP2006213984A (en) Super-magnetostrictive material and manufacturing method therefor
JP3643214B2 (en) Method for producing laminated permanent magnet
JPH0436401A (en) Manufacture of super magnetostrictive material
JP3385667B2 (en) Iron-terbium-based magnetostrictive material and method for producing the same
JPH1145805A (en) Highly magnetic material and manufacture therefor
JPH02201902A (en) Permanent magnet
JP4146120B2 (en) Magnetostrictive material
EP0522177B1 (en) Anisotropic Rare Earth Magnet

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090615

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100615

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110615

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees