JP5238153B2 - Coin-cell battery - Google Patents

Coin-cell battery Download PDF

Info

Publication number
JP5238153B2
JP5238153B2 JP2006268013A JP2006268013A JP5238153B2 JP 5238153 B2 JP5238153 B2 JP 5238153B2 JP 2006268013 A JP2006268013 A JP 2006268013A JP 2006268013 A JP2006268013 A JP 2006268013A JP 5238153 B2 JP5238153 B2 JP 5238153B2
Authority
JP
Japan
Prior art keywords
positive electrode
binder
coin
electrode plate
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006268013A
Other languages
Japanese (ja)
Other versions
JP2008091081A5 (en
JP2008091081A (en
Inventor
知行 庄瀬
正雄 近藤
泰夫 赤井
俊祐 上垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
FDK Tottori Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd, FDK Tottori Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2006268013A priority Critical patent/JP5238153B2/en
Publication of JP2008091081A publication Critical patent/JP2008091081A/en
Publication of JP2008091081A5 publication Critical patent/JP2008091081A5/ja
Application granted granted Critical
Publication of JP5238153B2 publication Critical patent/JP5238153B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • Y02E60/12

Description

本発明は、プリント配線基板上に配される非水電解質電池に関する。   The present invention relates to a non-aqueous electrolyte battery disposed on a printed wiring board.

コイン型の非水電解質電池は、他の電池に比べてエネルギー密度が高く、軽量であるという特徴を備えていることから、電気機器のバックアップ用電源として広く採用されている。
従来のコイン型電池では、カーボン材料を外装缶内表面に焼付け(特許文献1を参照)、あるいはカーボン材料を混合した導電性接着剤を塗布して電極の集電体を形成している(特許文献2を参照)。
Coin-type non-aqueous electrolyte batteries are widely used as a backup power source for electric devices because they have features of higher energy density and lighter weight than other batteries.
In a conventional coin-type battery, a carbon material is baked on the inner surface of an outer can (see Patent Document 1), or a conductive adhesive mixed with a carbon material is applied to form an electrode current collector (patent) Reference 2).

上記コイン型電池と電気機器との接続手法は、量産性の観点から、電気機器に内包されるプリント配線基板上の配設予定位置に予めクリーム状の半田を塗布しておき、そこに当該電池および他の半導体素子を載置して同時に加熱することにより一括してこれらの半田付けを行うリフロー法が主流となりつつある。
特開2005−332657号公報 特開2005−347100号公報
From the viewpoint of mass productivity, the coin-type battery and the electrical device are connected in advance by applying cream-like solder to the planned location on the printed wiring board included in the electrical device, and the battery In addition, a reflow method in which these semiconductor elements are soldered together by placing and heating other semiconductor elements at the same time is becoming mainstream.
JP 2005-332657 A JP-A-2005-347100

しかし、上記リフロー法を用いてコイン型電池をプリント配線基板に実装すると、加熱によって集電体のカーボン材料が電解液と反応する等して、リフロー工程後の当該電池において、その内部抵抗が著しく上昇して、集電性能が低下するという問題が生じた。
本発明は、上記問題点に鑑みてなされたものであり、集電性能の低下を抑制することのできるコイン型の非水電解質電池を提供することを目的とする。
However, when a coin-type battery is mounted on a printed wiring board using the reflow method, the internal resistance of the battery after the reflow process is remarkably increased because the carbon material of the current collector reacts with the electrolyte solution by heating. As a result, the current collection performance deteriorated.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a coin-type non-aqueous electrolyte battery that can suppress a decrease in current collecting performance.

上記目的を達成するため、本発明に係るコイン型非水電解質電池では、正極ケースおよび負極ケースが、ガスケットを挟みながら嵌合した状態で、正極板、負極板および電解液を包含しているコイン型の非水電解質電池に対し、電解液は、プロピレンカーボネート及びジメトキシエタンを含有し、オレフィン系炭化水素を主成分とする多孔膜状の結着剤で、少なくとも一方の極板と、当該極板と対向する少なくとも一方の極ケースとを結着させた。
In order to achieve the above object, in the coin-type nonaqueous electrolyte battery according to the present invention, a coin including a positive electrode plate, a negative electrode plate, and an electrolyte solution in a state where the positive electrode case and the negative electrode case are fitted with a gasket interposed therebetween. For a non-aqueous electrolyte battery of the type, the electrolytic solution is a porous film-like binder containing propylene carbonate and dimethoxyethane and containing olefinic hydrocarbon as a main component , at least one electrode plate, and the electrode plate And at least one pole case facing each other.

カーボン材料を集電体に用いた場合、あるいはカーボン材料を混合してなる導電性接着剤を集電体に用いた場合には、リフロー半田工程においてカーボン材料が電解液と反応し、集電体の導電性が失われることがある。
上記コイン型の非水電解質電池では、カーボンとの反応性が高い電解液に対して、反応性が低い結着剤で正極板と正極ケースとを結着させたので、カーボン材料を集電体に用いた場合、あるいはカーボン材料を混合してなる導電性接着剤を集電体に用いた場合と比べて、リフロー半田工程において結着剤が電解液と反応することを抑制することができ、リフロー工程前に比べてリフロー工程後に内部抵抗が上昇することを抑制することができて集電性能の低下を抑制することができる。
When a carbon material is used for the current collector or when a conductive adhesive made by mixing carbon materials is used for the current collector, the carbon material reacts with the electrolyte in the reflow soldering process, and the current collector Conductivity may be lost.
In the above coin-type non-aqueous electrolyte battery, the positive electrode plate and the positive electrode case are bound to the electrolytic solution having a high reactivity with carbon with a binding agent having a low reactivity. Compared to the case where the conductive adhesive formed by mixing the carbon material or the current collector is used for the current collector, the binder can be prevented from reacting with the electrolyte in the reflow soldering process, Compared with before the reflow process, it is possible to suppress an increase in internal resistance after the reflow process, and it is possible to suppress a decrease in current collecting performance.

そのうえ、本発明に係るコイン型非水電解質電池では、製造ばらつきによって正極板の厚みにばらつきがあっても、正極板と正極ケースとが結着剤によって結着されているので、正極板と正極ケースとの接触圧の低い領域が抑制され、リフロー工程前において内部抵抗のばらつきを抑制することができる。
リフロー工程では、カーボン材料が電解液と反応する以外に、電解液が蒸発して密閉された電池の内圧上昇を招き、これに起因してケースが膨張し、正極板と正極ケースとの接触面積が減少し、接触抵抗(内部抵抗)が上昇して集電性能が低下することも考えられる。本発明に係るコイン型非水電解質電池では、当該内圧上昇が起こっても、正極板と正極ケースとを結着する結着剤によって、正極板と正極ケースとの接触面積が維持され、リフロー工程前に比べてリフロー工程後に内部抵抗が上昇することを抑制することができて集電性能の低下を抑制することができる。
Moreover, in the coin-type non-aqueous electrolyte battery according to the present invention, the positive electrode plate and the positive electrode case are bonded by the binder even if the thickness of the positive electrode plate varies due to manufacturing variations. A region having a low contact pressure with the case is suppressed, and variations in internal resistance can be suppressed before the reflow process.
In the reflow process, in addition to the carbon material reacting with the electrolytic solution, the electrolytic solution evaporates to increase the internal pressure of the sealed battery, which causes the case to expand, and the contact area between the positive electrode plate and the positive electrode case It is also conceivable that the current collection performance decreases due to a decrease in contact resistance (internal resistance). In the coin-type non-aqueous electrolyte battery according to the present invention, even if the internal pressure rises, the contact area between the positive electrode plate and the positive electrode case is maintained by the binder that binds the positive electrode plate and the positive electrode case, and the reflow process It is possible to suppress an increase in internal resistance after the reflow process compared to before, and it is possible to suppress a decrease in current collecting performance.

本発明に係るコイン型非水電解質電池では、上記結着剤がカーボン材料と比べて電解液と反応しにくいので、上記作用・効果が電解液によって損なわれることを抑制することができる。
上記結着剤が室温以上300[℃]未満において弾性を有すると、上記リフロー工程での加熱に対しても結着剤の弾性が損なわれず、上記接触面積維持の作用ならびに効果を確実にすることができる。
In the coin-type non-aqueous electrolyte battery according to the present invention, since the binder is less likely to react with the electrolytic solution than the carbon material, it is possible to suppress the effects and effects from being impaired by the electrolytic solution.
When the binder has elasticity at room temperature or more and less than 300 [° C.], the elasticity of the binder is not impaired even by heating in the reflow process, and the action and effect of maintaining the contact area are ensured. Can do.

上記正極ケースと上記ガスケットとの間に膜状のシール剤が形成されており、上記結着剤が上記シール剤と同じ成分からなれば、製造時においてシール剤と結着剤とを同時に形成することができるので、シール剤と結着剤とを個別に形成する煩雑さがなくなり、製造工程を簡略化することができ、量産性を向上させることができる。   A film-like sealant is formed between the positive electrode case and the gasket, and if the binder is composed of the same components as the sealant, the sealant and the binder are simultaneously formed during manufacturing. Therefore, the complexity of forming the sealing agent and the binder separately can be eliminated, the manufacturing process can be simplified, and mass productivity can be improved.

(実施の形態1)
以下、図面を適宜用いて本発明の実施の形態1に係るコイン型非水電解質電池について説明する。
図1は、本実施の形態に係るコイン型非水電解質電池の概略断面図である。
図1に示すように、本実施の形態に係るコイン型電池10では、リング状のガスケット6が皿状の正極缶4および負極缶5それぞれの縁部同士の間に挟まれており、リチウムを主成分とする皿状の負極板2と、二酸化マンガンを主成分としかつ粉体を押し固めて成形した円筒状の正極板1とが円盤状のガスケット3を挟んでなる電極体が内包されている。
(Embodiment 1)
Hereinafter, the coin-type nonaqueous electrolyte battery according to Embodiment 1 of the present invention will be described with reference to the drawings as appropriate.
FIG. 1 is a schematic cross-sectional view of a coin-type nonaqueous electrolyte battery according to the present embodiment.
As shown in FIG. 1, in the coin-type battery 10 according to the present embodiment, a ring-shaped gasket 6 is sandwiched between the edges of the dish-like positive electrode can 4 and negative electrode can 5, and lithium is used. An electrode body in which a disc-shaped gasket 3 is sandwiched between a plate-shaped negative electrode plate 2 having a main component and a cylindrical positive electrode plate 1 having manganese dioxide as a main component and formed by pressing and compacting powder is included. Yes.

ガスケット6と正極缶4との間には、電池10の密封性能を向上させるため、膜状のシール剤7が形成されている。正極板1と正極缶4との間には、ブチレンゴム系の多孔膜状の結着剤8が形成され、結着剤8が正極板1と正極缶4とを結着している。
本実施の形態に係る電池は、具体的には、オレフィン系炭化水素を主成分とするスリーボンド社製のTB1171と、キシレンとを1:2の割合で混合してなるものを正極缶4の内側面の全体に塗布し、そして、120[℃]雰囲気下で1分間乾燥させてキシレンを揮発させ、さらに、60[℃]雰囲気下で4時間乾燥させて水分を揮発させた後、乾燥雰囲気(水分値300[ppm]以下)下で4時間放置することによって残存するキシレンおよび水分を十分に揮発させて、シール剤7および結着剤8形成済みの正極缶4を完成させ、予めその内面に負極板2およびセパレータ3をこの順で積層済みの負極缶5を準備しておき、この負極缶5の内側に下記成分の電解液を注入した後に正極板1を載置し、上記の完成した正極缶4を正極板1に被せた状態でカシメて封口されたものである。
A film-like sealant 7 is formed between the gasket 6 and the positive electrode can 4 in order to improve the sealing performance of the battery 10. A butylene rubber-based porous membrane binder 8 is formed between the positive electrode plate 1 and the positive electrode can 4, and the binder 8 binds the positive electrode plate 1 and the positive electrode can 4.
Specifically, the battery according to the present embodiment includes a battery made by mixing TB1171 made by Three Bond, whose main component is an olefinic hydrocarbon, and xylene in a ratio of 1: 2. It was applied to the entire side surface and dried in an atmosphere of 120 [° C.] for 1 minute to volatilize xylene, and further dried in an atmosphere of 60 [° C.] for 4 hours to volatilize moisture, and then the drying atmosphere ( The remaining xylene and moisture are sufficiently volatilized by leaving them under a moisture value of 300 ppm or less) for 4 hours to complete the positive electrode can 4 in which the sealant 7 and the binder 8 have been formed. The negative electrode can 5 in which the negative electrode plate 2 and the separator 3 are laminated in this order is prepared, and the positive electrode plate 1 is placed after injecting an electrolyte solution of the following components into the negative electrode can 5, thereby completing the above-described completion. The positive electrode can 4 is connected to the positive electrode plate 1 It is those that have been sealed by crimping in the covered state.

〔電解液〕
プロピレンカーボネート(PC)とジメトキシエタン(DME)の1:1混合溶媒に電解質としてトリフルオロメタンスルホン酸リチウム(LiCF3SO3)を1mol/lで溶解させている。
なお、上記工程は一例であって、キシレンならびに水分を十分に揮発させることのできる工程であれば、上記工程には限定されない。
[Electrolyte]
Lithium trifluoromethanesulfonate (LiCF3SO3) is dissolved at 1 mol / l as an electrolyte in a 1: 1 mixed solvent of propylene carbonate (PC) and dimethoxyethane (DME).
In addition, the said process is an example, Comprising: If it is a process which can volatilize xylene and a water | moisture content enough, it will not be limited to the said process.

TB1171は、オレフィン系炭化水素を主成分とすることから熱可塑性を有し、したがって、高温に晒されると弾性を失っていく傾向を有するが、発明者らは、TB1171が約300[℃]雰囲気下において初めて分解すること、すなわち当該温度になって初めて弾性を失い始めることを確認している。
本実施の形態に係るコイン型非水電解質電池は、バックアップ用の電池としてプリント配線基板上にリフロー半田で実装される場合、約260[℃]の温度雰囲気に晒されるが、上記のようにTB1171は、約300[℃]雰囲気下において初めて弾性を失うので、リフロー半田工程を経ても弾性を失わない。
TB1171 has thermoplasticity because it has an olefinic hydrocarbon as a main component, and therefore has a tendency to lose elasticity when exposed to high temperatures. It has been confirmed that it decomposes for the first time below, that is, it begins to lose its elasticity only at that temperature.
The coin-type non-aqueous electrolyte battery according to the present embodiment is exposed to a temperature atmosphere of about 260 [° C.] when mounted on a printed wiring board as a backup battery by reflow soldering, but as described above, TB1171 Loses elasticity for the first time in an atmosphere of about 300 [° C.], and therefore does not lose elasticity even after a reflow soldering process.

オレフィン系炭化水素は、有機材料であるので導電性が低く、そして、カーボンを含んでいない。なお、「カーボン」は黒鉛粉末等の導電性を有するカーボンを意味しており、オレフィン系炭化水素のように炭素と水素等とが結合してなる有機材料を含まない。そのうえ、オレフィン系炭化水素は、シール剤7の主成分となっていることからも分かるように、電解液に対して高い耐性を備えており、すなわち、電解液と反応しにくい特性を備えている。したがって、結着剤8は、カーボンを含んでおらず、かつ電解液に対して反応し難いという特性を有する。   Olefinic hydrocarbons are organic materials and therefore have low electrical conductivity and do not contain carbon. “Carbon” means conductive carbon such as graphite powder, and does not include organic materials in which carbon and hydrogen are combined, such as olefinic hydrocarbons. In addition, as can be seen from the fact that the olefinic hydrocarbon is the main component of the sealant 7, it has a high resistance to the electrolytic solution, that is, has a characteristic that it does not easily react with the electrolytic solution. . Therefore, the binder 8 does not contain carbon and has a characteristic that it does not easily react with the electrolytic solution.

上記のように結着剤8が正極缶4と正極板1との間に形成されているので、図1の部分拡大図に示すように、結着剤8は完全な被膜の状態となっておらず、所々で正極板1と正極缶4とが接触している状態となっている。
本実施の形態では、シール剤7と結着剤8とが同じ成分であるが、既述のように電解液に対して耐性を備え、かつ熱耐性を備えている材料であれば、結着剤8がシール剤7と同じ成分でなくても良い。シール剤7と結着剤8とが同じ成分であると、既述のように正極缶4の内側面の全体にこれらを同時に形成することができるので、好ましい。
Since the binder 8 is formed between the positive electrode can 4 and the positive electrode plate 1 as described above, as shown in the partially enlarged view of FIG. In other words, the positive electrode plate 1 and the positive electrode can 4 are in contact with each other.
In the present embodiment, the sealing agent 7 and the binder 8 are the same component, but as long as the material has resistance to the electrolytic solution and heat resistance as described above, the binding is possible. The agent 8 may not be the same component as the sealing agent 7. It is preferable that the sealant 7 and the binder 8 are the same component because they can be simultaneously formed on the entire inner surface of the positive electrode can 4 as described above.

本実施の形態では、結着剤8として、TB1171を用いているが、これに限定されず、カーボンを含んでおらず、電解液に対して耐性があり、かつリフロー工程での加熱温度である約260[℃]においても分解されず、弾性を維持できる材料であれば良い。例えば、結着剤8が延伸多孔質ポリテトラフルオロエチレン(ePTFE)やスチレンブタジエンゴム(SBR)エチレンプロピレンゴム(EPDM)フッ素ゴム(FEPM)などを主成分としていても良い。
《本実施の形態におけるコイン型非水電解質電池の効果》
本実施の形態では、結着剤8と電解液との反応性がカーボンと電解液との反応性に比べて低いので、カーボン材料を集電体として用いたもの、カーボン材料を混合してなる導電性接着剤を集電体に用いたものに比べて、リフロー半田工程において結着剤8が電解液と反応することを抑制することができ、リフロー工程前に比べてリフロー工程後に内部抵抗が上昇することを抑制することができて集電性能の低下を抑制することができる。
In the present embodiment, TB1171 is used as the binder 8, but the present invention is not limited to this, and does not include carbon, is resistant to the electrolytic solution, and is the heating temperature in the reflow process. Any material that does not decompose even at about 260 [° C.] and can maintain elasticity can be used. For example, the binder 8 may be mainly composed of expanded porous polytetrafluoroethylene (ePTFE), styrene butadiene rubber (SBR), ethylene propylene rubber (EPDM), fluorine rubber (FEPM), or the like.
<< Effects of coin-type nonaqueous electrolyte battery in this embodiment >>
In the present embodiment, since the reactivity between the binder 8 and the electrolytic solution is lower than the reactivity between the carbon and the electrolytic solution, the carbon material is used as a current collector, and the carbon material is mixed. Compared to the case where a conductive adhesive is used for the current collector, the binder 8 can be prevented from reacting with the electrolyte in the reflow soldering process, and the internal resistance is less after the reflowing process than before the reflowing process. It is possible to suppress the increase, and it is possible to suppress a decrease in current collecting performance.

上記電池では、完成後に所望の寸法が得られるように各構成部材の寸法が規定され、正極缶4と負極缶5とで形成される内包空間も所望の寸法になるようにこれらの押圧も規定されているが、正極板と正極缶とを直接接触させる構造を採用したとき、製造ばらつきによって正極板1の厚みにばらつきが生じると、規定の圧力で正極缶4と負極缶5とを嵌合させた場合、正極板1と正極缶4との接触面積にばらつきが生じ、結果、内部抵抗にばらつきが生じ、集電性能にばらつきが生じる。   In the battery described above, the dimensions of the constituent members are defined so that desired dimensions can be obtained after completion, and the pressures are also defined so that the internal space formed by the positive electrode can 4 and the negative electrode can 5 also has the desired dimensions. However, when the structure in which the positive electrode plate and the positive electrode can are directly contacted is adopted, and the thickness of the positive electrode plate 1 varies due to manufacturing variations, the positive electrode can 4 and the negative electrode can 5 are fitted with a specified pressure. In this case, the contact area between the positive electrode plate 1 and the positive electrode can 4 varies, and as a result, the internal resistance varies and the current collection performance varies.

これに対して、本実施の形態では、結着剤8が弾性を有するので、製造ばらつきによって正極板1の厚みにばらつきがあっても、正極板と正極缶とを直接接触させる構造のコイン型電池に比べて、結着剤8の弾性が正極板1と正極缶4との接触面積のばらつきを抑制するように働き、その結果、内部抵抗のばらつきを抑制して集電性能にばらつきが生じることを抑制することができる。   On the other hand, in the present embodiment, since the binder 8 has elasticity, even if the thickness of the positive electrode plate 1 varies due to manufacturing variations, the coin type has a structure in which the positive electrode plate and the positive electrode can are in direct contact with each other. Compared to the battery, the elasticity of the binder 8 works to suppress the variation in the contact area between the positive electrode plate 1 and the positive electrode can 4, and as a result, the variation in the internal resistance is suppressed and the current collection performance varies. This can be suppressed.

本実施の形態に係る電池10を、バックアップ用の電池としてプリント配線基板上にリフロー半田で実装する場合、カーボン材料が電解液と反応する以外に、電解液が蒸発して密閉された電池10の内圧上昇を招き、これに起因して接触抵抗(内部抵抗)が上昇して集電性能が低下することも考えられる。本実施の形態に係るコイン型非水電解質電池10では、当該内圧上昇が起こっても、正極板1と正極缶4とを結着する結着剤8によって、正極板1と正極缶4との接触面積が維持され、リフロー工程前に比べてリフロー工程後に内部抵抗が上昇することを抑制することができて集電性能の低下を抑制することができる。   When the battery 10 according to the present embodiment is mounted on a printed wiring board as a backup battery by reflow soldering, in addition to the carbon material reacting with the electrolyte, the electrolyte 10 is evaporated and sealed. It is also conceivable that the internal pressure is increased, resulting in an increase in contact resistance (internal resistance) and a decrease in current collecting performance. In the coin-type nonaqueous electrolyte battery 10 according to the present embodiment, even if the internal pressure rises, the binder 8 that binds the positive electrode plate 1 and the positive electrode can 4 to each other between the positive electrode plate 1 and the positive electrode can 4. The contact area is maintained, and it is possible to suppress an increase in internal resistance after the reflow process as compared to before the reflow process, and it is possible to suppress a decrease in current collection performance.

本実施の形態に係るコイン型非水電解質電池10では、結着剤8がカーボン材料と比べて電解液と反応しにくいので、上記作用・効果が電解液によって損なわれることを抑制することができる。
結着剤8は、室温以上300[℃]未満において弾性を有するので、上記リフロー工程での加熱に対しても弾性が損なわれず、したがって、本実施の形態に係るコイン型非水電解質電池10では、上記接触圧の維持の作用ならびに効果を確実にすることができる。
In the coin-type non-aqueous electrolyte battery 10 according to the present embodiment, the binder 8 is less likely to react with the electrolytic solution than the carbon material, so that the above-described actions and effects can be suppressed from being damaged by the electrolytic solution. .
Since the binder 8 has elasticity at room temperature or more and less than 300 [° C.], the elasticity is not impaired even by heating in the reflow process. Therefore, in the coin-type nonaqueous electrolyte battery 10 according to the present embodiment, the binder 8 is not damaged. The operation and effect of maintaining the contact pressure can be ensured.

本実施の形態では、結着剤8がシール剤7と同じ成分からなるので、シール剤7と結着剤8とを同時に形成することができ、シール剤7と結着剤8とを個別に形成する煩雑さがなくなり、製造工程を簡略化することができ、量産性を向上させることができる。
〔評価試験〕
本発明のコイン型非水電解質電池の効果を検証するべく、実施の形態1に係るコイン型の非水電解質電池と、比較の対象としてカーボンを焼き付けてなる集電体を備えたコイン型電池および集電体を備えていないコイン型電池とを各30個用意し、評価試験を行った。評価試験に用いるサンプルとして実施例1、比較例1,2を用意した。
In this embodiment, since the binder 8 is composed of the same components as the sealant 7, the sealant 7 and the binder 8 can be formed at the same time, and the sealant 7 and the binder 8 are individually formed. Complexity to form is eliminated, the manufacturing process can be simplified, and mass productivity can be improved.
〔Evaluation test〕
In order to verify the effect of the coin-type non-aqueous electrolyte battery of the present invention, the coin-type non-aqueous electrolyte battery according to Embodiment 1 and a coin-type battery including a current collector formed by baking carbon as a comparison target, and Thirty coin-type batteries each without a current collector were prepared and subjected to an evaluation test. Example 1 and Comparative Examples 1 and 2 were prepared as samples used for the evaluation test.

(実施例1)
実施例1のコイン型電池は、実施の形態1で示したコイン型電池の構成と同じで、直径Dが約4.8[mm],厚みが約1.4[mm]、であり、その他の構成は実施の形態1と同様であるので、ここでの説明は省略する。
(比較例1)
比較例1のコイン型電池は、炭素系導電性塗料であるJEM−886を正極缶の内側のうち正極板と接触する部分に塗布し、これを150[℃]で1時間乾燥させて集電体としており、正極缶とガスケットとの間に形成されたシール剤と集電体とは間隙を開けて正極缶の内側面に形成されている点のみが実施例1と異なり、その他の構成については実施例1と同様であるので、ここでの説明は省略する。
Example 1
The coin-type battery of Example 1 has the same configuration as that of the coin-type battery shown in Embodiment 1, has a diameter D of about 4.8 [mm] and a thickness of about 1.4 [mm]. Since this configuration is the same as that of the first embodiment, description thereof is omitted here.
(Comparative Example 1)
In the coin-type battery of Comparative Example 1, the carbon-based conductive paint JEM-886 is applied to the inside of the positive electrode can on the portion that comes into contact with the positive electrode plate, and this is dried at 150 [° C.] for 1 hour to collect current. The only difference is that the sealing agent and the current collector formed between the positive electrode can and the gasket are formed on the inner surface of the positive electrode can with a gap therebetween. Since this is the same as that of the first embodiment, description thereof is omitted here.

(比較例2)
比較例2のコイン型電池は、正極缶の内面にうち正極板と接触する部分に何も形成されておらず、正極缶と正極板とが直接接触している点が実施例1と異なり、その他の構成については実施例1と同様であるので、ここでの説明は省略する。
<耐リフロー試験>
電池の表面温度が、150[℃]以上の状態が230秒、200[℃]以上の状態が90秒、250「℃」以上の状態が40秒(最大260[℃])となるように設定したリフロー炉内に実施例1、比較例1,2の各電池を投入した。全ての電池を2度、リフロー炉内に投入した。その理由は、プリント配線基板の一方の面に電池を実装した後、他方の面に他の電子部品が実装されることを想定したからである。
(Comparative Example 2)
The coin-type battery of Comparative Example 2 is different from Example 1 in that nothing is formed on the inner surface of the positive electrode can in the portion in contact with the positive electrode plate, and the positive electrode can and the positive electrode plate are in direct contact. Since other configurations are the same as those in the first embodiment, description thereof is omitted here.
<Reflow resistance test>
The battery surface temperature is set to be 230 seconds when the surface temperature is 150 [° C] or higher, 90 seconds when the temperature is 200 [° C] or higher, and 40 seconds (maximum 260 [° C]) when the temperature is 250 “° C” or higher The batteries of Example 1 and Comparative Examples 1 and 2 were put into the reflow furnace. All the batteries were put into the reflow furnace twice. The reason is that it is assumed that after mounting the battery on one surface of the printed wiring board, another electronic component is mounted on the other surface.

<作動電圧の測定>
実施例1、比較例1,2の各コイン型電池に対して、上記耐リフロー試験の前後それぞれにおいて、標準抵抗(12[kΩ])を接続して通電し、1秒後の作動電圧を測定した。
<内部抵抗の測定>
実施例1、比較例1,2のコイン型電池に対して、上記耐リフロー試験の前後それぞれにおいて、1[kHz]の交流内部抵抗値を測定した。
<Measurement of working voltage>
For each of the coin-type batteries of Example 1 and Comparative Examples 1 and 2, a standard resistor (12 [kΩ]) was connected and energized before and after the reflow resistance test, and the operating voltage after 1 second was measured. did.
<Measurement of internal resistance>
For the coin batteries of Example 1 and Comparative Examples 1 and 2, an AC internal resistance value of 1 [kHz] was measured before and after the reflow resistance test.

〔試験結果〕
以上の各測定値を表1に示す。なお、表1には、実施例1、比較例1,2それぞれのサンプルにつき、30個の平均値を記載している。
〔Test results〕
Table 1 shows the above measured values. In Table 1, 30 average values are shown for each sample of Example 1 and Comparative Examples 1 and 2.

Figure 0005238153
〔考察〕
表1に示すように、実施例1の作動電圧が、比較例1,2それぞれの作動電圧と比べて、同等の電圧を維持していることが確認できる。このことから、実施例1においては、比較例1,2と同等の通電性能を発揮できることが分かった。その理由として、結着剤8は、絶縁性を有するが、有機溶媒に分散させて塗布する工程を経て形成されているため、正極缶4の内側にて完全な被膜を形成できず、その結果、正極板1と正極缶4とを散点的に接触させたと考えられる。
Figure 0005238153
[Discussion]
As shown in Table 1, it can be confirmed that the operating voltage of Example 1 maintains an equivalent voltage as compared with the operating voltages of Comparative Examples 1 and 2. From this, it was found that in Example 1, the energization performance equivalent to that of Comparative Examples 1 and 2 can be exhibited. The reason is that the binder 8 has an insulating property, but is formed through a process of dispersing and coating in an organic solvent, so that a complete coating cannot be formed inside the positive electrode can 4, and as a result. It is considered that the positive electrode plate 1 and the positive electrode can 4 were brought into contact in a scattered manner.

また、有機溶媒揮発後において結着剤8が被膜を形成していても、正極缶4は金属製であって、その内表面が微視的に見て粗く、かつ正極板1も粉体を押し固めてなるので、正極板1のうち正極缶4と対向する面も微視的に見て粗く、柔軟な結着剤8が正極缶4のカシメに伴って、これら粗面同士に突き破られ、その結果、正極板1と正極缶4とが散点的に接触できると考えられる。   Even if the binder 8 forms a film after volatilization of the organic solvent, the positive electrode can 4 is made of metal and its inner surface is microscopically rough, and the positive electrode plate 1 is also made of powder. Since the surface of the positive electrode plate 1 facing the positive electrode can 4 is microscopically rough because it is pressed, the flexible binder 8 breaks into the rough surfaces with the caulking of the positive electrode can 4. As a result, it is considered that the positive electrode plate 1 and the positive electrode can 4 can come into contact in a scattered manner.

実施例1のリフロー前の作動電圧が比較例2のリフロー前の作動電圧と比べて大きいことが確認できる。
上記各試験を実施する際に、各サンプルは全て同じ規定寸法で作製しているが、製造ばらつきによって正極板の厚みにばらつきが生じ、正極板と正極缶との接触面積にばらつきが生じる。比較例2のコイン型電池では、この正極板の製造ばらつきに起因する接触面積のばらつきが直接作動電圧に影響したのに対して、実施例1のコイン型電池では、正極板1と正極缶4との間に膜状の結着剤8が形成されているため、結着剤8の弾性が正極板1と正極缶4との接触面積のばらつきを抑制するように働き、その結果、比較例2と比べてリフロー前の作動電圧が小さくなったと考えられる。これにより、結着剤8には製造ばらつきに起因する当該接触面積ばらつき抑制効果があることが確認できた。
It can be confirmed that the operating voltage before reflow in Example 1 is larger than the operating voltage before reflow in Comparative Example 2.
When the above tests are carried out, all the samples are produced with the same specified dimensions, but the thickness of the positive electrode plate varies due to manufacturing variations, and the contact area between the positive electrode plate and the positive electrode can varies. In the coin-type battery of Comparative Example 2, the contact area variation due to the manufacturing variation of the positive electrode plate directly affected the operating voltage, whereas in the coin-type battery of Example 1, the positive electrode plate 1 and the positive electrode can 4 Since the film-like binder 8 is formed between the positive electrode plate 1 and the positive electrode can 4, the elasticity of the binder 8 acts to suppress variation in the contact area between the positive electrode plate 1 and the positive electrode can 4. Compared to 2, the operating voltage before reflowing is considered to be smaller. Thereby, it has confirmed that the binder 8 had the said contact area variation inhibitory effect resulting from manufacturing variation.

表1に示すように、実施例1、比較例1,2の全てにおいて、リフロー後におけるそれらの内部抵抗がリフロー前に比べて大きくなっているが、実施例1では、比較例1,2と比べて、その上昇率が小さいことが確認できる。
その理由として、比較例1では、導電性塗料がリフロー時の加熱および電解液の作用によって分解され、かつ当該加熱によって電解液が揮発し、これに起因して電池内圧が上昇して正極缶が内側から押されて、集電体にクラックが伸展し、リフロー後の接触抵抗がリフロー前に比べて増加したと考えられる。
As shown in Table 1, in all of Example 1 and Comparative Examples 1 and 2, their internal resistance after reflow is larger than that before reflow, but in Example 1, Comparative Examples 1 and 2 and In comparison, it can be confirmed that the rate of increase is small.
The reason for this is that in Comparative Example 1, the conductive paint is decomposed by heating during reflow and the action of the electrolytic solution, and the electrolytic solution is volatilized by the heating. It is considered that cracks were extended in the current collector when pushed from the inside, and the contact resistance after reflow increased compared to that before reflow.

そして、比較例2では、もともと製造ばらつきによる接触抵抗のばらつきが大きいうえに、既述した電解液の揮発によって電池内圧が上昇し、正極缶が内側から押されて、正極板と正極缶との接触面積がさらに低下し、リフロー後の接触抵抗がリフロー前に比べて増加したと考えられる。
これらに対して、実施例1では、結着剤8が電解液に対して反応し難い特性を備えていることから、比較例1と比べて、分解されるおそれが低く、したがって、電解液の揮発により電池内圧が上昇しても、結着剤8の弾性によって、正極缶4が内側から押されることを抑制することができ、リフロー前後において正極缶4と正極板1との接触面積を維持することができたと考えられる。
In Comparative Example 2, the contact resistance due to manufacturing variation was originally large, and the internal pressure of the battery increased due to the volatilization of the electrolyte, and the positive electrode can was pushed from the inside. It is considered that the contact area further decreased, and the contact resistance after reflow increased compared with that before reflow.
On the other hand, in Example 1, since the binder 8 has a property that hardly reacts with the electrolytic solution, the possibility of being decomposed is lower than that in Comparative Example 1. Even if the battery internal pressure rises due to volatilization, the elasticity of the binder 8 can suppress the positive electrode can 4 from being pushed from the inside, and the contact area between the positive electrode can 4 and the positive electrode plate 1 is maintained before and after reflow. It is thought that it was possible.

つまり、結着剤8は、製造時、乾燥状態で正極缶4および正極板1に圧着されているが、結着剤8は弾力性を有するので、正極缶4、正極板1双方の表面の微細な凹凸が結着剤8の表面に食い込む。部分的には図1の部分拡大図に示すように正極板4と正極板1とが直接接触することになる。結果として結着剤8は多孔膜となる。
そして、結着の意味は、本来の接着状態のものであってもよいし(この場合は半乾燥状態と考えられる。)、上述の結着剤8が弾力性を有することで、ここに正極缶4および正極板1の微細な凹凸が食い込んで、結果として正極缶4と正極板1とが結合状態になるとの意味を持つ。
That is, the binder 8 is pressure-bonded to the positive electrode can 4 and the positive electrode plate 1 in a dry state at the time of manufacture. However, since the binder 8 has elasticity, both the surfaces of both the positive electrode can 4 and the positive electrode plate 1 are bonded. Fine irregularities bite into the surface of the binder 8. In part, the positive electrode plate 4 and the positive electrode plate 1 are in direct contact as shown in the partial enlarged view of FIG. As a result, the binder 8 becomes a porous film.
The meaning of the binding may be the original adhesion state (in this case, it is considered to be a semi-dry state), or the above-described binding agent 8 has elasticity, so that the positive electrode here. It has the meaning that the fine irregularities of the can 4 and the positive electrode plate 1 bite into the positive electrode can 4 and the positive electrode plate 1 as a result.

既述のように、正極缶4と負極缶5とを嵌合させる前に正極缶4の内表面に塗られた結着剤8は十分にキシレン・水分を揮発させているが、正極板1のうち、正極缶4と対向する面が粗く、そして、結着剤8は、溶媒に溶かされたものを揮発させてなるため、正極板1と対向する面が粗く、なおかつ正極缶4をカシメる際に適度な圧力が加わることによって、結着剤8の粗面を構成するゴム繊維が正極板1の粗面に入り込み、絡み合って、結着剤8が、正極板1と結着して、上記作用を奏していると考えられる。   As described above, the binder 8 applied to the inner surface of the positive electrode can 4 before the positive electrode can 4 and the negative electrode can 5 are fitted to each other sufficiently volatilizes xylene and moisture. Among them, the surface facing the positive electrode can 4 is rough, and the binder 8 is formed by volatilizing the material dissolved in the solvent. Therefore, the surface facing the positive electrode plate 1 is rough and the positive electrode can 4 is caulked. When a suitable pressure is applied, the rubber fibers constituting the rough surface of the binder 8 enter the rough surface of the positive electrode plate 1 and become entangled, and the binder 8 is bonded to the positive electrode plate 1. It is considered that the above-mentioned action is exerted.

以上の結果から、実施例1のコイン型電池では、結着剤8に絶縁性があるにもかかわらず、比較例1,2と同様に正極板1と正極缶4との通電を確保でき、比較例2と比べて製造ばらつきに起因する接触ばらつきを抑制でき、比較例1,2に比べてリフロー工程による集電性能の低下を抑制できることが確認できた。   From the above results, in the coin-type battery of Example 1, it is possible to ensure the energization of the positive electrode plate 1 and the positive electrode can 4 as in Comparative Examples 1 and 2, although the binder 8 has an insulating property. Compared with Comparative Example 2, it was confirmed that contact variation due to manufacturing variation could be suppressed, and that compared with Comparative Examples 1 and 2, reduction in current collecting performance due to the reflow process could be suppressed.

本発明に係るコイン型電池では、リフロー半田工程による悪影響を抑制できるので、量産性の向上が要求される電気機器に広く適用することができ、その産業上の利用可能性が非常に広く、且つ大きい。   In the coin-type battery according to the present invention, the adverse effects due to the reflow soldering process can be suppressed, so that it can be widely applied to electrical equipment that requires improvement in mass productivity, and its industrial applicability is very wide, and large.

実施の形態1にかかるコイン型電池の概略断面図である。1 is a schematic cross-sectional view of a coin-type battery according to a first embodiment.

符号の説明Explanation of symbols

1 正極板
2 負極板
3 セパレータ
4 正極缶
5 負極缶
6 ガスケット
7 シール剤
8 結着剤
10 コイン型電池
DESCRIPTION OF SYMBOLS 1 Positive electrode plate 2 Negative electrode plate 3 Separator 4 Positive electrode can 5 Negative electrode can 6 Gasket 7 Seal agent 8 Binder 10 Coin type battery

Claims (4)

正極ケースおよび負極ケースが、ガスケットを挟みながら嵌合した状態で、正極板、負極板および電解液を包含しているコイン型の非水電解質電池であって、
前記電解液は、プロピレンカーボネート及びジメトキシエタンを含有し、
オレフィン系炭化水素を主成分とする多孔膜状の結着剤が、少なくとも一方の極板と、当該極板と対向する少なくとも一方の極ケースとを結着していることを特徴とするコイン型の非水電解質電池。
A coin-type nonaqueous electrolyte battery including a positive electrode plate, a negative electrode plate, and an electrolyte solution in a state where the positive electrode case and the negative electrode case are fitted with a gasket interposed therebetween,
The electrolytic solution contains propylene carbonate and dimethoxyethane,
A coin type, characterized in that a porous membrane binder mainly composed of an olefinic hydrocarbon binds at least one electrode plate and at least one electrode case facing the electrode plate. Non-aqueous electrolyte battery.
前記結着剤は、室温以上300[℃]未満において弾性を有することを特徴とする請求項1に記載のコイン型非水電解質電池。   The coin-type non-aqueous electrolyte battery according to claim 1, wherein the binder has elasticity at a room temperature or higher and lower than 300 ° C. 前記正極ケースと前記ガスケットとの間には、膜状のシール剤が介挿されており、
前記結着剤は、前記シール剤と同じ成分からなることを特徴とする請求項1または2に記載のコイン型非水電解質電池。
Between the positive electrode case and the gasket, a film-like sealing agent is inserted,
The coin-type non-aqueous electrolyte battery according to claim 1, wherein the binder is made of the same component as the sealant.
前記結着剤は、ブチレンゴム、延伸多孔質ポリテトラフルオロエチレン、スチレンブタジエンゴム、エチレンプロピレンゴム、フッ素ゴムから選択された少なくとも1種類を主成分に含むことを特徴とする請求項1から3までのいずれかに記載のコイン型非水電解質電池。   4. The binder according to claim 1, wherein the binder contains at least one selected from butylene rubber, stretched porous polytetrafluoroethylene, styrene butadiene rubber, ethylene propylene rubber, and fluorine rubber as a main component. The coin-type nonaqueous electrolyte battery according to any one of the above.
JP2006268013A 2006-09-29 2006-09-29 Coin-cell battery Expired - Fee Related JP5238153B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006268013A JP5238153B2 (en) 2006-09-29 2006-09-29 Coin-cell battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006268013A JP5238153B2 (en) 2006-09-29 2006-09-29 Coin-cell battery

Publications (3)

Publication Number Publication Date
JP2008091081A JP2008091081A (en) 2008-04-17
JP2008091081A5 JP2008091081A5 (en) 2009-11-05
JP5238153B2 true JP5238153B2 (en) 2013-07-17

Family

ID=39375042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006268013A Expired - Fee Related JP5238153B2 (en) 2006-09-29 2006-09-29 Coin-cell battery

Country Status (1)

Country Link
JP (1) JP5238153B2 (en)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62115661A (en) * 1985-11-14 1987-05-27 Matsushita Electric Ind Co Ltd Sealed battery
JP3197553B2 (en) * 1990-07-31 2001-08-13 三洋電機株式会社 Non-aqueous secondary battery
JPH05121055A (en) * 1991-10-24 1993-05-18 Seiko Electronic Components Ltd Coin type cell and its manufacture
JP2000138042A (en) * 1998-11-02 2000-05-16 Matsushita Electric Ind Co Ltd Organic electrolyte battery
JP4785282B2 (en) * 2000-10-11 2011-10-05 セイコーインスツル株式会社 Manufacturing method of electric double layer capacitor capable of reflow soldering mounting
JP2004079355A (en) * 2002-08-19 2004-03-11 Sony Corp Nonaqueous electrolyte battery and its manufacturing method
JP2005332657A (en) * 2004-05-19 2005-12-02 Sii Micro Parts Ltd Non-aqueous electrolyte secondary battery
JP2005347100A (en) * 2004-06-03 2005-12-15 Hitachi Maxell Ltd Coin type battery
JP2006040596A (en) * 2004-07-23 2006-02-09 Hitachi Maxell Ltd Flat battery and its manufacturing method

Also Published As

Publication number Publication date
JP2008091081A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
CN101877410B (en) Lithium primary battery and method for producing same
JP2010186682A (en) Method of manufacturing solid electrolyte layer
EP1241720A3 (en) Process for fabricating continuously coated electrodes on a porous current collector and cell designs incorporating said electrodes
JP6032628B2 (en) Thin battery
US7758782B2 (en) Method and device for producing electrodes for batteries
JP2010061825A (en) Current collector foil for battery and method of manufacturing the same, as well as battery
JP2019192596A (en) Sulfide solid state battery and sulfide solid state battery system including the same
JP2008084742A (en) Lithium-ion secondary battery
JP2017073328A (en) Nonaqueous electrolyte secondary battery
US20040219424A1 (en) Non-aqueous electrolyte secondary battery
JP2001266941A (en) Manufacturing method of gel electrolyte battery
KR20200017486A (en) Batteries and Electrodes Containing Different Carbon Black Particles
JP2015220102A (en) Battery mounting substrate
JP6819533B2 (en) Negative electrode mixture for all-solid-state lithium-ion secondary batteries
JP5238153B2 (en) Coin-cell battery
WO2015141120A1 (en) Lithium primary battery
KR19990030265A (en) Gel electrolyte secondary battery
JP5716543B2 (en) Lithium ion secondary battery and manufacturing method thereof
US10236477B2 (en) Electrochemical cells construction and packaging for high temperature applications
JP3879220B2 (en) Explosion-proof sealing device for secondary batteries
US20020177037A1 (en) Method for producing a separator/electrode assembly for electrochemical elements
JP2003331836A (en) Nonaqueous electrolyte secondary battery and method of manufacturing the secondary battery
JP2002117896A (en) Flat lithium secondary battery
JP7133749B1 (en) solid electrolytes and batteries
JPWO2019003770A1 (en) Secondary battery and method of manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090916

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120921

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5238153

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees