JP3197553B2 - Non-aqueous secondary battery - Google Patents

Non-aqueous secondary battery

Info

Publication number
JP3197553B2
JP3197553B2 JP20336390A JP20336390A JP3197553B2 JP 3197553 B2 JP3197553 B2 JP 3197553B2 JP 20336390 A JP20336390 A JP 20336390A JP 20336390 A JP20336390 A JP 20336390A JP 3197553 B2 JP3197553 B2 JP 3197553B2
Authority
JP
Japan
Prior art keywords
positive electrode
binder
temperature
heat
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP20336390A
Other languages
Japanese (ja)
Other versions
JPH0495363A (en
Inventor
修弘 古川
俊之 能間
祐司 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP20336390A priority Critical patent/JP3197553B2/en
Publication of JPH0495363A publication Critical patent/JPH0495363A/en
Application granted granted Critical
Publication of JP3197553B2 publication Critical patent/JP3197553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】TECHNICAL FIELD OF THE INVENTION

本発明はリチウム或いはリチウムイオンを可逆的に吸
蔵、放出できる材料を負極の活物質とする非水系二次電
池にかかり、特にリチウムイオンを可逆的に充放電でき
るインターカレーション型のリチウムマンガンオキサイ
ドを正極活物質として使用し、この正極に熱処理を施す
場合における前記正極に適した結着剤に関するものであ
る。
The present invention relates to a non-aqueous secondary battery in which a material capable of reversibly occluding and releasing lithium or lithium ions is used as a negative electrode active material. In particular, an intercalation type lithium manganese oxide capable of reversibly charging and discharging lithium ions is used. The present invention relates to a binder suitable for the positive electrode when used as a positive electrode active material and subjected to a heat treatment on the positive electrode.

【0002】[0002]

【従来の技術】[Prior art]

一般に非水系二次電池の正極活物質として研究されて
いる物質は、 カーボン(C)、 二酸化マンガン(MnO2)、 リチウムマンガンオキサイ(LixMnOy:3≦2y−x≦
4)、 五酸化バナジウム(V2O5)、 コバルト酸化物(CoOx) 等であり、一部実用化されている。これらの正極活物質
は、カーボンを除いて、その結晶中にリチウムイオンが
進入、脱離することによって充放電を行うインターカレ
ーション型の活物質であり、表面にリチウムイオンを吸
着、脱離することによって充放電を行う表面吸着型のカ
ーボン活物質に比べて容量が大きいという利点がある。
従って高容量の非水系二次電池の正極活物質としては、
インターカレーション型の正極活物質が有利である。と
ころが、上記インターカレーション型の正極活物質を用
いた場合に充放電の繰り返しによって正極の強度が劣化
するという問題があった。そして、インターカレーショ
ン型の正極活物質として、リチウムマンガンオキサイド
を使用した場合、充放電に起因する結晶格子の膨張収縮
が他のインターカレーション型の化合物に比して、著し
く大きいため、正極の強度劣化が顕著となる。
In general, the materials studied as positive electrode active materials for non-aqueous secondary batteries are carbon (C), manganese dioxide (MnO 2 ), and lithium manganese oxide (Li x MnO y : 3 ≦ 2y−x ≦
4), vanadium pentoxide (V 2 O 5 ), cobalt oxide (CoO x ), etc., and some of them have been put to practical use. These positive electrode active materials are intercalation-type active materials that perform charging and discharging by excluding and desorbing lithium ions into the crystal, excluding carbon, and adsorb and desorb lithium ions on the surface. Accordingly, there is an advantage that the capacity is larger than that of a surface adsorption type carbon active material which performs charging and discharging.
Therefore, as a positive electrode active material of a high capacity non-aqueous secondary battery,
Intercalation-type positive electrode active materials are advantageous. However, when the intercalation-type positive electrode active material is used, there is a problem that the strength of the positive electrode is deteriorated due to repetition of charge and discharge. When lithium manganese oxide is used as the intercalation-type positive electrode active material, the expansion and contraction of the crystal lattice due to charge and discharge are significantly larger than those of other intercalation-type compounds. Strength degradation becomes remarkable.

【0003】 即ち、充放電時のリチウムイオンの結晶中への進入、
脱離に伴い、その結晶格子が伸展、収縮し、この結果活
物質の粒子も膨張、収縮を繰り返すことが知られている
が、この際、比水系二次電池の結着剤として従来から用
いられているフッ素樹脂は、そのゴム弾性が殆ど無いが
故に、活物質の膨張、収縮によって結着性が低下し、活
物質粒子と、導電剤粒子の接触が不十分になって、正極
の利用率が低下したり、或いは正極が集電体から剥離す
る等の欠点が生じていた。
[0003] That is, lithium ions enter the crystal during charge and discharge,
It is known that the crystal lattice expands and contracts with the desorption, and as a result, the particles of the active material repeat expansion and contraction. At this time, it is conventionally used as a binder for a specific water-based secondary battery. Since the fluororesin has almost no rubber elasticity, the binding property decreases due to expansion and contraction of the active material, and the contact between the active material particles and the conductive agent particles becomes insufficient, so that the use of the positive electrode However, there have been disadvantages such as a decrease in the rate or a peeling of the positive electrode from the current collector.

【0004】 また、従来、正極の付着水を除去するために120℃近
傍で熱処理を行うことが提案されているが、熱処理温度
が低すぎると水分除去が十分でない場合がある。一方、
結着剤の耐熱温度を越えて高温で熱処理すると、水分除
去はなされるものの、結着剤が分解したり、正極活物質
と結着剤が反応してしまう、これらいずれの場合も同様
に、1サイクル目から放電終止電圧が低下するという問
題があった。
Further, conventionally, it has been proposed to perform heat treatment at around 120 ° C. to remove water adhering to the positive electrode. However, if the heat treatment temperature is too low, moisture removal may not be sufficient. on the other hand,
When heat treatment is performed at a high temperature exceeding the heat resistance temperature of the binder, moisture is removed, but the binder is decomposed or the positive electrode active material reacts with the binder. There is a problem that the discharge end voltage decreases from the cycle.

【0005】[0005]

【発明が解決しようとする課題】[Problems to be solved by the invention]

本発明が解決しようとする課題は、上記従来技術の問
題点に鑑み、リチウムマンガンオキサイドを正極活物質
として用い、前記正極の水分を除去すべく高温で熱処理
を施す場合の、結着剤としてのフッ素樹脂に改良を加
え、充放電の繰り返しによる正極強度の劣化を抑制する
と共に、十分に水分を除去せんとするものである。
The problem to be solved by the present invention, in view of the above problems of the prior art, using lithium manganese oxide as a positive electrode active material, when performing a heat treatment at a high temperature to remove moisture of the positive electrode, as a binder It is intended to improve the fluororesin to suppress deterioration of the strength of the positive electrode due to repeated charging and discharging, and to sufficiently remove water.

【0006】[0006]

【課題を解決するための手段】[Means for Solving the Problems]

本発明の非水系二次電池は、リチウムあるいはリチウ
ムイオンを可逆的に吸蔵、放出できる材料を活物質とす
る負極と、リチウムイオンを可逆的に充放電できるイン
ターカレーション型のリチウムマンガンオキサイドから
なる活物質及び結着剤を含む正極とを有し、前記結着剤
として、ゴム弾性を有し、且つ耐熱温度が200℃以上の
材料を用い、前記正極が、前記結着剤の耐熱温度以下
で、且つ水分除去が十分為される温度である少なくとも
200℃で熱処理されたものである。
The non-aqueous secondary battery of the present invention comprises a negative electrode having a material capable of reversibly occluding and releasing lithium or lithium ions as an active material, and an intercalation type lithium manganese oxide capable of reversibly charging and discharging lithium ions. A positive electrode containing an active material and a binder, having a rubber elasticity as the binder, and using a material having a heat resistance temperature of 200 ° C. or higher, wherein the positive electrode has a heat resistance temperature equal to or lower than the heat resistance temperature of the binder. And at least a temperature at which water removal is sufficiently performed.
Heat treated at 200 ° C.

【0007】 この結着剤の具体的なものとしては、例えばフッ素ゴ
ム、即ちヘキサフルオロプロピレンとフッ化ビニリデン
との共重合体を主成分とするフッ素ゴムや、トリフルオ
ロクロルエチレンとフッ化ビニリデンとの共重合体を主
成分とするフッ素ゴムが望ましい。
Specific examples of the binder include a fluororubber, that is, a fluororubber containing a copolymer of hexafluoropropylene and vinylidene fluoride as a main component, and trifluorochloroethylene and vinylidene fluoride. Fluorine rubber containing a copolymer of the above as a main component is desirable.

【0008】 上記のように、非水系二次電池の正極活物質として容
量の大きいインターカレーション型のリチウムマンガン
オキサイドからなる活物質を用いる場合に結着剤として
ゴム弾性を有する物質を使うことにより、充放電によっ
て活物質粒子が膨張、収縮しても結着性が低下すること
なく、正極活物質と導電剤、或いは正極と集電体との接
触が良好なままに保たれ、正極活物質を有効に利用する
ことが可能となる。
As described above, when a large capacity intercalation type lithium manganese oxide active material is used as a positive electrode active material of a non-aqueous secondary battery, a material having rubber elasticity is used as a binder. Even if the active material particles expand and contract due to charge and discharge, the binding property does not decrease, and the contact between the positive electrode active material and the conductive agent or between the positive electrode and the current collector is kept good. Can be used effectively.

【0009】 また、正極結着剤に耐熱温度が200℃以上の材料を使
うことにより、十分な水分除去が可能な200℃という高
温での熱処理ができる。このような高温での熱処理を施
した場合においても、結着剤の分解や、正極活物質と結
着剤との反応を抑制し、1サイクル目からの放電終止電
圧の低下を抑制できる。
In addition, by using a material having a heat resistance temperature of 200 ° C. or higher for the positive electrode binder, heat treatment can be performed at a high temperature of 200 ° C. at which sufficient water can be removed. Even when the heat treatment is performed at such a high temperature, the decomposition of the binder and the reaction between the positive electrode active material and the binder can be suppressed, and the decrease in the discharge termination voltage from the first cycle can be suppressed.

【0010】[0010]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

〔実施例1〕 化学二酸化マンガンと水酸化リチウムとを混合して熱
処理し、インターカレーション型のリチウムマンガンオ
キサイドLi0.43MnO2.11を得た。このLi0.43MnO2.11を正
極活物質とし、導電剤としてのアセチレンブラック粉
末、及び結着剤としてのヘキサフルオロプロピレンとフ
ッ化ビニリデンとの共重合体、を主成分とするゴム状弾
性を有するフッ化ゴム(耐熱温度230℃)の粉末を、重
量比で90:6:4の比率で混合して正極合剤とし、この正極
合剤を2t/cm2で直径20mmに加圧成形した後、200℃で熱
処理して正極を作製した。
[Example 1] Chemical manganese dioxide and lithium hydroxide were mixed and heat-treated to obtain an intercalation type lithium manganese oxide Li 0.43 MnO 2.11 . This Li 0.43 MnO 2.11 is used as a positive electrode active material, acetylene black powder is used as a conductive agent, and a copolymer of hexafluoropropylene and vinylidene fluoride is used as a binder. A powder of rubber (heat-resistant temperature of 230 ° C.) is mixed at a weight ratio of 90: 6: 4 to form a positive electrode mixture. The positive electrode mixture is pressed at 2 t / cm 2 to a diameter of 20 mm and then pressed. A heat treatment was performed at a temperature of ° C. to produce a positive electrode.

【0011】 また負極は、所定厚み寸法のリチウム板を直径20mmに
打ち抜いて作製した。
The negative electrode was manufactured by punching a lithium plate having a predetermined thickness into a diameter of 20 mm.

【0012】 図1は上記の正・負極を用いて組み立てた扁平型リチ
ウム電池の半断面を示し、1、2はステンレス製の正
極、及び負極缶であって、これらはポリプロピレン製の
絶縁パッキング3により隔離されている。
FIG. 1 shows a half cross section of a flat lithium battery assembled using the above positive and negative electrodes. Reference numerals 1 and 2 denote a positive electrode and a negative electrode can made of stainless steel. Is isolated by

【0013】 4は本発明の要旨となる正極であって、正極缶1の内
底面に固着された正極集電体5に圧接されている。
Reference numeral 4 denotes a positive electrode according to the gist of the present invention, which is pressed against a positive electrode current collector 5 fixed to the inner bottom surface of the positive electrode can 1.

【0014】 6は負極であって前記負極缶2の内底面に固着された
負極集電体7に圧接されている。
Reference numeral 6 denotes a negative electrode, which is pressed against a negative electrode current collector 7 fixed to the inner bottom surface of the negative electrode can 2.

【0015】 8はポリプロピレン製微孔性薄膜からなるセパレータ
であり、これに含浸される電解液としては、プロピレン
カーボネートとジメトキシエタンとの混合溶媒に、過塩
素酸リチウムを1mol/溶解したものを用いた。
Reference numeral 8 denotes a separator made of a polypropylene microporous thin film. As an electrolyte impregnated in the separator, a separator obtained by dissolving lithium perchlorate in a mixed solvent of propylene carbonate and dimethoxyethane at 1 mol / mol is used. Was.

【0016】 そして上記の構成によって直径24.0mm、厚み寸法3.0m
mの電池を得た。この本発明電池を本発明電池A1とす
る。 〔実施例2〕 正極用結着剤として、トリフルオロクロルエチレンと
フッ化ビニリデンの共重合体を主成分とするゴム状弾性
を有するフッ素ゴム粉末(耐熱温度200℃)を用いるこ
とを除いては、実施例1と同様にして本発明電池A2を作
製した。 〔比較例1〕 正極結着剤としてゴム状弾性を持たないフッ素樹脂の
一種であるポリテトラフルオロエチレン粉末(耐熱温度
略260℃)を用いることを除いては実施例1と同様にし
て比較電池B1を作製した。 〔比較例2〕 正極結着剤としてゴム状弾性を有するブチルゴムの粉
末(耐熱温度略140℃)を用いることを除いては実施例
1と同様にして比較電池B2を作製した。 〔比較例3〕 正極結着剤としてゴム状弾性を有するブチルゴムの粉
末を用い、正極の熱処理温度を120℃とすることを除い
ては実施例1と同様にして比較電池B3を作製した。
With the above configuration, the diameter is 24.0 mm and the thickness is 3.0 m
m battery was obtained. This battery of the present invention is referred to as Battery A1 of the present invention. Example 2 Except for using a rubber-like elastic fluororubber powder (heat-resistant temperature of 200 ° C.) containing a copolymer of trifluorochloroethylene and vinylidene fluoride as a main component as a binder for the positive electrode, A battery A2 of the present invention was produced in the same manner as in Example 1. Comparative Example 1 A comparative battery was prepared in the same manner as in Example 1 except that polytetrafluoroethylene powder (a heat-resistant temperature of about 260 ° C.), a kind of fluororesin having no rubbery elasticity, was used as a positive electrode binder. B1 was prepared. Comparative Example 2 A comparative battery B2 was produced in the same manner as in Example 1 except that butyl rubber powder having rubber-like elasticity (heat-resistant temperature of about 140 ° C.) was used as the positive electrode binder. Comparative Example 3 A comparative battery B3 was produced in the same manner as in Example 1 except that butyl rubber powder having rubber-like elasticity was used as the positive electrode binder, and the heat treatment temperature of the positive electrode was set to 120 ° C.

【0017】 図2は上記各電池A1、A2、B1〜B3の充放電サイクル特
性図を示したものである。ここで充放電条件は、電流3m
Aで4時間放電した後、電流3mAで充電終止電圧が4.0Vに
なるまで充電することとした。
FIG. 2 shows a charge / discharge cycle characteristic diagram of each of the batteries A1, A2, B1 to B3. Here, the charge / discharge condition is a current of 3 m
After discharging at A for 4 hours, the battery was charged at a current of 3 mA until the charging end voltage reached 4.0 V.

【0018】 図2を見ると、正極用結着剤として、ゴム状弾性を有
し、耐熱温度が200℃以上であるフッ素ゴムを用いた本
発明電池A1、A2の場合、サイクル数が略180サイクルま
で初期の放電終止電圧を保持するのに対し、ゴム状弾性
を持たない正極結着剤を用いた比較電池B1の場合には、
125サイクルまでしか初期の放電特性を保持することが
できないことがわかる。このように本発明電池A1、A2
は、比較電池B1に比べてサイクル特性が改善されている
ことが明らかである。
Referring to FIG. 2, in the case of the batteries A1 and A2 of the present invention using a fluororubber having a rubber-like elasticity and a heat-resistant temperature of 200 ° C. or higher as a binder for the positive electrode, the number of cycles is approximately 180 While the initial discharge end voltage is maintained until the cycle, in the case of the comparative battery B1 using the positive electrode binder having no rubbery elasticity,
It can be seen that the initial discharge characteristics can be maintained only up to 125 cycles. Thus, the batteries A1 and A2 of the present invention
Clearly shows that the cycle characteristics are improved as compared with the comparative battery B1.

【0019】 また、ゴム状弾性を有する正極結着剤を用いても、結
着剤の耐熱温度が正極の熱処理温度よりも低い場合(比
較電池B2)や、正極の熱処理温度を下げた場合(比較電
池B3)は、1サイクル目から放電終止電圧の降下がみら
れる。これは、夫々、結着剤の過熱による劣化、及び正
極の不十分な水分除去が原因であると考えられる。
Even when a positive electrode binder having rubber-like elasticity is used, when the heat-resistant temperature of the binder is lower than the heat treatment temperature of the positive electrode (Comparative Battery B2), or when the heat treatment temperature of the positive electrode is lowered ( In the comparative battery B3), a drop in the discharge end voltage is seen from the first cycle. This is considered to be due to deterioration of the binder due to overheating and insufficient water removal of the positive electrode, respectively.

【0020】 尚、本発明に用いられる結着剤としては、上記各作製
例のヘキサフルオロプロピレンとフッ化ビニリデンとの
共重合体、或いはトリフルオロクロルエチレンとフッ化
ビニリデンの共重合体等を主成分とするフッ素ゴムに限
定されること無く、ゴム弾性を有し、且つ耐熱温度が20
0℃以上である他の材料、またはフッ素ゴムでも使用可
能であることはいうまでもない。さらに、この正極を適
用する電池形状も、作製例で示した扁平型に限らず、円
筒型、角型等の電池にも応用可能であり、また固体電解
質を用いる非水系二次電池にも応用できる。
The binder used in the present invention is mainly a copolymer of hexafluoropropylene and vinylidene fluoride or a copolymer of trifluorochloroethylene and vinylidene fluoride in each of the above-mentioned production examples. It is not limited to fluoro rubber as a component, has rubber elasticity, and has a heat resistant temperature of 20
It goes without saying that other materials having a temperature of 0 ° C. or higher or fluororubber can also be used. Furthermore, the shape of the battery to which this positive electrode is applied is not limited to the flat type shown in the fabrication example, but can be applied to batteries of cylindrical type, square type, etc., and also applied to non-aqueous secondary batteries using a solid electrolyte. it can.

【0021】[0021]

【発明の効果】【The invention's effect】

上述した如く、非水系二次電池の正極活物質として、
充放電による膨張収縮の程度が著しいリチウムマンガン
オキサイドを使用し、且つ前記正極が正極結着剤の耐熱
温度以下で、且つ水分除去が十分為される温度である少
なくとも200℃で熱処理される場合であっても、前記結
着剤として、ゴム弾性を有し、且つ耐熱温度が200℃以
上である材料を用いることにより、充放電サイクル特性
を向上させることができる。
As described above, as a positive electrode active material of a non-aqueous secondary battery,
In the case of using lithium manganese oxide having a remarkable degree of expansion and contraction due to charge and discharge, and the positive electrode is heat-treated at a temperature of at least 200 ° C. which is lower than or equal to the heat-resistant temperature of the positive electrode binder and a temperature at which water is sufficiently removed. Even so, the charge and discharge cycle characteristics can be improved by using a material having rubber elasticity and a heat resistance temperature of 200 ° C. or higher as the binder.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 本発明電池の半断面図である。FIG. 1 is a half sectional view of a battery of the present invention.

【図2】 電池のサイクル特性図である。FIG. 2 is a cycle characteristic diagram of a battery.

【符号の説明】[Explanation of symbols]

1……正極 2……正極缶 3……正極集電体 4……負極 5……負極缶 6……負極集電体 7……セパレータ 8……絶縁パッキング A1、A2……本発明電池 B1〜B3……比較電池 DESCRIPTION OF SYMBOLS 1 ... Positive electrode 2 ... Positive electrode can 3 ... Positive electrode collector 4 ... Negative electrode 5 ... Negative electrode can 6 ... Negative electrode collector 7 ... Separator 8 ... Insulating packing A1, A2 ... Battery B1 of this invention ~ B3 …… Comparative battery

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−121262(JP,A) 特開 昭63−121264(JP,A) 特開 平3−225751(JP,A) 特開 平3−222258(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 - 4/04 H01M 4/36 - 4/62 H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-121262 (JP, A) JP-A-63-121264 (JP, A) JP-A-3-225751 (JP, A) JP-A-3-3 222258 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01M 4/02-4/04 H01M 4/36-4/62 H01M 10/40

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】リチウム或いはリチウムイオンを可逆的に
吸蔵、放出できる材料を活物質とする負極と、リチウム
イオンを可逆的に充放電できるインターカレーション型
のリチウムマンガンオキサイドからなる活物質及び結着
剤を含む正極とを有し、前記結着剤として、ゴム弾性を
有し、且つ耐熱温度が200℃以上の材料を用い、前記正
極が、前記結着剤の耐熱温度以下で、且つ水分除去が十
分為される温度である少なくとも200℃で熱処理された
ものであることを特徴とする非水系二次電池。
1. An active material comprising a negative electrode comprising a material capable of reversibly occluding and releasing lithium or lithium ions, an active material comprising an intercalation type lithium manganese oxide capable of reversibly charging and discharging lithium ions, and binding. A material having a rubber elasticity and a heat-resistant temperature of 200 ° C. or higher, and the positive electrode has a temperature lower than the heat-resistant temperature of the binder, and has a water removal property. A non-aqueous secondary battery that has been heat-treated at a temperature of at least 200 ° C., which is a temperature at which sufficient heat treatment is performed.
【請求項2】前記正極の結着剤が、フッ素ゴムである請
求項1記載の非水系二次電池。
2. The non-aqueous secondary battery according to claim 1, wherein the binder of the positive electrode is a fluoro rubber.
【請求項3】前記正極の結着剤が、ヘキサフルオロプロ
ピレンとフッ化ビニリデンとの共重合体を主成分とする
フッ素ゴム、又はトリフルオロクロルエチレンとフッ化
ビニリデンとの共重合体を主成分とするフッ素ゴムであ
る請求項1記載の非水系二次電池。
3. The binder for the positive electrode comprises a fluororubber containing a copolymer of hexafluoropropylene and vinylidene fluoride as a main component, or a copolymer of trifluorochloroethylene and vinylidene fluoride as a main component. The non-aqueous secondary battery according to claim 1, which is a fluororubber.
JP20336390A 1990-07-31 1990-07-31 Non-aqueous secondary battery Expired - Fee Related JP3197553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20336390A JP3197553B2 (en) 1990-07-31 1990-07-31 Non-aqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20336390A JP3197553B2 (en) 1990-07-31 1990-07-31 Non-aqueous secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP17426999A Division JP3363840B2 (en) 1999-06-21 1999-06-21 Method for producing positive electrode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0495363A JPH0495363A (en) 1992-03-27
JP3197553B2 true JP3197553B2 (en) 2001-08-13

Family

ID=16472789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20336390A Expired - Fee Related JP3197553B2 (en) 1990-07-31 1990-07-31 Non-aqueous secondary battery

Country Status (1)

Country Link
JP (1) JP3197553B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831408A (en) * 1994-05-13 1996-02-02 Matsushita Electric Ind Co Ltd Positive electrode for non-aqueous electrolyte lithium secondary battery and manufacture thereof
JP4253051B2 (en) * 1997-12-26 2009-04-08 株式会社クレハ Nonaqueous battery electrode mixture and nonaqueous battery
JPH11260349A (en) * 1998-03-05 1999-09-24 Fujitsu Ltd Lithium secondary battery and positive mix used in the same
JP5238153B2 (en) * 2006-09-29 2013-07-17 三洋電機株式会社 Coin-cell battery
CN101499538B (en) 2008-02-01 2012-07-11 索尼株式会社 Non-aqueous electrolyte cell, anode and manufacturing method of the same
KR20090084693A (en) 2008-02-01 2009-08-05 소니 가부시끼가이샤 Non-aqueous electrolyte battery and negative electrode, and method for manufacturing the same
JP5494497B2 (en) 2009-02-12 2014-05-14 ダイキン工業株式会社 Slurry for positive electrode mixture of lithium secondary battery, positive electrode using the slurry, and lithium secondary battery
CN102473916A (en) * 2009-07-03 2012-05-23 大金工业株式会社 Slurry for electrode mixture of lithium secondary cell, electrode using the slurry, and lithium secondary cell
JP2019083095A (en) * 2017-10-30 2019-05-30 株式会社日立製作所 Positive electrode mixture layer, positive electrode, semi secondary battery, and secondary battery

Also Published As

Publication number Publication date
JPH0495363A (en) 1992-03-27

Similar Documents

Publication Publication Date Title
JPH0652887A (en) Lithium secondary battery
JPH0487156A (en) Nonaqueous electrolyte battery
JP2001176558A (en) Non-aqueous electrolyte secondary battery
JPH09115506A (en) Anode for rechargeable lithium electrochemical battery and manufacture thereof
JP3197553B2 (en) Non-aqueous secondary battery
JPH04155776A (en) Nonaqueous electrolyte secondary battery
JPH06349493A (en) Secondary battery
JP2001307735A (en) Lithium secondary battery
JPH1131508A (en) Nonaqueous electrolyte secondary battery
JPH0927316A (en) Lithium secondary battery
JP3185273B2 (en) Non-aqueous electrolyte secondary battery
JP3363840B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JP3541481B2 (en) Non-aqueous electrolyte secondary battery
JPH0582131A (en) Nonaqueous type electrolytic secondary battery
JPH0782839B2 (en) Secondary battery negative electrode
JP2000285923A (en) Nonaqueous electrolyte secondary battery
JP3596225B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JP4753690B2 (en) Organic electrolyte battery
JPH0495362A (en) Nonaqueous electrolytic battery
JPH07201315A (en) Nonaqueous electrolyte secondary battery
JP2951013B2 (en) Non-aqueous electrolyte secondary battery
JP2975727B2 (en) Non-aqueous electrolyte battery
JP2584246B2 (en) Non-aqueous secondary battery
JP3423168B2 (en) Non-aqueous electrolyte secondary battery
JPH1125986A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees