JP2894976B2 - Alloy magnetic material excellent in coercive force and residual magnetization, method for producing the same, and use thereof - Google Patents

Alloy magnetic material excellent in coercive force and residual magnetization, method for producing the same, and use thereof

Info

Publication number
JP2894976B2
JP2894976B2 JP29433495A JP29433495A JP2894976B2 JP 2894976 B2 JP2894976 B2 JP 2894976B2 JP 29433495 A JP29433495 A JP 29433495A JP 29433495 A JP29433495 A JP 29433495A JP 2894976 B2 JP2894976 B2 JP 2894976B2
Authority
JP
Japan
Prior art keywords
alloy
magnetic material
phase
less
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29433495A
Other languages
Japanese (ja)
Other versions
JPH08296006A (en
Inventor
勇 洙 趙
潤 培 金
昌 錫 金
澤 基 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KANKOKU HYOJUN KAGAKU KENKYUIN
Original Assignee
KANKOKU HYOJUN KAGAKU KENKYUIN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KANKOKU HYOJUN KAGAKU KENKYUIN filed Critical KANKOKU HYOJUN KAGAKU KENKYUIN
Publication of JPH08296006A publication Critical patent/JPH08296006A/en
Application granted granted Critical
Publication of JP2894976B2 publication Critical patent/JP2894976B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Hard Magnetic Materials (AREA)
  • Continuous Casting (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、高い残留磁化(B
r=1.2T)を表わす希土類磁性材、その製造方法及
びその用途に関するものである。本明細書においてRE
(Rare Earth)は希土類元素を表わすもので
あり、Ce,Pr,Nd,Sm,Eu,Gd,Tb,D
y,Ho,Er,Tm,Yb,Lu,Yのうち1または
2以上の組合せを意味する。また、Mは高融点元素であ
るNb,Mo,V,WまたはTaを表わすものであり、
そのうち何れかの1または2以上の組合せを意味する。
TECHNICAL FIELD The present invention relates to a high remanent magnetization (B
The present invention relates to a rare earth magnetic material exhibiting (r = 1.2T), a method for producing the same, and a use thereof. In this specification, RE
(Rare Earth) represents a rare earth element, and includes Ce, Pr, Nd, Sm, Eu, Gd, Tb, D
It means one or a combination of two or more of y, Ho, Er, Tm, Yb, Lu, and Y. M represents a high melting point element such as Nb, Mo, V, W or Ta;
One or a combination of two or more thereof is meant.

【0002】[0002]

【従来の技術】高性能希土類磁性材の場合、希土類元素
含有量が高いため経済性及び化学的安定性が劣るのが問
題点として指摘されている。従って最近、RE含有量を
5at%以下に減少させたRE−Fe−B磁性材の開発
が活発に進められている。最近までに開発された低希土
類元素含有RE−Fe−B磁性材は、大韓民国公開特許
公報第94−700735号に開示されたとおり、準安
定磁性相であるFeB基地(matrix)に小量の
REFe14Bを析出させた超微細結合合金であり、
高い残留磁化(Br=1.2T)を表わし、高エネルギ
ー等方性永久磁石,磁気記録媒体及び広帯域超高周波吸
収への応用の可能性を提示した。
2. Description of the Related Art It has been pointed out that a high-performance rare earth magnetic material has a low content of rare earth elements, resulting in poor economic efficiency and chemical stability. Therefore, recently, the development of RE-Fe-B magnetic materials in which the RE content is reduced to 5 at% or less has been actively promoted. As disclosed in Korean Patent Publication No. 94-700735, a low rare earth element-containing RE-Fe-B magnetic material developed until recently has a small amount of Fe 3 B matrix, which is a metastable magnetic phase. Is an ultrafine bonded alloy in which RE 2 Fe 14 B is precipitated,
It exhibits high remanent magnetization (Br = 1.2T) and suggests its application to high energy isotropic permanent magnets, magnetic recording media and broadband ultra-high frequency absorption.

【0003】[0003]

【発明が解決しようとする課題】しかし、この開発され
た合金も残留磁化の面で未だ充分でなく、一層の改善が
望まれていた。
However, the developed alloy is still insufficient in terms of remanent magnetization, and further improvement has been desired.

【0004】[0004]

【課題を解決するための手段】本発明は低RE含有RE
−Fe−B合金磁性材に関するものであって、より詳し
くはα−Feまたはα−(Fe,Co)軟磁性基地相
(Matrix phase)に小量のRE2 Fe14BまたはRE2
(Fe,Co)14Bの硬磁性相を析出させたα−Fe基
RE−Fe−B超微細結晶粒合金磁性材、その製造方法
及びその利用に関するものである。
SUMMARY OF THE INVENTION The present invention provides a low RE content RE.
-Fe-B alloy magnetic material, and more specifically, a small amount of RE 2 Fe 14 B or RE 2 in α-Fe or α- (Fe, Co) soft magnetic matrix phase.
The present invention relates to an α-Fe-based RE-Fe-B ultrafine crystal grain alloy magnetic material in which a hard magnetic phase of (Fe, Co) 14 B is precipitated, a method for producing the same, and use thereof.

【0005】このような低REのRE−Fe−B合金が
高残留磁化を表わす原因は、軟磁性相と硬磁性相との間
の磁気的相互作用に起因するものと考えられる。かかる
合金からより高い残留磁化を得るための方案としては、
軟磁性相の磁化を増加させる必要がある。従って、本発
明者等はFe3 Bより磁化の大きいα−Feを主相とす
るRE−Fe−B超微細結晶性合金の発明を意図するよ
うになった。
It is considered that the reason why such a low RE RE-Fe-B alloy exhibits high remanence is due to magnetic interaction between the soft magnetic phase and the hard magnetic phase. To obtain higher remanent magnetization from such alloys,
It is necessary to increase the magnetization of the soft magnetic phase. Therefore, the present inventors have come to intend to invent a RE-Fe-B ultrafine crystalline alloy having α-Fe having a larger magnetization than Fe 3 B as a main phase.

【0006】本発明の目的は従来の低REのRE−Fe
−B磁石の基地相(Matrix phase)を変化させて磁気特
性を改善し、経済性を高めさせたα−Fe基RE−Fe
−B超微細結晶粒合金磁性材及びその製造方法を提供す
ることにある。
It is an object of the present invention to provide a conventional low RE RE-Fe.
Α-Fe-based RE-Fe with improved magnetic properties and improved economy by changing the matrix phase of -B magnet
-B Ultra-fine grain alloy magnetic material and a method for producing the same.

【0007】本発明によるα−Fe基RE−Fe−B超
微細結晶粒合金磁性材は、体心立方格子構造を有する軟
磁性相を主相とし、正方晶構造を有する硬磁性相が散在
する合金であって、REx Fey Coz u v Cuw
の組成を有する。ここにMは高融点元素であるNb,M
o,V,WまたはTaのうち1または2以上の元素であ
り、x=5at%以下,y=90at%以下,z=25
at%以下,u=15at%以下,v=5at%以下,
w=5at%以下を表わす。そして軟磁性相はα−Fe
またはその一部をCoに置換したα−(Fe,Co)で
あり、硬磁性相はRE2 Fe14BまたはRE2 (Fe,
Co)14Bであるのが好ましい。
[0007] The α-Fe-based RE-Fe-B ultrafine crystal grain alloy magnetic material according to the present invention has a soft magnetic phase having a body-centered cubic lattice structure as a main phase and scattered hard magnetic phases having a tetragonal structure. an alloy, RE x Fe y Co z B u M v Cu w
Having the following composition: Here, M is a high melting point element Nb, M
one, two or more of o, V, W or Ta, x = 5 at% or less, y = 90 at% or less, z = 25
at% or less, u = 15 at% or less, v = 5 at% or less,
w = 5 at% or less. And the soft magnetic phase is α-Fe
Or α- (Fe, Co) in which a part thereof is substituted by Co, and the hard magnetic phase is RE 2 Fe 14 B or RE 2 (Fe,
Co) 14 B is preferred.

【0008】本発明に係るα−Fe基RE−Fe−B超
微細結晶粒合金磁性材の製造法は、RE(希土類元
素),Fe,Co,B,M(高融点元素)及びCuを所
定の割合で含有する合金の溶湯から、非酸化性雰囲気下
に急速凝固法により非晶質合金を製造した後、500℃
〜800℃で熱処理するものである。これによりα−F
eまたはその一部をCoに置換したα−(Fe,Co)
の軟磁性基地相と、小量のRE2 Fe14BまたはRE2
(Fe,Co)14Bの硬磁性相を有する超微細結晶粒磁
性合金を得ることができる。以下、本発明の内容をより
詳しく記述する。
[0008] The method for producing an α-Fe-based RE-Fe-B ultrafine grain alloy magnetic material according to the present invention is characterized in that RE (rare earth element), Fe, Co, B, M (high melting point element) and Cu are specified. A non-oxidizing atmosphere is used to produce an amorphous alloy from a molten alloy containing at a rate of
Heat treatment is performed at ~ 800 ° C. This gives α-F
α- (Fe, Co) wherein e or a part thereof is substituted with Co
Soft magnetic base phase and a small amount of RE 2 Fe 14 B or RE 2
An ultrafine grain magnetic alloy having a (Fe, Co) 14 B hard magnetic phase can be obtained. Hereinafter, the contents of the present invention will be described in more detail.

【0009】本発明を完成するに先立って、まずα−F
eの基地相にRE2 Fe14Bが析出可能なように、従来
の低RE含有RE−Fe−B合金組成におけるBの含有
量を20at%以下に減少させた組成のRE−Fe−B
合金を試作し、その溶湯から急速凝固法により非晶質相
に製造した後、これを熱処理して得た試料について相変
化及び磁気特性を調査した。
Prior to completing the present invention, first, α-F
RE-Fe-B having a composition in which the B content in the conventional low RE-containing RE-Fe-B alloy composition is reduced to 20 at% or less so that RE 2 Fe 14 B can be precipitated in the base phase of e.
An alloy was experimentally manufactured, and an amorphous phase was manufactured from the molten metal by a rapid solidification method, and then a phase change and magnetic properties of a sample obtained by heat treatment were investigated.

【0010】X線回析の結果、B含有量の高い場合は主
相はFe3 Bとなるが、B含有量の低い場合、主相はα
−Feとなり、RE2 Fe14Bが小量形成された合金組
織を呈する。しかし結晶粒が粗大であるためか磁気的特
性が低く、その改善が必要であった。
As a result of X-ray diffraction, when the B content is high, the main phase is Fe 3 B, but when the B content is low, the main phase is α.
-Fe, which indicates an alloy structure in which RE 2 Fe 14 B is formed in a small amount. However, the magnetic properties were low probably because of the coarse crystal grains, and the improvement was necessary.

【0011】このような結果を改善するために、Feに
対する固溶度が非常に低いので結晶化初期にα−Fe核
生成速度を増加させるものと判断されるCuを小量添加
し、結晶粒成長を抑制するものと判断される高融点元素
であるMo,Nb,V,W,Taを添加した低RE含有
RE−Fe−B−M−Cu(MはMo,Nb,V,Wま
たはTaのうち、いずれかの1または2以上をいう)合
金を設計し、急速凝固法(または機械的合金法)を利用
して非晶質相に改質した。
In order to improve such a result, a small amount of Cu, which is considered to increase the α-Fe nucleation rate in the early stage of crystallization because of its very low solid solubility in Fe, is added to the crystal grains. Low RE-containing RE-Fe-B-M-Cu (M is Mo, Nb, V, W or Ta) to which Mo, Nb, V, W, and Ta, which are high-melting elements determined to suppress growth, are added. Among them, an alloy was designed and modified into an amorphous phase using a rapid solidification method (or a mechanical alloying method).

【0012】その結果RE−Fe−B−M−Cu合金の
磁気特性のうち保磁力(iHc)は向上したが、磁気履
歴曲線におけるヒステリシスループの角形比(Br/B
s)が低く残留磁化(Br)は向上しなかった。そこで
その改善を図るべく、結晶粒を更に微細化させて軟磁性
相の磁化を向上させるためにα−FeをCo/Fe=1
/4までCoで置換した低RE含有RE−(Fe,C
o)−B−M−Cu(M=Mo,Nb,V,W,Ta)
合金を設計し、その溶湯から急速凝固法,または機械的
合金法を利用して非酸化性雰囲気下で非晶質相に製造し
たあと、500〜800℃で熱処理して試料を製造し、
これの磁気特性調査及び相分析を体系的に行なった。
As a result, among the magnetic properties of the RE-Fe-BM-Cu alloy, the coercive force (iHc) was improved, but the squareness ratio (Br / B) of the hysteresis loop in the magnetic hysteresis curve was improved.
s) was low and the residual magnetization (Br) did not improve. In order to improve this, α-Fe is changed to Co / Fe = 1 in order to further refine the crystal grains and improve the magnetization of the soft magnetic phase.
RE-containing RE- (Fe, C
o) -BM-Cu (M = Mo, Nb, V, W, Ta)
An alloy is designed and manufactured from the melt into an amorphous phase using a rapid solidification method or a mechanical alloying method in a non-oxidizing atmosphere, and then heat-treated at 500 to 800 ° C. to prepare a sample.
The magnetic properties and phase analysis of this were systematically conducted.

【0013】これらの試料の合金の相を分析した結果、
α−(Fe,Co)基地相にRE2(Fe,Co)14
が析出していることが確認され、また、Coの添加で保
磁力の減少なしに残留磁化が増加していることが確認さ
れた。即ち本発明の磁性合金は1.2T以上の高い残留
磁化と、0.65以上の高い角形比(Br/Bs)を有
している。
As a result of analyzing the phases of the alloys of these samples,
RE 2 (Fe, Co) 14 B in α- (Fe, Co) base phase
Was confirmed to have precipitated, and it was confirmed that the addition of Co increased the residual magnetization without a decrease in coercive force. That is, the magnetic alloy of the present invention has a high residual magnetization of 1.2 T or more and a high squareness ratio (Br / Bs) of 0.65 or more.

【0014】一方、ボロンの含有量を更に減少させると
残留磁化が上昇して最大磁気エネルギー積[(BH)m
ax]が大きく増加し、ボロン含有量6at%付近で既
存のFe3 B基のRE−Fe−B合金より優れた磁気特
性を表わす。
On the other hand, when the boron content is further reduced, the residual magnetization increases and the maximum magnetic energy product [(BH) m
ax] is greatly increased, and exhibits a magnetic property superior to that of the existing Fe 3 B-based RE-Fe-B alloy at a boron content of about 6 at%.

【0015】本発明の合金磁性材は体心立方格子構造を
有する軟磁性相を主相とし、そこに正方晶構造を有する
小量の硬磁性相が生成されている。且つ、鋭意研究の結
果、REx Fey Coz u v Cuw (但しMはN
b,Mo,V,W,Taのうち1または2以上の高融点
元素)の成分組成においてx=5at%以下,y=90
at%以下,z=25at%以下,u=15at%以
下,v=5at%以下,W=5at%以下のものが好ま
しく、その組織は、軟磁性相はα−Feまたはα−(F
e,Co)、硬磁性相はRE2 Fe14BまたはRE
2 (Fe,Co)14Bのものが好ましいことが明らかに
なった。なお、本発明に係る合金は、これを蒸着または
スパッタリングすることにより、磁気記録媒体の製造に
利用可能である。以下に、本発明の具体的な比較例及び
実施例とその物性分析の結果を詳述する。
The alloy magnetic material of the present invention has a soft magnetic phase having a body-centered cubic lattice structure as a main phase, in which a small amount of a hard magnetic phase having a tetragonal structure is formed. And a result of intensive studies, RE x Fe y Co z B u M v Cu w ( where M is N
b, Mo, V, W, Ta, and one or more high melting point elements) in the composition of x = 5 at% or less and y = 90
At% or less, z = 25 at% or less, u = 15 at% or less, v = 5 at% or less, and W = 5 at% or less. The structure of the soft magnetic phase is α-Fe or α- (F
e, Co), the hard magnetic phase is RE 2 Fe 14 B or RE
2 (Fe, Co) 14 B was found to be preferable. The alloy according to the present invention can be used for producing a magnetic recording medium by vapor deposition or sputtering. Hereinafter, specific comparative examples and examples of the present invention and the results of physical property analysis thereof will be described in detail.

【0016】[0016]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(比較例1) 希土類元素にNdを用い、α−Feの基
地相にNd2 Fe14Bが析出するよう、既存のNd−F
e−B合金組成におけるB含有量を19at%に減らし
たNd4 Fe7719なる組成のNd−Fe−B合金を設
定し、その溶湯から非酸化性雰囲気下に単ロールによる
急速凝固法により非晶質合金を製造した後、600℃で
熱処理して比較例試料1を作成した。
(Comparative Example 1) Nd is used as a rare earth element, and an existing Nd-F is used so that Nd 2 Fe 14 B precipitates in the α-Fe base phase.
An Nd—Fe—B alloy having a composition of Nd 4 Fe 77 B 19 in which the B content in the e—B alloy composition was reduced to 19 at% was set, and the molten metal was subjected to a rapid solidification method using a single roll under a non-oxidizing atmosphere. After manufacturing the amorphous alloy, heat treatment was performed at 600 ° C. to prepare Comparative Example Sample 1.

【0017】(比較例2) 比較例1におけるNd含有
量はそのまま、B含有量を10.5at%に低めてNd
4 Fe85.510.5の組成に変更し、その他は比較例1と
同様にして比較例試料2を作成した。
(Comparative Example 2) The Nd content in Comparative Example 1 was kept as it was, and the B content was reduced to 10.5 at% to reduce the Nd content.
Comparative Example Sample 2 was prepared in the same manner as Comparative Example 1 except that the composition was changed to 4 Fe 85.5 B 10.5 .

【0018】(比較例3〜5) 比較例1におけるNd
含有量はそのまま、B含有量を10at%とし、それに
Cuを1at%と、高融点元素であるMo,Nbまたは
Vをそれぞれ3at%ずつ添加した組成とし、製造条件
は比較例1と同一にして比較例試料3,試料4,試料5
を作成した。
(Comparative Examples 3 to 5) Nd in Comparative Example 1
The B content was set to 10 at%, the Cu content was changed to 1 at%, and the high melting point element Mo, Nb or V was added at 3 at% each. The manufacturing conditions were the same as in Comparative Example 1. Comparative Example Sample 3, Sample 4, Sample 5
It was created.

【0019】(実施例1〜4) 比較例3におけるN
d,B,Mo及びCuの含有量はそのまま、Feの一部
をCoで、Co/Feがそれぞれ1/19.5(実施例
1)、1/9.25(実施例2)、1/5.83(実施
例3)及び1/4.13(実施例4)になるように置換
してNd4 (Fe,Co)8210Mo3 Cu1 の組成と
し、製造条件は比較例1と同一にして実施例試料1〜試
料4を作成した。
Examples 1 to 4 N in Comparative Example 3
With the contents of d, B, Mo and Cu unchanged, a part of Fe is Co, and Co / Fe is 1 / 19.5 (Example 1), 1 / 9.25 (Example 2), 1 / Substitution was made to be 5.83 (Example 3) and 1 / 4.13 (Example 4) to obtain a composition of Nd 4 (Fe, Co) 82 B 10 Mo 3 Cu 1 , and the manufacturing conditions were Comparative Example 1. Example samples 1 to 4 were prepared in the same manner as described above.

【0020】(実施例5及び6) 高融点元素をMoか
らそれぞれNb及びVに代え、その他の成分組成及び製
造条件は実施例2と同様にして、実施例試料5及び試料
6を作成した。
Examples 5 and 6 Samples 5 and 6 were prepared in the same manner as in Example 2 except that the high melting point element was changed from Mo to Nb and V, respectively, and the other component compositions and production conditions were the same as in Example 2.

【0021】(実施例7及び8) 実施例2における
B,Mo及びCuの含有量はそのままNd及びCoの含
有量を多少変化させ、製造条件は実施例2と同様にして
実施例試料7及び試料8を作成した。
(Examples 7 and 8) The contents of B, Mo, and Cu in Example 2 were slightly changed in the contents of Nd and Co, and the production conditions were the same as in Example 2 and the samples of Example 7 and 8 were used. Sample 8 was prepared.

【0022】(実施例9〜11) 実施例5におけるN
b及びCuの含有量はそのままとしBの含有量を6at
%に低め、Nd及びCoの含有量を多少変化させ、製造
条件は実施例2と同様にして実施例試料9〜試料11を
作成した。
Embodiments 9 to 11 N in Embodiment 5
The content of B is 6 at, while the content of b and Cu is not changed.
%, The contents of Nd and Co were slightly changed, and the production conditions were the same as in Example 2 to prepare Example Samples 9 to 11.

【0023】以上の比較例1〜5及び実施例1〜11に
係る各試料の成分組成と金属組織、それぞれの磁気特性
の試験結果を表1にまとめて示す。
Table 1 shows the test results of the component compositions, metal structures, and magnetic properties of the samples according to Comparative Examples 1 to 5 and Examples 1 to 11 described above.

【0024】比較例1及び2の結果として、X線回析分
析の結果、B含有量が高い比較例1の場合は、主相がF
3 Bとなり磁気特性が改善されていない。Bの含有量
が低い比較例2の場合、主相がα−Feとなり、Nd2
Fe14Bが小量形成された微細構造を表わしてはいる
が、結晶粒が粗大であり磁気的特性(B2 =1.21
T,iHc=1.2KOe)が低かった。 比較例3〜
5では、保磁力(iHc)は2.1ないし2.7に向上
されたが、磁気履歴曲線の角形比が低いので残留磁化
(Br)の向上はなされなかった。
As a result of Comparative Examples 1 and 2, as a result of X-ray diffraction analysis, in Comparative Example 1 having a high B content, the main phase was F.
e 3 B, and the magnetic properties were not improved. In the case of Comparative Example 2 in which the content of B was low, the main phase was α-Fe, and Nd 2
Although it shows a fine structure in which a small amount of Fe 14 B is formed, the crystal grains are coarse and the magnetic properties (B 2 = 1.21)
T, iHc = 1.2 KOe). Comparative Examples 3 to
In No. 5, the coercive force (iHc) was improved to 2.1 to 2.7, but the remanence (Br) was not improved because the squareness ratio of the magnetic hysteresis curve was low.

【0025】実施例1〜4の結果、α−(Fe,Co)
基地相にNd2 (Fe,Co)14Bが析出した合金が得
られ、Coの添加で保磁力の減少なしに残留磁化が増加
する効果を得た。実施例5及び6の結果は、1.2以上
の高い残留磁化と、0.65以上の高い角形比(Br/
Bs)を有する磁性材を得ることができる。
As a result of Examples 1-4, α- (Fe, Co)
An alloy in which Nd 2 (Fe, Co) 14 B was precipitated in the base phase was obtained, and the effect of increasing the residual magnetization without decreasing the coercive force was obtained by adding Co. The results of Examples 5 and 6 show that a high remanent magnetization of 1.2 or more and a high squareness ratio of 0.65 or more (Br /
A magnetic material having Bs) can be obtained.

【0026】実施例7及び8の結果、やはり残留磁化が
1.2以上であり角形比が0.65以上である良好な合
金磁性材が得られた。実施例9〜11においては残留磁
化が一層向上し、最大磁気エネルギー積[(BH)ma
x]が大きく増加する優れた磁気特性を表わす合金磁性
材が得られた。
As a result of Examples 7 and 8, a good alloy magnetic material having a residual magnetization of 1.2 or more and a squareness of 0.65 or more was obtained. In Examples 9 to 11, the residual magnetization was further improved, and the maximum magnetic energy product [(BH) ma
x] was greatly increased, and an alloy magnetic material exhibiting excellent magnetic properties was obtained.

【0027】次に表1のデータに基づき、磁性合金の成
分組成と磁気特性との関係をグラフ化して示す。
Next, based on the data shown in Table 1, the relationship between the composition of the magnetic alloy and the magnetic properties is shown in a graph.

【0028】図1は希土類元素の含有量の影響を示し、
図2は比較例2を基準にB,Coの添加による影響を示
し、図3は同じく比較例2を基準に高融点元素(V)と
B,Coの添加による影響を示し、図4は同じく高融点
元素(Mo)とB,Coの添加による影響を示してい
る。
FIG. 1 shows the effect of the content of the rare earth element,
FIG. 2 shows the effect of adding B and Co on the basis of Comparative Example 2, FIG. 3 shows the effect of adding the high melting point element (V) and B and Co on the basis of Comparative Example 2, and FIG. This shows the effect of the addition of the high melting point element (Mo) and B and Co.

【0029】また、図5は他の成分の含有量が一定なと
きの、FeとCoとの構成比の変化による磁気特性への
影響を示し、図6は他の成分の含有量が一定なときの、
希土類元素(Nd)と(Fe0.9 Co0.1 )の構成比変
化による磁気特性への影響を示したものである。
FIG. 5 shows the effect on magnetic properties due to a change in the composition ratio of Fe and Co when the content of other components is constant, and FIG. 6 shows the case where the content of other components is constant. Sometimes,
It shows the effect on magnetic properties due to a change in the composition ratio of the rare earth element (Nd) and (Fe 0.9 Co 0.1 ).

【0030】(実施例12〜15)実施例2の試料と成
分組成同一の合金(Nd=4at%,Fe=14at
%,Co=8at%,B=10at%,Mo=3at
%,Cu=1at%)について実施例2と同様にして急
速凝固法により非晶質化後、熱処理温度だけを620℃
から700℃まで変化させながら本発明の磁性合金を作
成し、その磁気特性値をグラフ化して図7に示した。
Examples 12 to 15 Alloys having the same composition as the sample of Example 2 (Nd = 4 at%, Fe = 14 at)
%, Co = 8 at%, B = 10 at%, Mo = 3 at%
%, Cu = 1 at%) after amorphization by the rapid solidification method in the same manner as in Example 2, and then only the heat treatment temperature was 620 ° C.
The magnetic alloy of the present invention was prepared while changing the temperature from 700 ° C. to 700 ° C., and the magnetic characteristic values were graphed in FIG.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【発明の効果】上述の如く、本発明によるα−Fe基R
E−Fe−B超微細結晶粒磁性合金は既存のFe3 B基
低RE含有磁石に比べて磁気的特性及び熱的、化学的安
定性が改善された。且つ、Bの含有量減少に因り経済性
が改善された。
As described above, the α-Fe group R according to the present invention
E-Fe-B ultra-fine grain magnetic alloys have improved magnetic properties and thermal and chemical stability compared to existing Fe 3 B-based low RE content magnets. In addition, economy was improved due to the decrease in the B content.

【0033】なお本発明の磁性合金は等方性ボンド磁石
のみならずハードディスク、ディスケットまたはテープ
の如き高密度磁気記録媒体、発電機、モーター、及び広
帯域超高周波電波吸収体等に広範囲に利用できる非常に
有用な素材である。また、本発明の磁性合金は、ゴムま
たはプラスチック物質と混合して永久磁石を作り得るの
は当然のことである。
The magnetic alloy of the present invention can be widely used not only for isotropic bonded magnets but also for high-density magnetic recording media such as hard disks, diskettes or tapes, generators, motors, and broadband ultra-high frequency radio wave absorbers. It is a useful material for Also, it is obvious that the magnetic alloy of the present invention can be mixed with a rubber or plastic substance to form a permanent magnet.

【0034】以上において、本発明は記載された具体例
についてのみ詳しく説明されたが、本発明の技術的思想
範囲内で多様な変形及び修正が可能であることは、当業
者において明らかなことであり、このような変形および
修正が記載された特許請求の範囲に属するのは当然なこ
とである。
In the above, the present invention has been described in detail only with respect to the specific examples described. However, it will be apparent to those skilled in the art that various changes and modifications can be made within the technical idea of the present invention. It is natural that such changes and modifications fall within the scope of the appended claims.

【図面の簡単な説明】[Brief description of the drawings]

【図1】磁性合金の成分組成(とくに希土類元素)と磁
気特性との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the composition of a magnetic alloy (especially a rare earth element) and magnetic properties.

【図2】磁性合金の成分組成(とくにB及びCo)と磁
気特性との関係を示すグラフである。
FIG. 2 is a graph showing the relationship between the composition of a magnetic alloy (particularly, B and Co) and magnetic properties.

【図3】磁性合金の成分組成(とくに高融点元素V)と
磁気特性との関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the component composition of a magnetic alloy (particularly, high melting point element V) and magnetic properties.

【図4】磁性合金の成分組成(とくに高融点元素Mo)
と磁気特性との関係を示すグラフである。
FIG. 4 Composition of magnetic alloy (particularly high melting point element Mo)
6 is a graph showing the relationship between the magnetic properties and the magnetic properties.

【図5】磁性合金の成分組成(とくにFeとCoとの構
成比)と磁気特性との関係を示すグラフである。
FIG. 5 is a graph showing the relationship between the composition of a magnetic alloy (particularly, the composition ratio of Fe and Co) and magnetic properties.

【図6】磁性合金の成分組成(とくに希土類元素とF
e,Coの構成比)と磁気特性との関係を示すグラフで
ある。
FIG. 6 shows the composition of components of a magnetic alloy (particularly, rare earth elements and F
6 is a graph showing the relationship between the magnetic characteristics and the composition ratio of e and Co).

【図7】本発明に係る磁性合金の、非晶質化後の熱処理
温度と磁気特性との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the heat treatment temperature after amorphization and the magnetic properties of the magnetic alloy according to the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 金 澤 基 大韓民国大田広域市儒城区新城洞152ド ゥレアパートメント102棟1006号 (56)参考文献 特開 平1−149940(JP,A) (58)調査した分野(Int.Cl.6,DB名) C22C 38/00 303 B22D 11/06 360 C21D 6/00 H01F 1/14 C22C 38/16 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Moto Kanazawa 152-do, Shinseong-dong, Yuseong-gu, Daejeon, Republic of Korea No. 102, No. 1006, Apartment No. 1006 (56) References JP-A-1-149940 (JP, A) (58) 6) Field surveyed (Int.Cl. 6 , DB name) C22C 38/00 303 B22D 11/06 360 C21D 6/00 H01F 1/14 C22C 38/16

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 希土類合金磁性材において、立方晶系の
体心立方格子構造を有する軟磁性相を主相とし、正方晶
系の構造を有する硬磁性相が散在する組織の合金であっ
て、REx Fey Coz u v Cuw の組成を有し、
上記においてRE(Rare Earth)は希土類元素Ce,P
r,Nd,Sm,Eu,Gd,Tb,Dy,Ho,E
r,Tm,Yb,Lu,Yのうち何れかの1または2以
上の組合せを表わし、Mは高融点元素であるNb,M
o,V,WまたはTaのうち何れかの1または2以上の
元素であり、x=5at%以下、y=90at%以下、
z=25at%以下、u=15at%以下、v=5at
%以下及びw=5at%以下であり、且つ、軟磁性相が
α−FeまたはFeのうち一部をCoに置換したα−
(Fe,Co)であり、硬磁性相がRE2 Fe14Bまた
はRE2 (Fe,Co)14Bであることを特徴とする保
磁力及び残留磁化の優れた超微細結晶粒合金磁性材。
1. A rare earth alloy magnetic material comprising a soft magnetic phase having a cubic body-centered cubic lattice structure as a main phase and a hard magnetic phase having a tetragonal structure dispersed therein. has a composition of RE x Fe y Co z B u M v Cu w,
In the above, RE (Rare Earth) is a rare earth element Ce, P
r, Nd, Sm, Eu, Gd, Tb, Dy, Ho, E
r, Tm, Yb, Lu, or Y represents one or a combination of two or more, and M is a high melting element Nb, M
o, V, W or one or more elements of Ta, x = 5 at% or less, y = 90 at% or less,
z = 25 at% or less, u = 15 at% or less, v = 5 at%
% And w = 5 at% or less, and the soft magnetic phase is α-Fe or α-Fe in which a part of Fe is substituted with Co.
(Fe, Co), wherein the hard magnetic phase is RE 2 Fe 14 B or RE 2 (Fe, Co) 14 B, an ultrafine crystal grain alloy magnetic material excellent in coercive force and residual magnetization.
【請求項2】 FeとCoとの置換比率がCo/Fe=
1/4以下である、請求項1に記載の合金磁性材。
2. The substitution ratio between Fe and Co is Co / Fe =
The alloy magnetic material according to claim 1, wherein the ratio is 1/4 or less.
【請求項3】 REx Fey Coz u v Cuw の成
分組成(REは希土類元素Ce,Pr,Nd,Sm,E
u,Gd,Tb,Dy,Ho,Er,Tm,Yb,L
u,Yのうち何れかであり、Mは高融点元素Nb,M
o,V,WまたはTaのうち何れかである)の合金の溶
湯から、非酸化性雰囲気下に急速凝固法により非晶質合
金を製造後500〜800℃で熱処理することを特徴と
する、α−FeまたはFeのうち一部をCoに置換した
α−(Fe,Co)の軟磁性相を主相とし正方晶系の構
造を有しRE2 Fe14BまたはRE2 (Fe,Co)14
Bである硬磁性相が散在する組織を呈する保磁力及び残
留磁化の優れた超微細結晶粒合金磁性材の製造方法。
3. The composition of RE x Fe y Co z Bu M v Cu w (RE is a rare earth element Ce, Pr, Nd, Sm, E
u, Gd, Tb, Dy, Ho, Er, Tm, Yb, L
u, Y, and M is a high melting point element Nb, M
o, V, W, or Ta) from a melt of an alloy by a rapid solidification method in a non-oxidizing atmosphere, followed by heat treatment at 500 to 800 ° C. RE 2 Fe 14 B or RE 2 (Fe, Co) having a tetragonal structure with α- (Fe, Co) soft magnetic phase in which α-Fe or Fe is partially substituted with Co as a main phase 14
A method for producing an ultrafine grained alloy magnetic material having excellent coercive force and remanent magnetization exhibiting a structure in which a hard magnetic phase B is scattered.
【請求項4】 FeとCoとの置換比率がCo/Fe=
1/4以下である、請求項3に記載の合金磁性材の製造
方法。
4. The method according to claim 1, wherein the substitution ratio between Fe and Co is Co / Fe =
The method for producing an alloy magnetic material according to claim 3, wherein the ratio is 1/4 or less.
【請求項5】 請求項1または請求項2に記載の合金磁
性材と、ゴムまたはプラスチック物質とを混合して製造
されることを特徴とする永久磁石。
5. A permanent magnet produced by mixing the alloy magnetic material according to claim 1 with a rubber or plastic substance.
【請求項6】 請求項1または請求項2に記載の合金磁
性材を利用した磁気記録媒体。
6. A magnetic recording medium using the alloy magnetic material according to claim 1 or 2.
【請求項7】 請求項1または請求項2に記載の合金磁
性材を利用した広帯域電波吸収体。
7. A broadband radio wave absorber using the alloy magnetic material according to claim 1 or 2.
JP29433495A 1994-11-12 1995-11-13 Alloy magnetic material excellent in coercive force and residual magnetization, method for producing the same, and use thereof Expired - Fee Related JP2894976B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1994-29717 1994-11-12
KR19940029717 1994-11-12

Publications (2)

Publication Number Publication Date
JPH08296006A JPH08296006A (en) 1996-11-12
JP2894976B2 true JP2894976B2 (en) 1999-05-24

Family

ID=19397774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29433495A Expired - Fee Related JP2894976B2 (en) 1994-11-12 1995-11-13 Alloy magnetic material excellent in coercive force and residual magnetization, method for producing the same, and use thereof

Country Status (3)

Country Link
JP (1) JP2894976B2 (en)
KR (1) KR0168495B1 (en)
CN (1) CN1130288A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW503409B (en) * 2000-05-29 2002-09-21 Daido Steel Co Ltd Isotropic powdery magnet material, process for preparing and resin-bonded magnet
KR100521409B1 (en) * 2005-05-30 2005-10-13 미리넷 주식회사 Knitting machine, knitted fabric and socks there by
KR100763496B1 (en) * 2006-05-02 2007-10-04 학교법인연세대학교 Two-phase metallic glasses with multi-pass deformation properties
CN103741008B (en) * 2013-12-27 2016-05-11 青岛云路先进材料技术有限公司 A kind of preparation method of iron-base nanometer crystal alloy
CN103730227B (en) * 2014-01-28 2016-04-27 成都银河磁体股份有限公司 A kind of nano biphase isotropic composite permanent magnet and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0768604B2 (en) * 1987-12-04 1995-07-26 日立金属株式会社 Fe-based magnetic alloy

Also Published As

Publication number Publication date
KR0168495B1 (en) 1999-01-15
JPH08296006A (en) 1996-11-12
KR960019348A (en) 1996-06-17
CN1130288A (en) 1996-09-04

Similar Documents

Publication Publication Date Title
JP3437573B2 (en) Fe-Ni based soft magnetic alloy having nanocrystalline structure
JPH08162312A (en) Permanent magnet material, permanent magnet and manufacture of permanent magnet
US5800728A (en) Permanent magnetic material made of iron-rare earth metal alloy
JP3488358B2 (en) Method for producing microcrystalline permanent magnet alloy and permanent magnet powder
JP3470032B2 (en) Rare earth permanent magnet material and manufacturing method thereof
JP2894976B2 (en) Alloy magnetic material excellent in coercive force and residual magnetization, method for producing the same, and use thereof
JPH1088294A (en) Hard magnetic material
JP3411663B2 (en) Permanent magnet alloy, permanent magnet alloy powder and method for producing the same
JPH01100242A (en) Permanent magnetic material
JP3488354B2 (en) Method for producing microcrystalline permanent magnet alloy and isotropic permanent magnet powder
US6004407A (en) Hard magnetic materials and method of producing the same
JP3073807B2 (en) Iron-rare earth permanent magnet material and method for producing the same
JPH0851007A (en) Permanent magnet and production thereof
JP3469496B2 (en) Manufacturing method of magnet material
JPH07173501A (en) Permanent magnet alloy powder and production thereof
JPH1064710A (en) Isotropic permanent magnet having high magnetic flux density and manufacture thereof
JP3516820B2 (en) Alloy raw material for rare earth permanent magnet, alloy powder for rare earth permanent magnet, and method for producing rare earth permanent magnet
JP3157659B2 (en) Manufacturing method of permanent magnet powder
JP2677498B2 (en) Method for manufacturing iron-rare earth-nitrogen permanent magnet material
JP3058662B2 (en) Ultra-microcrystalline magnetic alloy
JPH11121215A (en) Manufacture of rare-earth magnetic powder
JPH09143641A (en) Hard magnetic material and its production
JPH10340806A (en) Rare earth-iron magnetic material and manufacture thereof
JP2809946B2 (en) Iron-rare earth-nitrogen permanent magnet powder
JPH024941A (en) Iron-neodymium-boron base permanent magnetic alloy containing hafnium diboride and its manufacture

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees