JP2848643B2 - Giant magnetostrictive alloy and actuator for micro displacement control - Google Patents

Giant magnetostrictive alloy and actuator for micro displacement control

Info

Publication number
JP2848643B2
JP2848643B2 JP1252123A JP25212389A JP2848643B2 JP 2848643 B2 JP2848643 B2 JP 2848643B2 JP 1252123 A JP1252123 A JP 1252123A JP 25212389 A JP25212389 A JP 25212389A JP 2848643 B2 JP2848643 B2 JP 2848643B2
Authority
JP
Japan
Prior art keywords
giant magnetostrictive
magnetostrictive alloy
alloy
actuator
displacement control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1252123A
Other languages
Japanese (ja)
Other versions
JPH03115540A (en
Inventor
知己 船山
忠彦 小林
政司 佐橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP1252123A priority Critical patent/JP2848643B2/en
Publication of JPH03115540A publication Critical patent/JPH03115540A/en
Application granted granted Critical
Publication of JP2848643B2 publication Critical patent/JP2848643B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は磁歪が大きく磁気−機械変位変換デバイス等
に用いられる磁歪素子用として好適な超磁歪合金に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Field of Industrial Application) The present invention relates to a giant magnetostrictive alloy having a large magnetostriction and suitable for a magnetostrictive element used for a magneto-mechanical displacement conversion device or the like.

(従来の技術) 磁性体に外部磁場を印加した際、磁性体が変形する磁
歪の応用として変位制御アクチュエータ,磁歪振動子,
磁歪センサ,磁歪フィルタ,超音波遅延線等がある。従
来はNi基合金,Fe−Co合金,フェライト等が用いられて
いる。
(Prior art) When an external magnetic field is applied to a magnetic material, the magnetic material is deformed.
There are magnetostrictive sensors, magnetostrictive filters, ultrasonic delay lines, and the like. Conventionally, Ni-based alloys, Fe-Co alloys, ferrites and the like have been used.

近年、計測工学の進歩および精密機械分野の発展に伴
い、ミクロンオーダーの微小変位制御に不可決の変位駆
動部の開発が必要とされている。この変位駆動部の駆動
機構の1つとして磁歪合金を用いた磁気−機械変換デバ
イスが有力である。しかしながら従来の磁歪合金では、
変位の絶対量が充分でなく、ミクロンオーダーの精密変
位制御駆動部材料としては絶対駆動変位量のみならず精
密制御の点からも満足し得るものではなかった。
In recent years, with the advance of measurement engineering and the development of the field of precision machinery, it is necessary to develop a displacement drive unit that cannot be controlled for micro displacement on the order of microns. A magneto-mechanical conversion device using a magnetostrictive alloy as one of the driving mechanisms of the displacement driving unit is effective. However, with conventional magnetostrictive alloys,
The absolute amount of displacement was not sufficient, and as a material for a precision displacement control drive unit on the order of microns, it was not satisfactory not only in terms of absolute drive displacement but also in terms of precision control.

このような問題点を解決すべく本発明者等が研究を進
めた結果Dy−Tb−Fe−Mn系のラーベス型金属間化合物で
飽和磁歪(λ)が1000×10-6を越えるものが得られる
ことを見出した(特公昭61−33892号)。
As a result of research conducted by the present inventors to solve such problems, a Dy-Tb-Fe-Mn Laves-type intermetallic compound having a saturation magnetostriction (λ s ) of more than 1000 × 10 −6 is obtained. It was found to be obtained (Japanese Patent Publication No. 61-33892).

(発明が解決しようとする課題) 特公昭61−33892号にも示されているように実用上は
数kOe程度の低磁界で大きな磁歪を示すことが要求され
ている。しかしながらこの特公昭61−33892号に示され
ている材料でもまだ不十分であり、より高性能の磁歪材
料が望まれている。
(Problems to be Solved by the Invention) As shown in JP-B-61-33892, practically, it is required to exhibit a large magnetostriction at a low magnetic field of about several kOe. However, the material disclosed in JP-B-61-33892 is still insufficient, and a higher-performance magnetostrictive material is desired.

本発明はこのような問題点を考慮してなされたもの
で、低磁界で大きな磁歪を示す超磁歪合金を提供するこ
とを目的とする。
The present invention has been made in view of such problems, and has as its object to provide a giant magnetostrictive alloy exhibiting large magnetostriction in a low magnetic field.

[発明の構成] (課題を解決するための手段及び作用) 本発明者等がR−Fe−Mn系の超磁歪合金について更な
る特性向上を追及した結果、以下の知見を得た。
[Structure of the Invention] (Means for Solving the Problems and Action) As a result of the present inventors pursuing further improvement of the properties of the R-Fe-Mn-based giant magnetostrictive alloy, the following findings were obtained.

本発明の超磁歪合金はMnを含有することにより、希土
類原子の磁気異方性を変化させ、高磁界のみならず低磁
界においても優れた磁歪特性が得られる。しかしながら
R−Fe−Mn系超磁歪合金では第1図に示した様にMn系の
ラーベス型組成における凝固過程が複雑であり、磁歪特
性を左右する要因のひとつである結晶性の制御(具体的
には<111>結晶軸などの制御が難かしく、結果として
は特性向上をさまたげている場合が生じることを見出し
た。
Since the giant magnetostrictive alloy of the present invention contains Mn, the magnetic anisotropy of rare earth atoms is changed, and excellent magnetostriction characteristics can be obtained not only in a high magnetic field but also in a low magnetic field. However, in the case of the R-Fe-Mn-based giant magnetostrictive alloy, the solidification process in the Mn-based Laves-type composition is complicated as shown in FIG. It has been found that it is difficult to control the <111> crystal axis and the like, and as a result, there is a case where the improvement in characteristics is prevented.

そこで発明者らはラーベス型組成における凝固過程が
Mn系に比較して単純なGa等(第2図参照)を含有せしめ
ることにより結晶性の良好なラーベス相の超磁歪合金が
得られ、R−Fe−Mn系の超磁歪合金の磁歪特性が向上す
ることを見出したのである。
Therefore, the inventors found that the solidification process in Laves-type composition
The inclusion of simple Ga or the like (see FIG. 2) compared to the Mn-based alloy provides a Laves phase giant magnetostrictive alloy with good crystallinity, and the magnetostrictive properties of the R-Fe-Mn-based giant magnetostrictive alloy are improved. They found it to improve.

本発明は、原子比で表わした一般式 R(Fe1-y-zMnyMz ただしR:希土類元素の少なくとも一種 M:Mg,Al,Ga,Ru,Rh,Pd,Ag,Cd,In,Sn,Sb,Os,Ir,P
t,Au,Hg,Tl及びPbから選ばれた少なくとも一種 0.005≦y≦0.5 0.005≦z≦0.2 1.5≦w≦2.5 で示されることを特徴とする超磁歪合金である。
The present invention generally expressed in terms of atomic ratio formula R (Fe 1-yz Mn y M z) w proviso R: at least one rare earth element M: Mg, Al, Ga, Ru, Rh, Pd, Ag, Cd, In , Sn, Sb, Os, Ir, P
At least one selected from t, Au, Hg, Tl and Pb is a giant magnetostrictive alloy characterized by the following: 0.005 ≦ y ≦ 0.5 0.005 ≦ z ≦ 0.2 1.5 ≦ w ≦ 2.5.

希土類元素とはLa,Ce,Pr,Nd,Pm,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Luであり、これらから選ばれる一種以上の組み
合わせとしてはPr,Nd,Sm,Tb,Dy,Ho,Er,Tm,TbDy,TbHo,Tb
Pr,SmYb,TbDyHo,TbDyPr,TbPrHoの組み合わせが好まし
い。
Rare earth elements are La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, Lu, and one or more combinations selected from these are Pr, Nd, Sm, Tb, Dy, Ho, Er, Tm, TbDy, TbHo, Tb
A combination of Pr, SmYb, TbDyHo, TbDyPr, and TbPrHo is preferred.

好ましくは、1.7<w<2 0.01≦z<0.15 0.01<y<0.2 である。 Preferably, 1.7 <w <2 0.01 ≦ z <0.15 0.01 <y <0.2.

yが0.005より小さければMnの希土類原子の異方性へ
の作用が小さくなり、また0.6を越えるとキュリー温度
の減少により、ともに磁歪特性が劣化する。zが0.005
より小さければ凝固過程を変え、結晶性向上効果が減少
し、0.2を越えると磁歪量が減少してともに磁歪特性が
劣化する。また、wが上記範囲外となると主相となるべ
きラーベス相が減少し磁歪特性が劣化する。
If y is less than 0.005, the effect of Mn on the anisotropy of rare earth atoms is reduced, and if y is more than 0.6, the Curie temperature is reduced, and the magnetostriction is deteriorated. z is 0.005
If it is smaller, the solidification process is changed, and the effect of improving crystallinity is reduced. If it exceeds 0.2, the amount of magnetostriction is reduced, and the magnetostriction characteristics are deteriorated. If w is outside the above range, the Laves phase that should be the main phase decreases, and the magnetostriction characteristics deteriorate.

またFeの一部をT元素(Co,Ni)で置換することも可
能である。しかしながらあまり置換量が多いとキュリー
温度が低下し、磁気特性が低下してしまうため、(Fe
1-xTx)とした時、x≦0.5が限界である。
It is also possible to partially replace Fe with a T element (Co, Ni). However, if the substitution amount is too large, the Curie temperature is lowered, and the magnetic properties are lowered.
When 1−x Tx), x ≦ 0.5 is the limit.

更に本発明合金が立方晶の特定方位、例えば<100
>,<110>,<111>方向に優先配向していることによ
り、その方向における磁歪特性が更に向上する。また優
先配向した合金に磁場中熱処理を施し、磁化容易軸を特
定方向にそろえることにより磁歪特性は更に向上する。
Furthermore, when the alloy of the present invention has a specific orientation of cubic, for example, <100
The preferred orientation in the>, <110>, and <111> directions further improves the magnetostrictive characteristics in those directions. The magnetostrictive properties are further improved by subjecting the preferentially oriented alloy to a heat treatment in a magnetic field to align the axis of easy magnetization in a specific direction.

(実施例) 以下に本発明の実施例を説明する。(Example) An example of the present invention will be described below.

実施例1 表1に示す組成を、アーク溶解法にて等方多結晶体、
立方晶の特定方位に結晶が配向した一方向凝固体,焼結
体として作成した後900℃×1weekの均質化処理を施し、
切削加工にて10mm×10mm×5mmの試験片とした。磁歪特
性は室温下で歪みゲージを用い磁界は対向磁極型磁石に
より発生させ2kOe印加磁界中で評価した。それぞれの磁
歪量はDyFe2の磁歪量で規格化した値で示した。
Example 1 The composition shown in Table 1 was prepared by an arc melting method using an isotropic polycrystal,
After making it as a unidirectional solid and sintered body in which the crystal is oriented in a specific direction of cubic, it is subjected to homogenization treatment at 900 ° C × 1 week,
A test piece of 10 mm × 10 mm × 5 mm was formed by cutting. The magnetostriction characteristics were evaluated at room temperature using a strain gauge and a magnetic field generated by a facing magnetic pole type magnet under a 2 kOe applied magnetic field. Each magnetostriction is expressed by the value normalized by the magnetostriction amount of DyFe 2.

表1から明らかな様に本発明の合金は低磁界における
磁歪特性が向上し、特に立方晶の特定方位に結晶を配向
させたものが優れていることがわかる。
As is evident from Table 1, the alloy of the present invention has improved magnetostriction characteristics in a low magnetic field, and in particular, an alloy in which crystals are oriented in a specific cubic direction is excellent.

実施例2 表2に示す合金を実施例1に記載の方法で作成し、そ
れぞれ表中に示した条件にて磁場中熱処理を施した。磁
歪特性は実施例1と同様の方法で評価した。
Example 2 The alloys shown in Table 2 were prepared by the method described in Example 1, and each were subjected to a heat treatment in a magnetic field under the conditions shown in the table. The magnetostriction characteristics were evaluated in the same manner as in Example 1.

表2から明らかな様に磁場中熱処理を施すことによ
り、磁化容易軸を特定の方向にもたせることにより、さ
らに特性が向上することがわかる。
As is evident from Table 2, the properties are further improved by performing the heat treatment in a magnetic field to give the easy axis of magnetization in a specific direction.

[発明の効果] 以上説明した如く、本発明の超磁歪合金は、従来の磁
歪材料の特性に比べ極めて優れた磁歪特性を有し、実用
材料として十分なものである。特にミクロンオーダーの
微小変位制御用駆動部,強力超音波発生用振動子,セン
サ等の構成材料として極めて優れた特性を有するもので
ある。
[Effects of the Invention] As described above, the giant magnetostrictive alloy of the present invention has extremely excellent magnetostrictive properties as compared with the properties of conventional magnetostrictive materials, and is sufficient as a practical material. Particularly, it has extremely excellent characteristics as a constituent material of a micro displacement control drive unit, a vibrator for generating strong ultrasonic waves, a sensor, and the like.

【図面の簡単な説明】[Brief description of the drawings]

第1図はDy−Mnの状態図、第2図は、Dy−Gaの状態図。 FIG. 1 is a phase diagram of Dy-Mn, and FIG. 2 is a phase diagram of Dy-Ga.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C22C 28/00,38/00 - 38/60──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) C22C 28 / 00,38 / 00-38/60

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】原子比で表した一般式 R((Fe1-xTx1-y-zMnyMz ただしR:希土類元素の少なくとも一種 T:CoおよびNiのうち少なくとも一種 M:Mg,Al,Ga,Ru,Rh,Pd,Ag,Os,Ir,PtおよびAuから選ばれ
た少なくとも一種 0≦x≦0.5 0.005≦y≦0.5 0.005≦z≦0.2 1.5≦w≦2.5 で表されることを特徴とする超磁歪合金。
1. A general expressed in atomic ratio formula R ((Fe 1-x T x) 1-yz Mn y M z) w proviso R: at least one rare earth element T: at least one of Co and Ni M: At least one selected from Mg, Al, Ga, Ru, Rh, Pd, Ag, Os, Ir, Pt and Au 0 ≦ x ≦ 0.5 0.005 ≦ y ≦ 0.5 0.005 ≦ z ≦ 0.2 1.5 ≦ w ≦ 2.5 A giant magnetostrictive alloy, characterized in that:
【請求項2】請求項1記載の超磁歪合金を用いたことを
特徴とする微少変位制御用駆動部。
2. A drive unit for controlling minute displacement, wherein the giant magnetostrictive alloy according to claim 1 is used.
JP1252123A 1989-09-29 1989-09-29 Giant magnetostrictive alloy and actuator for micro displacement control Expired - Lifetime JP2848643B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1252123A JP2848643B2 (en) 1989-09-29 1989-09-29 Giant magnetostrictive alloy and actuator for micro displacement control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1252123A JP2848643B2 (en) 1989-09-29 1989-09-29 Giant magnetostrictive alloy and actuator for micro displacement control

Publications (2)

Publication Number Publication Date
JPH03115540A JPH03115540A (en) 1991-05-16
JP2848643B2 true JP2848643B2 (en) 1999-01-20

Family

ID=17232794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1252123A Expired - Lifetime JP2848643B2 (en) 1989-09-29 1989-09-29 Giant magnetostrictive alloy and actuator for micro displacement control

Country Status (1)

Country Link
JP (1) JP2848643B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005087963A1 (en) * 2004-03-11 2005-09-22 Japan Science And Technology Agency Bulk solidified quenched material and process for producing the same
CN113432521A (en) * 2021-06-11 2021-09-24 北京奥特美克科技股份有限公司 High-precision displacement sensor
CN113444898A (en) * 2021-06-11 2021-09-28 北京奥特美克科技股份有限公司 Preparation method of micro displacement sensor sensitive element waveguide wire

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5364798A (en) * 1976-11-19 1978-06-09 Shingijutsu Kaihatsu Jigyodan Electric magntostrictive convertor

Also Published As

Publication number Publication date
JPH03115540A (en) 1991-05-16

Similar Documents

Publication Publication Date Title
JP4471249B2 (en) Magnetic material
US20070183921A1 (en) Bulk solidified quenched material and process for producing the same
JP3466481B2 (en) Giant magnetostrictive material
US20030010405A1 (en) Magnetostrictive devices and methods using high magnetostriction, high strength fega alloys
EP0361969B1 (en) Super-magnetostrictive alloy
JP3452210B2 (en) Manufacturing method of magnetostrictive material
JP2002069596A5 (en)
Jiles et al. Magnetization and magnetostriction in terbium–dysprosium–iron alloys
US8308874B1 (en) Magnetostrictive materials, devices and methods using high magnetostriction, high strength FeGa and FeBe alloys
JP2848643B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control
JPH03183738A (en) Rare earth-cobalt series supermagnetostrictive alloy
US6451131B1 (en) Terbium-dysprosium-iron magnetostrictive materials and devices using these materials
US5223046A (en) Super-magnetostrictive alloy
JP3354183B2 (en) Magnetostrictive material and magnetostrictive actuator using the same
JPH0630295B2 (en) permanent magnet
JP2894976B2 (en) Alloy magnetic material excellent in coercive force and residual magnetization, method for producing the same, and use thereof
JPH0851007A (en) Permanent magnet and production thereof
JP2000038643A (en) Magnetostrictive material
JP3200137B2 (en) Giant magnetostrictive alloy
JP3313386B2 (en) Giant magnetostrictive alloy and magneto-mechanical mutation conversion device
JP2006213984A (en) Super-magnetostrictive material and manufacturing method therefor
JP2791564B2 (en) Magnetostrictive material
JPH0436401A (en) Manufacture of super magnetostrictive material
JP3385667B2 (en) Iron-terbium-based magnetostrictive material and method for producing the same
JP2877365B2 (en) Giant magnetostrictive alloy and actuator for micro displacement control

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071106

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081106

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091106

Year of fee payment: 11

EXPY Cancellation because of completion of term