JP2006040596A - Flat battery and its manufacturing method - Google Patents

Flat battery and its manufacturing method Download PDF

Info

Publication number
JP2006040596A
JP2006040596A JP2004215196A JP2004215196A JP2006040596A JP 2006040596 A JP2006040596 A JP 2006040596A JP 2004215196 A JP2004215196 A JP 2004215196A JP 2004215196 A JP2004215196 A JP 2004215196A JP 2006040596 A JP2006040596 A JP 2006040596A
Authority
JP
Japan
Prior art keywords
container
inner container
battery
outer container
flat battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215196A
Other languages
Japanese (ja)
Inventor
Hirokazu Yoshikawa
博和 吉川
Keiichiro Uenae
圭一郎 植苗
Jun Sato
佐藤  淳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP2004215196A priority Critical patent/JP2006040596A/en
Publication of JP2006040596A publication Critical patent/JP2006040596A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • Y02E60/12

Landscapes

  • Primary Cells (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a flat battery capable of widening the inner volume of the battery and decreasing the weight while electrolyte leakage resistance similar to a battery sealed by crimping through a gasket is ensured, and to provide the manufacturing method of the flat battery. <P>SOLUTION: In the flat battery manufactured by sealing a power generation element on the inside of an outer jacket formed by fitting an inside container and an outside container with each side wall, a fitting part of the outside container and the inside container is sealed with an adhesion layer containing synthetic resin or synthetic rubber, and the side wall of the inside container has pressing force to the outer circumferential direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、内容積の拡大や軽量化を達成できると共に、耐漏液性にも優れた電池に関するものである、   The present invention relates to a battery that can achieve expansion and weight reduction of the internal volume and is excellent in leakage resistance.

近年、AV機器やパーソナルコンピューターなどのコードレス化・ポータブル化に伴い、その駆動用電源である電池に対し、小型化・軽量化・高エネルギー密度化の要望が高まっている。このような要求を満たす電池としては、特にボタン(コイン)形電池(以下、「ボタン形電池」で統一する)が主流である。   In recent years, with cordless and portable computers such as AV devices and personal computers, there is an increasing demand for a battery that is a power source for driving the device to be smaller, lighter, and higher in energy density. As a battery satisfying such requirements, a button (coin) type battery (hereinafter referred to as “button type battery”) is the mainstream.

これらのボタン形電池の断面概略図を図5に示す。図5中、20は電池、21は内側容器(負極缶)、22は外側容器(正極缶)、23はガスケット、24は負極、25はセパレータ、26は正極である。また、電池20内部には、電解液(図示しない)が注入されている。図5に示すように、ボタン形電池20では、電池の外装体を構成することになる内側容器21と外側容器22とを、成形体であるガスケット23を介してかしめ封口しており、気密性が高く、かつ機械的強度に優れている。しかしながら、これらのボタン形電池では、図5に示すように、ガスケット23を使用する関係上、内側容器21と外側容器22との嵌合部の占める体積が大きく、また、ガスケット23のように、封止に用いる材料の量も多いため、これらを含めた封止部(外側容器22側壁の外周部と、ガスケット23の内周面とで仕切られた領域、すなわち図5中の2本の点線で仕切られた領域A’)の占める割合は大きなものとなり、電池の軽量化や電池内容積の拡大には大きな制約があった。すなわち、優れた封止性能を確保するためには、封止部の幅(図5の2本の点線の間の距離)をおよそ1mm以上とする必要があり、径方向での電池の断面積:S(mm)に対する封止部の断面積の割合:T(%)は、電池径が25mmのときには約15%、15mmの時には約25%、5mmのときには約64%と、電池径が小さくなるほど電池内容積のロスが大きくなっていた。 A schematic cross-sectional view of these button batteries is shown in FIG. In FIG. 5, 20 is a battery, 21 is an inner container (negative electrode can), 22 is an outer container (positive electrode can), 23 is a gasket, 24 is a negative electrode, 25 is a separator, and 26 is a positive electrode. In addition, an electrolytic solution (not shown) is injected into the battery 20. As shown in FIG. 5, in the button-type battery 20, the inner container 21 and the outer container 22 that constitute the battery outer body are caulked and sealed through a gasket 23 that is a molded body, and thus airtightness is achieved. And high mechanical strength. However, in these button-type batteries, as shown in FIG. 5, the volume occupied by the fitting portion between the inner container 21 and the outer container 22 is large due to the use of the gasket 23. Since the amount of the material used for sealing is also large, the sealing portion including these (the region partitioned by the outer peripheral portion of the side wall of the outer container 22 and the inner peripheral surface of the gasket 23, that is, the two dotted lines in FIG. The area occupied by the region A ′) partitioned by is large, and there are significant restrictions on the weight reduction of the battery and the expansion of the battery internal volume. That is, in order to ensure excellent sealing performance, the width of the sealing portion (the distance between the two dotted lines in FIG. 5) needs to be approximately 1 mm or more, and the cross-sectional area of the battery in the radial direction : Ratio of the cross-sectional area of the sealing portion to S (mm 2 ): T (%) is about 15% when the battery diameter is 25 mm, about 25% when the battery diameter is 15 mm, and about 64% when the battery diameter is 5 mm. The smaller the battery capacity, the greater the battery capacity loss.

他方、電池容器の嵌合部の封口を、ガスケットを用いたかしめによらず、接着剤を用いて行った電池も提案されている(特許文献1〜2)。これらの技術によれば、封止部が占める部分の体積を抑えて、電池内容積を大きくできる可能性がある。   On the other hand, a battery is also proposed in which the sealing of the fitting part of the battery container is performed using an adhesive regardless of caulking using a gasket (Patent Documents 1 and 2). According to these techniques, there is a possibility that the internal volume of the battery can be increased by suppressing the volume of the portion occupied by the sealing portion.

特開昭55−111060号公報JP 55-1111060 A 実開昭58−139668号公報Japanese Utility Model Publication No. 58-139668

上記特許文献1〜2に係る電池では、主として接着剤の接着能力により電池の封止性能が決定されるが、これは、例えば接着面積などに依存するため、電池の高さを低くして電池を薄型化しようとした場合には、接着面積が小さくなって接着能力が低下し、ガスケットを用いる電池に比べて気密性が劣り、電解液の漏れ抑制が不十分となることもあった。本発明は、こうした従来技術の問題点を解決して、ガスケットを用いてかしめ封口した電池と同等レベルの耐漏液性を確保しつつ、電池内容積を拡大や軽量化を達成し得る扁平形電池と、該扁平形電池の製造方法を提供することを課題とする。   In the batteries according to Patent Documents 1 and 2, the sealing performance of the battery is mainly determined by the adhesive ability of the adhesive. However, this depends on, for example, the adhesion area, etc. When trying to reduce the thickness, the bonding area is reduced, the bonding ability is lowered, the airtightness is inferior to the battery using the gasket, and the leakage control of the electrolytic solution may be insufficient. The present invention solves such problems of the prior art, and ensures a leakage resistance equivalent to that of a battery that is caulked and sealed using a gasket, while achieving expansion and weight reduction of the battery volume. Another object is to provide a method for producing the flat battery.

本発明は、内側容器と外側容器とを、それぞれの側壁で嵌合してなる外装体内部に発電要素を封入した扁平形電池について、上記内側容器と上記外側容器との嵌合部を、熱融着性の合成樹脂または合成ゴムを含む接着層により封止し、上記内側容器の側壁に、外周方向への押圧力を持たせることで、上記課題を解決したものである。   The present invention relates to a flat battery in which a power generation element is sealed inside an exterior body formed by fitting an inner container and an outer container at respective side walls, and a fitting portion between the inner container and the outer container is heated. The above-mentioned problem is solved by sealing with an adhesive layer containing a fusible synthetic resin or synthetic rubber, and imparting a pressing force in the outer peripheral direction to the side wall of the inner container.

本発明の扁平形電池では、電池の外装体を構成する内側容器と外側容器との嵌合部において、合成樹脂または合成ゴムを含む接着層により封止を行うことで、ガスケットを用いたかしめ封口を回避して、封止部(内側容器の側壁内周面と外側容器の側壁外周面とで仕切られる領域)の占める割合を低減し、電池内容積を大きくすることができる。また、封口に用いる材料も減らし得るため、電池の軽量化も図り得る。さらに、内側容器の側壁に、外周方向への押圧力[外側容器側に向う反発応力(外側容器側に向かって開こうとする応力)]を持たせることで、内側容器と外側容器との嵌合部の密着性を高めて、気密性、すなわち耐漏液性を向上させることもできる。   In the flat battery according to the present invention, the fitting portion between the inner container and the outer container constituting the battery outer body is sealed with an adhesive layer containing a synthetic resin or synthetic rubber, so that a caulking seal using a gasket is used. Thus, the ratio occupied by the sealing portion (the region partitioned by the inner peripheral wall surface of the inner container and the outer peripheral wall surface of the outer container) can be reduced, and the battery internal volume can be increased. Moreover, since the material used for the sealing can be reduced, the weight of the battery can be reduced. Furthermore, the inner container has a pressing force in the outer peripheral direction [repulsive stress toward the outer container (stress to open toward the outer container)], so that the inner container and the outer container are fitted. It is also possible to improve the airtightness, that is, the leakage resistance, by increasing the adhesion of the joint.

内側容器−外側容器間の接着性や絶縁性を高める観点から、上記接着層は、厚みが30〜200μmであることが望ましい。また、上記接着層としては、合成樹脂としてポリオレフィンなどを含むものが、また、合成ゴムとしてスチレンーブタジエンゴムなどを含むものが例示できる。   From the viewpoint of enhancing the adhesiveness and insulation between the inner container and the outer container, the adhesive layer preferably has a thickness of 30 to 200 μm. Examples of the adhesive layer include those containing polyolefin as a synthetic resin, and those containing styrene-butadiene rubber as a synthetic rubber.

また、本発明の扁平形電池の製造方法は、内側容器と外側容器とを、それぞれの側壁で嵌合してなる外装体内部に発電要素を封入した扁平形電池(すなわち、上記本発明の扁平形電池)を製造するに当たり、上記内側容器および上記外側容器として、側壁が、開口部側から底面側に向かって窄まる形状のカップ状容器を用い、上記発電要素を装填した上記内側容器と、上記外側容器とを、合成樹脂または合成ゴムを含む接着層を介して嵌合すると共に、上記内側容器の側壁および上記外側容器の側壁を、該内側容器の底面および該外側容器の底面に対して略垂直となるように圧縮することを特徴とする。   Further, the flat battery manufacturing method of the present invention includes a flat battery in which a power generation element is sealed inside an outer package formed by fitting an inner container and an outer container with respective side walls (that is, the flat battery of the present invention described above). In manufacturing the battery, a cup-shaped container whose side wall is narrowed from the opening side to the bottom side as the inner container and the outer container, the inner container loaded with the power generation element, The outer container is fitted with an adhesive layer containing a synthetic resin or synthetic rubber, and the side wall of the inner container and the side wall of the outer container are connected to the bottom surface of the inner container and the bottom surface of the outer container. It compresses so that it may become substantially perpendicular | vertical.

すなわち、内側容器に、側壁が開口部側から底面側に向かって窄まる形状のカップ状容器を用い、外側容器との嵌合の際に、その側壁を、底面に対して略垂直となるように圧縮することで、内側容器の側壁に外周方向への押圧力を持たせて、内側容器−外側容器間の密着性を高めることができる。また、外側容器にも、側壁が開口部側から底面側に向かって窄まる形状のカップ状容器を用いることで、内側容器を外側容器内に挿入する際の作業性の向上を図ることもできる。   That is, a cup-shaped container whose side wall is narrowed from the opening side to the bottom side is used as the inner container, and the side wall is made to be substantially perpendicular to the bottom surface when fitted to the outer container. By compressing the inner container, it is possible to increase the adhesion between the inner container and the outer container by giving a pressing force in the outer peripheral direction to the side wall of the inner container. Further, by using a cup-shaped container whose side wall is narrowed from the opening side to the bottom surface side, the workability when inserting the inner container into the outer container can also be improved. .

内側容器としては、底面に対する垂線と、側壁の最も長い直線部分とのなす内角が0.5〜10°であるカップ状容器を、また、外側容器としては、底面に対する垂線と、側壁の最も長い直線部分とのなす内角が1〜20°であるカップ状容器を用いることが好ましい。また、上記接着層は、上記内側容器および上記外側容器と熱融着させることが推奨される。   The inner container is a cup-shaped container having an internal angle of 0.5 to 10 ° between the perpendicular to the bottom surface and the longest straight portion of the side wall, and the outer container is a perpendicular to the bottom surface and the longest side wall. It is preferable to use a cup-shaped container having an internal angle of 1 to 20 ° with the straight portion. Further, it is recommended that the adhesive layer is heat-sealed with the inner container and the outer container.

本発明の扁平形電池は、ガスケットを用いてかしめ封口した電池に比べて遜色ない耐漏液性を確保しつつ、電池内容積を大きくできるため、電池容量の向上の要請に応え得る。また、封止部に用いる材料を減らすこともでき、電池の軽量化も達成できる。   The flat battery of the present invention can satisfy the demand for an improvement in battery capacity because the battery internal volume can be increased while ensuring leakage resistance comparable to that of a battery caulked and sealed using a gasket. Further, the material used for the sealing portion can be reduced, and the weight of the battery can be reduced.

さらに、本発明の扁平形電池の製造方法によれば、作業性よく上記本発明の扁平形電池を製造することができる。   Furthermore, according to the method for manufacturing a flat battery of the present invention, the flat battery of the present invention can be manufactured with good workability.

以下、本発明を詳細に説明する。図1は、本発明の扁平形電池の一例の要部を示す断面概略図である。10は電池、11は内側容器、12は外側容器、13は接着層、14は負極、15はセパレータ、16は正極、17は絶縁体であり。電池内部には電解液(図示しない)が注入されている。図1中、Aは封止部であり、内側容器11の側壁の内周面と外側容器12の側壁の外周面とで仕切られる領域である。   Hereinafter, the present invention will be described in detail. FIG. 1 is a schematic cross-sectional view showing the main part of an example of the flat battery of the present invention. 10 is a battery, 11 is an inner container, 12 is an outer container, 13 is an adhesive layer, 14 is a negative electrode, 15 is a separator, 16 is a positive electrode, and 17 is an insulator. An electrolytic solution (not shown) is injected into the battery. In FIG. 1, A is a sealing portion, which is an area partitioned by the inner peripheral surface of the side wall of the inner container 11 and the outer peripheral surface of the side wall of the outer container 12.

内側容器および外側容器は、電池の外装体を構成するものである。その素材は特に限定されず、従来公知の電池に用いられているもの[例えば、ステンレス鋼、鉄(例えば冷間圧延鋼板、好ましくは表面にNiなどのメッキを施したもの)、銅−ステンレス鋼クラッド材、ステンレス鋼を母材とするアルミニウムクラッド材など]を採用すればよい。   The inner container and the outer container constitute a battery outer package. The material is not particularly limited, and those used in conventionally known batteries [for example, stainless steel, iron (for example, cold-rolled steel plate, preferably plated with Ni or the like on its surface), copper-stainless steel A clad material, an aluminum clad material using stainless steel as a base material, etc.] may be employed.

内側容器および外側容器は、電池の状態では、図1に示すように、これらの側壁が、内側容器の底面および外側容器の底面に対して略垂直であるが、互いに嵌合される前は、側壁が、開口部側から底面側に向かって窄まる形状(以下、「テーパ形状」という場合がある)のカップ状である。   In the state of the battery, the inner container and the outer container are substantially perpendicular to the bottom surface of the inner container and the bottom surface of the outer container as shown in FIG. The side wall has a cup shape that narrows from the opening side toward the bottom surface side (hereinafter sometimes referred to as “taper shape”).

内側容器として、上記のようなテーパ形状を有するカップ状容器を用い、電池とする際に側壁を底面に対して略垂直にすることで、内側容器の側壁には、外側容器側に向けて広がろうとする押圧力が生じる。この押圧力によって、内側容器の側壁が、外側容器の側壁に押し付けられる。こうした内側容器の側壁のバネのような働き(バネ効果)により、内側容器−外側容器間の密着性が向上するため、電池の気密性、すなわち耐漏液性を高めることができる。   The cup-shaped container having the tapered shape as described above is used as the inner container, and when the battery is made, the side wall is made substantially perpendicular to the bottom surface so that the side wall of the inner container is widened toward the outer container side. A pressing force is generated to try to peel off. By this pressing force, the side wall of the inner container is pressed against the side wall of the outer container. Such an action (spring effect) of the side wall of the inner container improves the adhesion between the inner container and the outer container, so that the airtightness of the battery, that is, the leakage resistance can be improved.

また、図2に、本発明の扁平形電池の他の例の要部を表す断面概略図を示す。図2の電池は、外側容器12の開口部側が内側容器11の方に傾斜していることを除き、図1の電池と同じ構成を有している。この図2の電池のように、外側容器12の開口部側を内側容器11側へ傾斜させ、内側容器11の抜け止めがなされるようにすると、密着性が向上することから、より好ましい。   FIG. 2 is a schematic cross-sectional view showing the main part of another example of the flat battery of the present invention. The battery of FIG. 2 has the same configuration as the battery of FIG. 1 except that the opening side of the outer container 12 is inclined toward the inner container 11. Like the battery of FIG. 2, it is more preferable that the opening side of the outer container 12 is inclined toward the inner container 11 so that the inner container 11 is prevented from coming off because the adhesion is improved.

図3に内側容器11の要部の断面図を示すが、図3中θ、すなわち、底面に対する垂線と、側壁の最も長い直線部分とのなす内角(以下、「テーパ角」という場合がある。後記の外側容器についても同じ。)が、0.5°以上、より好ましくは1°以上であって、10°以下、より好ましくは5°以下であることが望ましい。内側容器側壁のテーパ角をこのような範囲に制御することで、上記のバネ効果が一層顕著となる。すなわち、内側容器側壁のテーパ角が小さすぎると、電池とした際に、内側容器の側壁の、外周方向への押圧力が小さくなり、内側容器側壁の上記バネ効果、すなわち内側容器−外側容器間の密着性向上効果が不十分となることがある。また、内側容器側壁のテーパ角が大きすぎると、外側容器との嵌合時の作業性が低下するなど、電池製造の際の作業性が低下することがある。 FIG. 3 shows a cross-sectional view of the main part of the inner container 11. In FIG. 3, θ 1 , that is, an internal angle formed by a perpendicular to the bottom surface and the longest straight portion of the side wall (hereinafter, referred to as “taper angle”). The same applies to the outer container described later.) Is 0.5 ° or more, more preferably 1 ° or more, and preferably 10 ° or less, more preferably 5 ° or less. By controlling the taper angle of the inner container side wall in such a range, the above-described spring effect becomes more remarkable. That is, if the taper angle of the inner container side wall is too small, when the battery is used, the pressing force of the inner container side wall in the outer circumferential direction is reduced, and the spring effect of the inner container side wall, that is, between the inner container and the outer container, is reduced. The adhesion improving effect may be insufficient. Moreover, when the taper angle of the inner container side wall is too large, workability at the time of battery manufacture may be lowered, for example, workability at the time of fitting with the outer container is lowered.

また、外側容器に上記のようなテーパ形状を有するカップ状容器を用いることで、外側容器内に内側容器を嵌合する際の作業性が向上するため、電池の生産性を高めることができる。図4に外側容器12の要部の断面図を示すが、図4中θ、すなわち、底面に対する垂線と、側壁の最も長い直線部分とのなす角(テーパ角)が、1°以上、より好ましくは2°以上であって、20°以下、より好ましくは15°以下であることが望ましい。外側容器側壁のテーパ角をこのような範囲に制御することで、電池製造時の作業性向上効果が一層顕著となる。すなわち、外側容器側壁のテーパ角が小さすぎると、電池製造の際の作業性向上効果が十分に確保できないことがある。また、電池とする際には、内側容器と外側容器を、接着層を介して嵌合させ、内側容器の側壁および外側容器の側壁が、内側容器の底面および外側容器の底面に対して略垂直となるように圧縮するが、外側容器側壁のテーパ角が大きすぎると、側壁の圧縮加工が困難になるなど、かえって作業性が低下することがある。 Moreover, since the workability | operativity at the time of fitting an inner container in an outer container improves by using the cup-shaped container which has the above taper shapes for an outer container, the productivity of a battery can be improved. FIG. 4 shows a cross-sectional view of the main part of the outer container 12. In FIG. 4, θ 2 , that is, the angle (taper angle) formed by the perpendicular to the bottom surface and the longest straight portion of the sidewall is 1 ° or more. It is preferably 2 ° or more and 20 ° or less, more preferably 15 ° or less. By controlling the taper angle of the outer container side wall in such a range, the workability improvement effect at the time of battery production becomes more remarkable. That is, if the taper angle of the outer container side wall is too small, the workability improvement effect during battery manufacturing may not be sufficiently ensured. Further, when forming a battery, the inner container and the outer container are fitted through an adhesive layer, and the side walls of the inner container and the outer container are substantially perpendicular to the bottom surface of the inner container and the bottom surface of the outer container. However, if the taper angle of the side wall of the outer container is too large, workability may be deteriorated because the side wall is difficult to be compressed.

内側容器底面および外側容器底面の形状としては、例えば、平面視で略円形や略楕円形、略四角形(略正方形や略長方形など)など、従来公知の一般的な扁平形電池(ボタン形電池など)と同様の形状が挙げられるが、これらの形状に限定される訳ではない。また、内側容器および外側容器の大きさも特に制限はなく、例えば、従来公知の扁平形電池と同様の大きさとすることができ、更には、従来公知のものよりも大きくしたり小さくしたりすることもできる。具体的には、例えば、底面および上面が平面視で円形のボタン形電池でいえば、内側容器について、底面の直径:5〜30mm、側壁の高さ(底面に対する垂直高さ、図3中h):1〜5mmとすることが、また、外側容器について、底面の直径:5〜30mm、側壁の高さ(底面に対する垂直高さ、図4中h):1〜5mmとすることが一般的である。 The shapes of the bottom surface of the inner container and the bottom surface of the outer container include, for example, a generally known flat battery (such as a button-shaped battery) such as a substantially circular shape, a substantially elliptical shape, or a substantially rectangular shape (such as a substantially square or a substantially rectangular shape) in plan view. ) And the like, but are not limited to these shapes. The size of the inner container and the outer container is not particularly limited. For example, the inner container and the outer container can be the same size as a conventionally known flat battery, and can be made larger or smaller than a conventionally known battery. You can also. Specifically, for example, in the case of a button-type battery whose bottom surface and top surface are circular in a plan view, the diameter of the bottom surface: 5 to 30 mm, the height of the side wall (vertical height with respect to the bottom surface, h in FIG. 1 ): 1 to 5 mm, and for the outer container, the bottom surface diameter: 5 to 30 mm, the side wall height (vertical height with respect to the bottom surface, h 2 in FIG. 4): 1 to 5 mm. It is common.

なお、内側容器および外側容器の各底面形状が平面視で略四角形の電池の場合、四隅が曲線形状に仕上げられることが一般的であるが、本発明の電池に用いる内側容器および外側容器では、側壁が直線的な箇所で測定されるテーパ角(上記θおよび上記θ)が、上記所定範囲内にあればよい。 In addition, when each bottom shape of the inner container and the outer container is a substantially rectangular battery in plan view, the four corners are generally finished in a curved shape, but in the inner container and the outer container used for the battery of the present invention, The taper angle (the above θ 1 and the above θ 2 ) measured at a location where the side wall is linear may be within the predetermined range.

本発明の電池では、内側容器と外側容器の嵌合部に、接着層を介在させて接着する。接着層は、公知の合成樹脂または合成ゴムを含むものであり、これら合成樹脂や合成ゴムが接着成分として作用する。合成樹脂としては、例えば、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合体などのポリオレフィン;ナイロン6、ナイロン66、ナイロン11、ナイロン12、ナイロン610、ナイロン612、ナイロン6−ナイロン66共重合体などの共重合ナイロンなどのポリアミド;などが挙げられる。また、上記ポリオレフィンは、内側容器や外側容器を構成する金属との親和性が小さいことから、接着性を向上させる目的で、極性基(カルボキシル基や水酸基など)を導入した変性ポリオレフィンであってもよい。なお、本発明の電池では、後述するように、内側容器および外側容器を接着層により熱融着させるが、この熱融着の際の温度は、100〜300℃とすることが望ましい。このため、上記合成樹脂の中でも、上記温度で熱融着可能なものが好ましく、具体的には、例えば、JIS K 7121の規定に準じて測定される融解温度が上記の熱融着温度の範囲内にある合成樹脂を用いることが推奨される。   In the battery according to the present invention, the inner container and the outer container are bonded to each other with an adhesive layer interposed therebetween. The adhesive layer contains a known synthetic resin or synthetic rubber, and these synthetic resin and synthetic rubber act as an adhesive component. Examples of the synthetic resin include polyolefins such as polyethylene, polypropylene, and ethylene-propylene copolymer; copolymers such as nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 6-nylon 66 copolymer, and the like. And polyamides such as polymerized nylon. In addition, the polyolefin is a modified polyolefin having a polar group (such as a carboxyl group or a hydroxyl group) introduced for the purpose of improving adhesiveness because of its low affinity with the metal constituting the inner and outer containers. Good. In the battery of the present invention, as will be described later, the inner container and the outer container are heat-sealed by an adhesive layer, and the temperature during this heat-sealing is preferably 100 to 300 ° C. For this reason, among the above synthetic resins, those that can be heat-sealed at the above-mentioned temperatures are preferable. Specifically, for example, the melting temperature measured according to the provisions of JIS K 7121 is within the range of the above-mentioned heat-sealing temperatures. It is recommended to use the synthetic resin inside.

接着層に含まれる合成ゴムとしては、例えば、スチレン−ブタジエンゴム、ブチルゴム、ポリイソブチレンゴムなどが例示できる。なお、接着層に含まれる合成ゴムは、電池の状態では、加硫されていることが好ましい。合成ゴムを含む接着層の加硫は、例えば、内側容器および外側容器への熱融着と同時に行うことができる。例えば、スチレン−ブタジエンゴムを含む接着層としては、市販のシート(スチレン−ブタジエンゴムに、加硫剤などを配合したシートなど)を適用することができる。   Examples of the synthetic rubber contained in the adhesive layer include styrene-butadiene rubber, butyl rubber, and polyisobutylene rubber. The synthetic rubber contained in the adhesive layer is preferably vulcanized in the battery state. Vulcanization of the adhesive layer containing synthetic rubber can be performed simultaneously with heat fusion to the inner container and the outer container, for example. For example, as the adhesive layer containing styrene-butadiene rubber, a commercially available sheet (such as a sheet obtained by blending a styrene-butadiene rubber with a vulcanizing agent) can be applied.

接着層には、上記の合成樹脂や合成ゴムの他、必要に応じて公知の各種添加剤が含まれていてもよい。   In addition to the above synthetic resin and synthetic rubber, the adhesive layer may contain various known additives as necessary.

接着層の厚みは、30μm以上、より好ましくは50μm以上であって、200μm以下、より好ましくは100μm以下とすることが望ましい。接着層の厚みが小さすぎると、内側容器−外側容器間の接着性や絶縁が不十分となることがある。他方、接着層の厚みをあまり大きくしても、内側容器−外側容器間の接着性や絶縁性が飽和したりするばかりか、接着に用いる材料(合成樹脂や合成ゴムなど)の量が増大するため、かえって電池の軽量化を阻害する要因になることがある。   The thickness of the adhesive layer is 30 μm or more, more preferably 50 μm or more, and is desirably 200 μm or less, more preferably 100 μm or less. If the thickness of the adhesive layer is too small, the adhesiveness and insulation between the inner container and the outer container may be insufficient. On the other hand, even if the thickness of the adhesive layer is made too large, not only the adhesion and insulation between the inner container and the outer container are saturated, but the amount of materials (synthetic resin, synthetic rubber, etc.) used for adhesion increases. Therefore, it may become a factor that hinders weight reduction of the battery.

本発明によれば、径方向での電池の断面積をS(mm)としたときに、径方向での電池の断面積に対する封止部の断面積の割合:T(%)が、およそ、
40/(S)1/2 ≦ T ≦ 200/(S)1/2
となる扁平形電池を構成することができる。外側容器または内側容器の厚みを低減するか、接着層の厚みを低減することにより、Tの値を上記範囲以下とすることは可能であるが、外側容器や内側容器の厚みを低減しすぎると、強度が低下して電池の変形などの問題が生じることがあり、また、接着層の厚みを低減しすぎると、短絡などの問題が生じることがあるため、Tの値は40/(S)1/2以上とすることが望ましく、50/(S)1/2以上とすることがより望ましい。他方、Tの値が大きくなるほど、電池の内容積が低下するため、Tの値は200/(S)1/2以下とすることが望ましい。
According to the present invention, when the cross-sectional area of the battery in the radial direction is S (mm 2 ), the ratio of the cross-sectional area of the sealing portion to the cross-sectional area of the battery in the radial direction is approximately T (%). ,
40 / (S) 1/2 ≤ T ≤ 200 / (S) 1/2
A flat battery can be configured. By reducing the thickness of the outer container or the inner container or by reducing the thickness of the adhesive layer, it is possible to make the value of T below the above range, but if the thickness of the outer container or the inner container is reduced too much The strength decreases and problems such as battery deformation may occur, and if the thickness of the adhesive layer is reduced too much, problems such as short circuits may occur, so the value of T is 40 / (S). it is desirable that a half or more, and more preferably set to 50 / (S) 1/2 or more. On the other hand, as the value of T increases, the internal volume of the battery decreases. Therefore, the value of T is desirably 200 / (S) 1/2 or less.

接着層について上記の好適厚みを採用し、汎用の容器厚みを採用した場合には、径方向での電池の断面積Sに対する封止部の断面積の割合Tは、電池径が25mmのときには約3〜5%、15mmのときには約6〜8%、5mmのときには約16〜22%となり、ガスケットを用いた扁平形電池に比べて、封止部の断面積の割合Tを約1/3〜1/5に低減させることができる。   When the above preferred thickness is adopted for the adhesive layer and a general-purpose container thickness is adopted, the ratio T of the cross-sectional area of the sealing portion to the cross-sectional area S of the battery in the radial direction is approximately when the battery diameter is 25 mm. 3 to 5%, about 6 to 8% at 15 mm, and about 16 to 22% at 5 mm, and the ratio T of the cross-sectional area of the sealing portion is about 1/3 to that of a flat battery using a gasket. It can be reduced to 1/5.

本発明の扁平形電池に係る正極、負極、セパレータ、電解液などの各発電要素は特に制限されず、従来公知の一次電池や二次電池に採用されているものが適用できる。また、図1に示す電池では、内側容器(負極缶)11の側壁端部と外側容器(正極缶)12と間に、絶縁材17を配して内側容器11−外側容器12間の絶縁を図っているが、かかる絶縁材としても、従来公知の一次電池や二次電池に用いられているものが適用可能である。なお、図1に示す電池では、内側容器11側に負極14が、外側容器12側に正極16が配されているが、本発明の扁平形電池では、内側容器側に正極が、外側容器側に負極が配された構造であってもよい。   The power generation elements such as the positive electrode, the negative electrode, the separator, and the electrolyte solution according to the flat battery of the present invention are not particularly limited, and those employed in conventionally known primary batteries and secondary batteries can be applied. In the battery shown in FIG. 1, an insulating material 17 is arranged between the side wall end of the inner container (negative electrode can) 11 and the outer container (positive electrode can) 12 to insulate the inner container 11 and the outer container 12. As shown, as the insulating material, those conventionally used for primary batteries and secondary batteries can be applied. In the battery shown in FIG. 1, the negative electrode 14 is disposed on the inner container 11 side and the positive electrode 16 is disposed on the outer container 12 side. However, in the flat battery of the present invention, the positive electrode is disposed on the inner container side and the outer container side. Alternatively, a structure in which a negative electrode is disposed may be used.

次に、本発明の扁平形電池の製造方法を説明する。まず、内側容器の側壁外側、または外側容器の側壁内側に、接着層を構成するためのシート(合成樹脂を含むシートまたは合成ゴムを含むシート)を貼り付ける。接着層を構成するためのシートの貼り付けは、例えば、仮止め接着剤を用いて行うことができる。また、接着層を構成するための合成樹脂や合成ゴムを含む薄肉のリング状成形体を作製して、これを内側容器の側壁外側に嵌める手法などを採用してもよい。さらに、予め熱融着させておくこともできる。また、内側容器の側壁外側および外側容器の側壁内側の両方に接着層を形成しておけば、より一層接着力を高めることができる。   Next, the manufacturing method of the flat battery of this invention is demonstrated. First, a sheet for forming an adhesive layer (a sheet containing a synthetic resin or a sheet containing a synthetic rubber) is attached to the outer side wall of the inner container or the inner side wall of the outer container. The sheet for forming the adhesive layer can be attached using, for example, a temporary adhesive. Alternatively, a method may be employed in which a thin ring-shaped molded body including a synthetic resin or a synthetic rubber for forming the adhesive layer is produced and this is fitted to the outer side wall of the inner container. Further, it can be preliminarily heat-sealed. Further, if an adhesive layer is formed on both the outer side wall of the inner container and the inner side wall of the outer container, the adhesive force can be further enhanced.

次に、内側容器内に、例えば、図1に示すような構成で発電要素を装填する。電解液は、電池組み立て時にセパレータを所定位置に設置した後、該セパレータ上に注入することによって電池内部に導入することが一般的であるが、例えば、図1に示す電池であれば、内側容器11に負極14を圧着などさせた後、セパレータ15を設置し、該セパレータ15の正極16側となる面に電解液を数滴垂らし、その後正極16を設置し、該正極16の外側容器12側となる面に電解液を数滴垂らす方法などが採用できる。   Next, the power generation element is loaded into the inner container, for example, in a configuration as shown in FIG. The electrolytic solution is generally introduced into the battery by placing the separator at a predetermined position when the battery is assembled and then injecting the separator onto the separator. For example, in the case of the battery shown in FIG. After the negative electrode 14 is pressure-bonded to the separator 11, the separator 15 is installed, a few drops of the electrolyte is dropped on the surface of the separator 15 on the positive electrode 16 side, and then the positive electrode 16 is installed. For example, a method of dropping a few drops of electrolyte on the surface can be employed.

内側容器の端部の当接予定箇所に絶縁材を設置した外側容器を、発電要素を搭載した内側容器に被せ、外側容器の側壁が、外側容器底面に略垂直となるように圧縮(圧着)し、好ましくは接着層を内側容器および外側容器に熱融着させて、例えば図1に示すような電池とする。熱融着の方法には特に制限はないが、例えば、部分的に熱を加えて融着することが可能であり、発電要素への伝熱を少なくして温度上昇を防ぐことが可能なことから、高周波を用いた誘導加熱が好適である。熱融着の際の温度は、例えば100〜300℃であることが好ましい。温度が低すぎると、融着が不十分となることがあり、高すぎると、発電要素に悪影響を及ぼすことがあるからである。また、熱融着の際には、加熱する部分以外の部分の冷却を同時に行うことが望ましく、これにより、発電要素の温度上昇を更に抑えることができる。この他、上述したように、合成ゴムを含む接着層の場合には、熱融着と同時に合成ゴムを加硫することが推奨される。   Cover the inner container with the power generation element on the outer container with insulation material at the planned contact point of the inner container end, and compress (crimp) so that the side wall of the outer container is almost perpendicular to the bottom surface of the outer container Preferably, the adhesive layer is heat-sealed to the inner container and the outer container, for example, to obtain a battery as shown in FIG. There are no particular restrictions on the method of heat fusion, but for example, heat can be partially applied for fusion, and heat transfer to the power generation element can be reduced to prevent temperature rise. Therefore, induction heating using high frequency is suitable. The temperature at the time of heat fusion is preferably 100 to 300 ° C., for example. This is because if the temperature is too low, the fusion may be insufficient, and if it is too high, the power generation element may be adversely affected. Further, at the time of heat fusion, it is desirable to simultaneously cool the parts other than the part to be heated, thereby further suppressing the temperature rise of the power generation element. In addition, as described above, in the case of an adhesive layer containing a synthetic rubber, it is recommended to vulcanize the synthetic rubber simultaneously with heat fusion.

以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は本発明を制限するものではなく、前・後記の趣旨を逸脱しない範囲で変更実施をすることは、全て本発明の技術的範囲に包含される。   Hereinafter, the present invention will be described in detail based on examples. However, the following examples are not intended to limit the present invention, and all modifications made without departing from the spirit of the preceding and following descriptions are included in the technical scope of the present invention.

実施例
図3に示す内側容器11、および図4に示す外側容器12を用いて、図1に示す構造の扁平形電池を作製した。内側容器11は、厚みが0.2mmのステンレス鋼製で、底面を円形とし、底面の直径を19.3mm、開口端部の直径を19.4mm、図3に示す高さhを1.9mm、テーパ角θを1.5°とし、外側容器12は、厚みが0.2mmのステンレス鋼製で、底面を円形とし、底面の直径を19.9mm、開口端部の直径を20.2mm、図4に示す高さhを1.9mm、テーパ角θを4.5°とした。
Example Using the inner container 11 shown in FIG. 3 and the outer container 12 shown in FIG. 4, a flat battery having the structure shown in FIG. 1 was produced. The inner container 11 is made of stainless steel having a thickness of 0.2 mm, has a circular bottom surface, a diameter of 19.3 mm at the bottom surface, a diameter of 19.4 mm at the open end, and a height h 1 shown in FIG. 9 mm, and the taper angle theta 1 1.5 °, the outer container 12, the thickness was made 0.2mm stainless steel, and a bottom circular, 19.9 mm diameter of the bottom surface, the diameter of the open end 20. The height h 2 shown in FIG. 4 was 1.9 mm, and the taper angle θ 2 was 4.5 °.

内側容器11の側壁(図3に示す直線部分)の外側全周に、接着層13を構成するためのポリプロピレンフィルム、厚み:80μm)を貼り付た後、この内側容器11に、負極14、セパレータ15、電解液、正極16の順に装填、注入した。負極14は金属リチウムで、厚みを0.5mmとした。また、セパレータ15には、厚みが0.32mmのポリプロピレン製不織布を用いた。また、電解液には、プロピレンカーボネート(PC)/1,2−ジメトキシエタン(DME)=1/1(体積比)の混合溶媒に、溶質として過塩素酸リチウム(LiClO)を0.5Mの濃度で溶解させたものを用いた。また、正極16には、活物質:二酸化マンガンに、導電助剤:カーボンブラック、バインダー:ポリテトラフルオロエチレンを94/5/1(質量比)で混合して正極合剤とし、これをプレス成形して得られた成形体(厚み:1.4mm)を用いた。 After affixing a polypropylene film for forming the adhesive layer 13 (thickness: 80 μm) to the entire outer periphery of the side wall (the straight portion shown in FIG. 3) of the inner container 11, the negative electrode 14 and the separator are attached to the inner container 11. 15, electrolyte solution and positive electrode 16 were charged and injected in this order. The negative electrode 14 was metallic lithium and had a thickness of 0.5 mm. The separator 15 was a polypropylene nonwoven fabric having a thickness of 0.32 mm. In addition, in the electrolytic solution, a mixed solvent of propylene carbonate (PC) / 1,2-dimethoxyethane (DME) = 1/1 (volume ratio), and lithium perchlorate (LiClO 4 ) as a solute is 0.5 M. What was dissolved in the concentration was used. The positive electrode 16 is mixed with active material: manganese dioxide, conductive auxiliary agent: carbon black, binder: polytetrafluoroethylene at 94/5/1 (mass ratio) to form a positive electrode mixture, which is press-molded. The molded body (thickness: 1.4 mm) obtained in this way was used.

発電要素を装填した内側容器11に、該内側容器11端部の当接予定位置に絶縁材17を設置した外側容器12を被せ、外側容器12の側壁が外側容器12の底面に略垂直となるように圧縮して、接着層13を外側容器12の側壁内面に圧着させ、その後、高周波を用いた誘導加熱により、接着層13を内側容器11および外側容器12に熱融着させて電池を得た。誘導加熱による熱融着は、その条件を、周波数20kHz、設定温度180℃、加熱時間15秒とし、さらに直径15mmの銅製の治具を、内側容器11および外側容器12の底面外側に当てて冷却しながら実施した。このようにして得られた電池は、外径が20mm、厚みが2.5mmの扁平形電池(ボタン形電池)である。なお、この電池の径方向の断面積Sは314mmで、封止部の断面積の割合Tは5%であって、
T=90/(S)1/2
で表される関係となる。
The inner container 11 loaded with the power generation element is covered with the outer container 12 in which an insulating material 17 is installed at a position where the end of the inner container 11 abuts, and the side wall of the outer container 12 is substantially perpendicular to the bottom surface of the outer container 12. The adhesive layer 13 is pressed against the inner surface of the side wall of the outer container 12 and then the adhesive layer 13 is thermally fused to the inner container 11 and the outer container 12 by induction heating using high frequency to obtain a battery. It was. In the heat fusion by induction heating, the conditions are a frequency of 20 kHz, a set temperature of 180 ° C., a heating time of 15 seconds, and a copper jig having a diameter of 15 mm is applied to the outside of the bottom surface of the inner container 11 and the outer container 12 for cooling. While carrying out. The battery thus obtained is a flat battery (button battery) having an outer diameter of 20 mm and a thickness of 2.5 mm. In addition, the cross-sectional area S in the radial direction of the battery is 314 mm 2 , and the ratio T of the cross-sectional area of the sealing portion is 5%.
T = 90 / (S) 1/2
The relationship represented by

比較例
図5に示す従来構成のボタン形電池(外形:20mm、厚み:2.5mm)を作製した。内側容器・外側容器の材質、各発電要素については、実施例と同じものとし、内側容器と外側容器の封口は、射出成形品(ポリプロピレン製)のガスケットを用いて、図5に示すようにかしめにより行った。なお、この電池の径方向の断面積Sは314mmで、封止部の断面積の割合Tは19%であって、
T=340/(S)1/2
で表される関係となる。
Comparative Example A button type battery (outer shape: 20 mm, thickness: 2.5 mm) having a conventional configuration shown in FIG. 5 was produced. The materials for the inner and outer containers and the power generation elements are the same as in the examples, and the inner and outer containers are sealed by using injection molded gaskets (made of polypropylene) as shown in FIG. It went by. In addition, the cross-sectional area S in the radial direction of the battery is 314 mm 2 , and the ratio T of the cross-sectional area of the sealing portion is 19%.
T = 340 / (S) 1/2
The relationship represented by

以上のようにして得られた実施例および比較例の電池について、それぞれの電池内容積を比較すると共に、これらの電池各50個について、電池質量の平均値および標準偏差を比較し、さらに、これら各50個の電池について、60℃、相対湿度90%の環境下で80日間保存した後の漏液状態を確認した。結果を表1に示す。   For the batteries of Examples and Comparative Examples obtained as described above, the respective battery internal volumes were compared, and the average value and standard deviation of the battery mass were compared for each of these 50 batteries. For each of the 50 batteries, the leakage state after storage for 80 days in an environment of 60 ° C. and 90% relative humidity was confirmed. The results are shown in Table 1.

Figure 2006040596
Figure 2006040596

なお、表1における電池内容積比率は、比較例の電池の内容積を1としたときの比率で示している。   In addition, the battery internal volume ratio in Table 1 is shown as a ratio when the internal volume of the battery of the comparative example is 1.

表1から分かるように、比較例の電池(従来のかしめ封口に係る電池)は、気密性が高く、耐漏液性が優れているが、実施例の電池も、接着層による接着に加えて、内側容器に外側容器側に向かう反発応力を持たせたことで、高度な気密性が確保できており、その耐漏液性は、比較例の電池と比較しても遜色ないレベルである。さらに、実施例の電池は、比較例の電池の1.2倍の内容積を確保できており、電池の高容量化に対応し得る。また、比較例の電池に比べて、封止に用いる材料を減らし得たため、電池の軽量化も達成できている。   As can be seen from Table 1, the battery of the comparative example (the battery according to the conventional caulking seal) has high airtightness and excellent leakage resistance, but the battery of the example also has adhesion by the adhesive layer. By providing the inner container with a repulsive stress toward the outer container, a high degree of airtightness can be secured, and its liquid leakage resistance is comparable to that of the battery of the comparative example. Further, the battery of the example can secure 1.2 times the internal volume of the battery of the comparative example, and can cope with the increase in capacity of the battery. Moreover, since the material used for sealing can be reduced compared with the battery of the comparative example, the weight reduction of the battery can also be achieved.

本発明の扁平形電池の一例の要部を示す断面概略図である。It is a cross-sectional schematic diagram which shows the principal part of an example of the flat battery of this invention. 本発明の扁平形電池の他の例の要部を示す断面概略図である。It is a cross-sectional schematic diagram which shows the principal part of the other example of the flat battery of this invention. 本発明の扁平形電池を構成するための内側容器の要部の断面図である。It is sectional drawing of the principal part of the inner side container for comprising the flat battery of this invention. 本発明の扁平形電池を構成するための外側容器の要部の断面図である。It is sectional drawing of the principal part of the outer side container for comprising the flat battery of this invention. 従来の扁平形電池の要部を示す断面概略図である。It is the cross-sectional schematic which shows the principal part of the conventional flat battery.

符号の説明Explanation of symbols

10、20 扁平形電池
11、21 内側容器
12、22 外側容器
13 接着層
14、24 負極
15、25 セパレータ
16、26 正極
23 ガスケット
A A’ 封止部
10, 20 Flat battery 11, 21 Inner container 12, 22 Outer container 13 Adhesive layer 14, 24 Negative electrode 15, 25 Separator 16, 26 Positive electrode 23 Gasket A A ′ Sealing part

Claims (12)

内側容器と外側容器とを、それぞれの側壁で嵌合してなる外装体内部に発電要素を封入した扁平形電池であって、
上記外側容器と上記内側容器との嵌合部は、熱融着性の合成樹脂または合成ゴムを含む接着層により封止されており、
上記内側容器の側壁が、外周方向への押圧力を有していることを特徴とする扁平形電池。
A flat battery in which a power generation element is enclosed inside an outer package formed by fitting an inner container and an outer container at respective side walls,
The fitting part between the outer container and the inner container is sealed with an adhesive layer containing a heat-sealable synthetic resin or synthetic rubber,
A flat battery, wherein the side wall of the inner container has a pressing force in the outer peripheral direction.
内側容器と外側容器とを、それぞれの側壁で嵌合してなる外装体内部に発電要素を封入した扁平形電池であって、
上記外側容器と上記内側容器との嵌合部は、合成樹脂または合成ゴムを含む接着層により熱融着されて封止部を形成しており、
上記扁平形電池の径方向の断面積:S(mm)に対する上記封止部の断面積の割合:T(%)が、
40/(S)1/2 ≦ T ≦ 200/(S)1/2
の範囲内にあることを特徴とする扁平形電池。
A flat battery in which a power generation element is enclosed inside an outer package formed by fitting an inner container and an outer container at respective side walls,
The fitting part between the outer container and the inner container is heat-sealed by an adhesive layer containing synthetic resin or synthetic rubber to form a sealing part,
The ratio of the cross-sectional area of the sealing portion to the cross-sectional area in the radial direction of the flat battery: S (mm 2 ): T (%)
40 / (S) 1/2 ≤ T ≤ 200 / (S) 1/2
A flat battery characterized by being in the range.
上記接着層は、厚みが30〜200μmである請求項1または2に記載の扁平形電池。   The flat battery according to claim 1, wherein the adhesive layer has a thickness of 30 to 200 μm. 上記熱融着性の合成樹脂は、融解温度が100〜300℃である請求項1〜3のいずれかに記載の扁平形電池。   The flat battery according to any one of claims 1 to 3, wherein the heat-fusible synthetic resin has a melting temperature of 100 to 300 ° C. 上記接着層は、ポリオレフィンを含むものである請求項1〜4のいずれかに記載の扁平形電池。   The flat battery according to any one of claims 1 to 4, wherein the adhesive layer contains polyolefin. 上記接着層は、スチレン−ブタジエンゴムを含むものである請求項1〜3のいずれかに記載の扁平形電池。   The flat battery according to claim 1, wherein the adhesive layer contains styrene-butadiene rubber. 上記外側容器の側壁の開口部側が、上記内側容器側へ傾斜している請求項1〜6のいずれかに記載の扁平形電池。   The flat battery according to any one of claims 1 to 6, wherein an opening side of the side wall of the outer container is inclined toward the inner container side. 内側容器と外側容器とを、それぞれの側壁で嵌合してなる外装体内部に発電要素を封入する扁平形電池の製造方法であって、
上記内側容器および上記外側容器として、側壁が開口部側から底面側に向かって窄まる形状のカップ状容器を用い、
上記発電要素を装填した上記内側容器と、上記外側容器とを、合成樹脂または合成ゴムを含む接着層を介して嵌合すると共に、上記内側容器の側壁および上記外側容器の側壁を、該内側容器の底面および該外側容器の底面に対して略垂直となるように圧縮することを特徴とする扁平形電池の製造方法。
A method of manufacturing a flat battery in which a power generation element is sealed inside an outer casing formed by fitting an inner container and an outer container at respective side walls,
As the inner container and the outer container, a cup-shaped container whose side wall is narrowed from the opening side toward the bottom surface side,
The inner container loaded with the power generation element and the outer container are fitted through an adhesive layer containing a synthetic resin or synthetic rubber, and the inner container and the outer container are connected to the inner container. A flat battery manufacturing method comprising compressing the battery so as to be substantially perpendicular to the bottom surface of the outer container and the bottom surface of the outer container.
上記内側容器として、底面に対する垂線と、側壁の最も長い直線部分とのなす内角が0.5〜10°であるカップ状容器を用い、上記外側容器として、底面に対する垂線と、側壁の最も長い直線部分とのなす内角が1〜20°であるカップ状容器を用いる請求項8に記載の製造方法。   As the inner container, a cup-shaped container having an internal angle of 0.5 to 10 ° between the perpendicular to the bottom surface and the longest straight portion of the side wall is used, and the perpendicular to the bottom surface and the longest straight line of the side wall are used as the outer container. The manufacturing method according to claim 8, wherein a cup-shaped container having an internal angle of 1 to 20 ° with the portion is used. 上記外側容器の側壁の開口部側を、上記内側容器側へ傾斜させる請求項8または9に記載の製造方法。   The manufacturing method of Claim 8 or 9 which inclines the opening part side of the side wall of the said outer side container to the said inner side container side. 上記内側容器と上記外側容器とを嵌合した後に、上記接着層を、該内側容器および該外側容器に熱融着させる請求項8〜10のいずれかに記載の製造方法。   The manufacturing method according to any one of claims 8 to 10, wherein after the inner container and the outer container are fitted, the adhesive layer is heat-sealed to the inner container and the outer container. 熱融着のための加熱と、加熱する部分以外の部分の冷却を同時に行う請求項11に記載の製造方法。

The manufacturing method according to claim 11, wherein heating for heat fusion and cooling of a portion other than the portion to be heated are performed simultaneously.

JP2004215196A 2004-07-23 2004-07-23 Flat battery and its manufacturing method Pending JP2006040596A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004215196A JP2006040596A (en) 2004-07-23 2004-07-23 Flat battery and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215196A JP2006040596A (en) 2004-07-23 2004-07-23 Flat battery and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006040596A true JP2006040596A (en) 2006-02-09

Family

ID=35905377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215196A Pending JP2006040596A (en) 2004-07-23 2004-07-23 Flat battery and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006040596A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091081A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Coin type battery
JP2011124204A (en) * 2009-12-11 2011-06-23 Samsung Sdi Co Ltd Lithium secondary battery
JP2012523067A (en) * 2009-04-04 2012-09-27 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Button battery without flange
WO2014053267A1 (en) * 2012-10-05 2014-04-10 Robert Bosch Gmbh Battery cell comprising a cover plate fixed in a housing by bonding
CN107946486A (en) * 2017-10-25 2018-04-20 深圳市能锐创新科技有限公司 New fastening lithium ionic cell housing
KR20180096520A (en) * 2017-02-21 2018-08-29 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 Battery, particularly a button cell, and method for manufacture of such a battery
CN110021718A (en) * 2018-01-09 2019-07-16 雷纳塔股份公司 Battery and method for manufacturing the battery
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
WO2022070565A1 (en) * 2020-09-30 2022-04-07 株式会社村田製作所 Secondary battery
US11664556B2 (en) 2018-07-06 2023-05-30 Lg Energy Solution, Ltd. Secondary battery comprising a deformed gasket and method for manufacturing the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169056A (en) * 1983-03-16 1984-09-22 Toshiba Battery Co Ltd Button-type cell
JPS60220552A (en) * 1984-04-17 1985-11-05 Kawaguchiko Seimitsu Kk Flat-type battery
JPS61164020U (en) * 1985-04-01 1986-10-11
JPH06325981A (en) * 1993-05-17 1994-11-25 Murata Mfg Co Ltd Manufacture of flat electrochemical apparatus
JP2000138042A (en) * 1998-11-02 2000-05-16 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59169056A (en) * 1983-03-16 1984-09-22 Toshiba Battery Co Ltd Button-type cell
JPS60220552A (en) * 1984-04-17 1985-11-05 Kawaguchiko Seimitsu Kk Flat-type battery
JPS61164020U (en) * 1985-04-01 1986-10-11
JPH06325981A (en) * 1993-05-17 1994-11-25 Murata Mfg Co Ltd Manufacture of flat electrochemical apparatus
JP2000138042A (en) * 1998-11-02 2000-05-16 Matsushita Electric Ind Co Ltd Organic electrolyte battery

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008091081A (en) * 2006-09-29 2008-04-17 Sanyo Electric Co Ltd Coin type battery
US11233264B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11233265B2 (en) 2009-02-09 2022-01-25 Varta Microbattery Gmbh Button cells and method of producing same
US11791493B2 (en) 2009-02-09 2023-10-17 Varta Microbattery Gmbh Button cells and method of producing same
US11024869B2 (en) 2009-02-09 2021-06-01 Varta Microbattery Gmbh Button cells and method of producing same
US11258092B2 (en) 2009-02-09 2022-02-22 Varta Microbattery Gmbh Button cells and method of producing same
US11276875B2 (en) 2009-02-09 2022-03-15 Varta Microbattery Gmbh Button cells and method of producing same
US20200185755A1 (en) 2009-02-09 2020-06-11 Varta Microbattery Gmbh Button cells and method of producing same
JP2012523067A (en) * 2009-04-04 2012-09-27 ヴァルタ マイクロバッテリー ゲゼルシャフト ミット ベシュレンクテル ハフツング Button battery without flange
US11362385B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11362384B2 (en) 2009-06-18 2022-06-14 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10804506B2 (en) 2009-06-18 2020-10-13 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024907B1 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11217844B2 (en) 2009-06-18 2022-01-04 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US10971776B2 (en) 2009-06-18 2021-04-06 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11791512B2 (en) 2009-06-18 2023-10-17 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024906B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11024905B2 (en) 2009-06-18 2021-06-01 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
US11158896B2 (en) 2009-06-18 2021-10-26 Varta Microbattery Gmbh Button cell having winding electrode and method for the production thereof
JP2011124204A (en) * 2009-12-11 2011-06-23 Samsung Sdi Co Ltd Lithium secondary battery
WO2014053267A1 (en) * 2012-10-05 2014-04-10 Robert Bosch Gmbh Battery cell comprising a cover plate fixed in a housing by bonding
KR102091920B1 (en) * 2017-02-21 2020-03-23 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 Battery, particularly a button cell, and method for manufacture of such a battery
KR20180096520A (en) * 2017-02-21 2018-08-29 더 스와치 그룹 리서치 앤 디벨롭먼트 엘티디 Battery, particularly a button cell, and method for manufacture of such a battery
WO2019080394A1 (en) * 2017-10-25 2019-05-02 深圳市能锐创新科技有限公司 Novel button type lithium ion battery and housing thereof
CN107946486A (en) * 2017-10-25 2018-04-20 深圳市能锐创新科技有限公司 New fastening lithium ionic cell housing
CN110021718B (en) * 2018-01-09 2021-12-10 雷纳塔股份公司 Battery and method for manufacturing the same
CN110021718A (en) * 2018-01-09 2019-07-16 雷纳塔股份公司 Battery and method for manufacturing the battery
US10892447B2 (en) 2018-01-09 2021-01-12 Renata Ag Cell and method for manufacturing such a cell
KR102192963B1 (en) * 2018-01-09 2020-12-21 리나타 에이지 (리나타 에스에이) Cell and method for manufacturing such a cell
KR20190084888A (en) * 2018-01-09 2019-07-17 리나타 에이지 (리나타 에스에이) Cell and method for manufacturing such a cell
US11005132B2 (en) 2018-01-09 2021-05-11 Renata Ag Cell and method for manufacturing such a cell
US11664556B2 (en) 2018-07-06 2023-05-30 Lg Energy Solution, Ltd. Secondary battery comprising a deformed gasket and method for manufacturing the same
WO2022070565A1 (en) * 2020-09-30 2022-04-07 株式会社村田製作所 Secondary battery

Similar Documents

Publication Publication Date Title
JP4297877B2 (en) Can-type secondary battery
JP4539416B2 (en) Secondary battery
KR101313325B1 (en) Cylindrical-type secondary battery
JP4545067B2 (en) Can-type secondary battery
JP4809253B2 (en) Secondary battery and manufacturing method thereof
US20080160393A1 (en) Secondary battery and its method of manufacture
CN102386368A (en) Terminal for sealed battery and manufacturing method therefor
TW200525801A (en) Battery pack and method for manufacturing the same
JP2006040879A (en) Lithium-ion secondary battery, case for lithium-ion secondary battery, and manufacturing method of lithium-ion secondary battery
KR100624967B1 (en) Pouch type lithium secondary battery and the method of fabricating the same
JP2005129488A (en) Sealed battery
CN108370058B (en) Method for sealing pouch case of secondary battery
JP2006040596A (en) Flat battery and its manufacturing method
US9040193B2 (en) Cap assembly and rectangular type secondary battery having the cap assembly
US8940428B2 (en) Separator, a lithium rechargeable battery using the same and a method of manufacture thereof
CN107068942A (en) Cylindrical shape lithium ion battery
WO2000013240A1 (en) Coin-shaped cell and method for producing the same
CN104756304B (en) Alkaline storage battery
US20060057462A1 (en) Lithium ion secondary battery
KR20150081730A (en) Secondary battery
KR20120042537A (en) Battery case and the method of producing secondary battery using the case
JPS63174265A (en) Manufacture of thin type enclosed lead storage battery
KR20150095146A (en) Battery pack
JP2011210690A (en) Sealed battery
JP2006155908A (en) Flat battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100927

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110228