JP2011210690A - Sealed battery - Google Patents

Sealed battery Download PDF

Info

Publication number
JP2011210690A
JP2011210690A JP2010079851A JP2010079851A JP2011210690A JP 2011210690 A JP2011210690 A JP 2011210690A JP 2010079851 A JP2010079851 A JP 2010079851A JP 2010079851 A JP2010079851 A JP 2010079851A JP 2011210690 A JP2011210690 A JP 2011210690A
Authority
JP
Japan
Prior art keywords
sealing
battery
plug
injection port
elastic member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010079851A
Other languages
Japanese (ja)
Inventor
Soichi Hanabusa
聡一 花房
Tsutomu Matsui
勉 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2010079851A priority Critical patent/JP2011210690A/en
Publication of JP2011210690A publication Critical patent/JP2011210690A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Filling, Topping-Up Batteries (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technology for improving productivity in a sealing process by avoiding a sealing failure occurring when sealing a liquid intake port provided on a battery seal, and secure long-term reliability in preventing liquid leakage after fitting.SOLUTION: A sealing plug 21 includes a lid 22 of a flat shape and a plug 23 provided so as to project in a central part of the lid, and includes an annular elastic member 24 between the intake port 20 and the sealing plug 21 arranged so as to cover the intake port. The lid 22 is arranged so as to cover the electrolyte solution intake port of the battery seal 10, and the plug 23 is inserted into the intake port opened on the battery seal through an inner air gap of the annular elastic member 24. By pressure contacting the annular elastic member 24 with the sealing plug formed of a sidewall of the intake port, the lid, and the plug, welding between the sealing plug 21 and the battery seal 10 is sufficiently carried out to securely seal. Therefore, the sealed battery with high reliability can be provided.

Description

本発明は、密閉形電池に関し、特に電池外装缶内へ注液口から電解液を注液し、注液後に注液口を封止栓で封止する技術に関する。 The present invention relates to a sealed battery, and more particularly, to a technique for injecting an electrolytic solution from a liquid injection port into a battery outer can and sealing the liquid injection port with a sealing plug after the injection.

近年、携帯電話やパーソナルコンピュータなどの電子機器や、ハイブリッド自動車や、電気自動車、携帯電話基地局の無停電電源用などの電源、電力平準化に使用される電力貯蔵用の電源として、ニッケル水素二次電池や、リチウムイオン二次電池に代表される非水電解質二次電池などの密閉形電池が期待されている。 In recent years, nickel metal hydride has been used as an electronic device such as a mobile phone and a personal computer, a power source for an uninterruptible power source of a hybrid vehicle, an electric vehicle, a mobile phone base station, and a power storage power source used for power leveling. Secondary batteries and sealed batteries such as non-aqueous electrolyte secondary batteries represented by lithium ion secondary batteries are expected.

通常、密閉形電池は電解液を注液することにより初めて電池として電気化学的機能を有するようになる。その方法として、外装缶に電極体を収納した後に電解液を外装缶内に注液し、その後電池封口体で封止する方法も多くとられているが、電池封口体と外装缶開口部間の封止をレーザ溶接で行う場合、溶接するところに電解液が付着することによる封止不良が発生しやすい。 Normally, a sealed battery has an electrochemical function as a battery only when an electrolyte is injected. As a method for this, there are many methods in which an electrode body is accommodated in an outer can, and then an electrolytic solution is poured into the outer can, and then sealed with a battery seal, but between the battery seal and the outer can opening. When sealing is performed by laser welding, sealing failure is liable to occur due to adhesion of the electrolyte to the place to be welded.

そこで、電池封口体に電解液を注液する1〜3ミリ程度の小さな注液口を開設しておいて、外装缶の開口部を電池封口体で封止した後、注液口からノズルで電解液を注液し、その後、注液口に封止栓を嵌め込んでこれをレーザ溶接で封止する方法も知られている。 Therefore, a small liquid injection port of about 1 to 3 mm for injecting the electrolyte into the battery sealing body is established, and the opening of the outer can is sealed with the battery sealing body, and then the nozzle from the liquid injection port is used. There is also known a method in which an electrolytic solution is injected, and then a sealing plug is fitted into the injection port and this is sealed by laser welding.

特許文献1は、蓋板2に形設された、電解液注入用の注入孔13から電解液を注入した後、注液孔13に封止栓3を挿入し、レーザ溶接により注入孔を封止する技術が開示されている。 In Patent Document 1, after injecting an electrolyte from an injection hole 13 for injecting an electrolyte formed in the lid plate 2, the sealing plug 3 is inserted into the injection hole 13, and the injection hole is sealed by laser welding. A technique for stopping is disclosed.

特許文献2は、封口体12に形成された注液口13を、弾性を有する封止部21と、この封止部21を保持して注液口13に溶着される金属製の板状体25とからなる液口栓20により注液口13を密封する構造とすることで、注液口13の封止不良を低減できる技術が開示されている。 Patent Document 2 discloses that a liquid injection port 13 formed in a sealing body 12 includes an elastic sealing portion 21 and a metal plate-like body that holds the sealing portion 21 and is welded to the liquid injection port 13. The technique which can reduce the sealing defect of the liquid injection port 13 by making it the structure which seals the liquid injection port 13 with the liquid port stopper 20 which consists of 25 is disclosed.

特開平11−25936号公報Japanese Patent Laid-Open No. 11-25936 特開2005−190689公報JP 2005-190689 A

しかしながら、封止栓の栓体部分と蓋体部分とが一体形状となっているため、注液口へ封止栓の栓体部分を圧入する際、栓体の外形寸法と注液口の開口径との寸法差が大きい場合、栓体が注液口へ圧入されず、封止栓が電池封口体と密着しなくなる。このため、密閉形電池へ電解液を注液後に電池封口体へ封止栓を溶接する際、溶接の不具合が発生し生産性が悪くなるなどの問題点があった。また、栓体と注液口の嵌合範囲も狭く、きつくて嵌合ができないもの、嵌合はできるがゆるくて漏液するなどの課題があった。そのため、封止栓と電池封口体との溶接が不十分となり封止の不良が発生する。 However, since the plug body portion and the lid body portion of the sealing plug are integrated, when the plug body portion of the sealing plug is press-fitted into the liquid inlet, the external dimensions of the plug body and the opening of the liquid inlet are opened. When the dimensional difference with the diameter is large, the plug is not press-fitted into the liquid injection port, and the sealing plug does not adhere to the battery plug. For this reason, when the sealing plug is welded to the battery sealing body after injecting the electrolytic solution into the sealed battery, there is a problem that a welding failure occurs and productivity is deteriorated. In addition, the fitting range between the plug body and the liquid injection port is narrow, and there are problems such as those that are tight and cannot be fitted, and that the fitting can be made but is loose and leaks. For this reason, welding between the sealing plug and the battery sealing body becomes insufficient, resulting in poor sealing.

本開示は、密閉形電池に開設された注液口を封止する際に用いる封止栓と、注液口を備えた電池封口体若しくは外装缶との封止工程における生産性を向上させることに関し、更には封止栓と注液口との密着性をあげたことによって漏液不良も低減し、信頼性の高い密閉形電池を提供することである。 The present disclosure improves productivity in a sealing process between a sealing plug used when sealing a liquid injection port established in a sealed battery and a battery sealing body or an outer can provided with the liquid injection port. Further, it is to provide a highly reliable sealed battery that further reduces the leakage failure by increasing the adhesion between the sealing plug and the liquid injection port.

本発明における密閉形電池は、外装缶と、前記外装缶内に収納され、正極及び負極を含む電極群と、前記外装缶の開口部に取り付けられる電池封口体と、前記電池封口体若しくは前記外装缶に設けられた前記外装缶内へ電解液を注液する注液口と、その注液口を封止する封止栓を具備する密閉形電池であって、
前記封止栓は、前記電池封口体若しくは前記外装缶に設けられた前記注液口を蓋う状態で固着される蓋体と、前記蓋体に支持された栓体とで形成され、前記注液口と前記注液口へ覆うように配置された封止栓との間に環状弾性部材を備えていることを特徴とする密閉形電池。
The sealed battery according to the present invention includes an outer can, an electrode group that is housed in the outer can and includes a positive electrode and a negative electrode, a battery sealing body that is attached to an opening of the outer can, and the battery sealing body or the outer packaging. A sealed battery comprising a liquid injection port for injecting an electrolyte into the outer can provided on the can, and a sealing plug for sealing the liquid injection port,
The sealing plug is formed of a lid body fixed in a state of covering the liquid injection port provided in the battery sealing body or the outer can, and a plug body supported by the lid body, A sealed battery comprising an annular elastic member between a liquid port and a sealing plug disposed so as to cover the liquid injection port.

本発明は、密閉形電池に開設された注液口を封止する際に用いる封止栓と、注液口を備えた電池封口体若しくは外装缶との封止工程における生産性を向上させることができ、更には封止栓と注液口との密着性をあげたことによって漏液不良も低減し、信頼性の高い密閉形電池を提供することができる。 The present invention improves the productivity in the sealing step between a sealing plug used when sealing a liquid injection port established in a sealed battery and a battery sealing body or an outer can having a liquid injection port. Further, by increasing the adhesion between the sealing plug and the liquid inlet, liquid leakage defects can be reduced, and a highly reliable sealed battery can be provided.

実施形態の密閉形電池を示す展開斜視図。The expansion | deployment perspective view which shows the sealed battery of embodiment. 実施形態の密閉形電池の封口部分を示す斜視図。The perspective view which shows the sealing part of the sealed battery of embodiment. 図2におけるA―A断面図と封止栓と環状弾性部材の形状図。FIG. 3 is a cross-sectional view taken along a line AA in FIG. 本発明の実施の形態における環状弾性部材の形状図。The shape figure of the cyclic | annular elastic member in embodiment of this invention. 本発明の実施例4による図2におけるA―A断面図。AA sectional view in Drawing 2 by Example 4 of the present invention. 従来の封止栓による図2におけるA―A断面図と封止栓の形状図。FIG. 3 is a cross-sectional view taken along the line AA in FIG.

以下、本発明の実施形態に係る密閉形電池について図面を参照して説明する。 Hereinafter, a sealed battery according to an embodiment of the present invention will be described with reference to the drawings.

図1に示す角形の密閉形電池は、有底矩形筒状をなす外装缶1を具備する。外装缶1は、例えば、アルミニウム板もしくはアルミニウム合金板に深絞り加工を施すことにより成形されたものである。電極群2は、例えば、シート状の正極と、シート状の負極とをセパレータを間にして渦巻状に捲回した後、全体を電池缶の横断面形状に合致した断面四角形状に押し潰し変形することにより作製される。 The square sealed battery shown in FIG. 1 includes an outer can 1 having a bottomed rectangular cylindrical shape. The outer can 1 is formed, for example, by deep drawing an aluminum plate or an aluminum alloy plate. The electrode group 2 is formed by, for example, winding a sheet-like positive electrode and a sheet-like negative electrode in a spiral shape with a separator in between, and then crushing the whole into a square shape that matches the cross-sectional shape of the battery can It is produced by doing.

正極は、例えば、正極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着することにより作製される。正極活物質としては、リチウムを吸蔵放出できる酸化物や硫化物、ポリマーなどが使用できる。好ましい活物質としては、高い正極電位が得られるリチウムマンガン複合酸化物、リチウムニッケル複合酸化物、リチウムコバルト複合酸化物、リチウム燐酸鉄等が挙げられる。また、負極は、負極活物質を含むスラリーをアルミニウム箔もしくはアルミニウム合金箔からなる集電体に塗着することにより作製される。負極活物質としては、リチウムを吸蔵放出できる金属酸化物、金属硫化物、金属窒化物、合金等が使用でき、好ましくは、リチウムイオンの吸蔵放出電位が金属リチウム電位に対して0.4V以上貴となる物質である。このようなリチウムイオン吸蔵放出電位を有する負極活物質は、アルミニウムもしくはアルミニウム合金とリチウムとの合金反応を抑えられることから、負極集電体および負極関連構成部材へのアルミニウムもしくはアルミニウム合金の使用を可能とする。たとえば、チタン酸化物、リチウムチタン酸化物、タングステン酸化物、アモルファススズ酸化物、スズ珪素酸化物、酸化珪素などがあり、中でもリチウムチタン複合酸化物が好ましい。セパレータとしては、微多孔性の膜、織布、不織布、これらのうち同一材または異種材の積層物等を用いることができる。セパレータを形成する材料としては、ポリエチレン、ポリプロピレン、エチレン−プロピレン共重合ポリマー、エチレン−ブテン共重合ポリマー等を挙げることができる。 The positive electrode is produced, for example, by applying a slurry containing a positive electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil. As the positive electrode active material, oxides, sulfides, polymers, and the like that can occlude and release lithium can be used. Preferable active materials include lithium manganese composite oxide, lithium nickel composite oxide, lithium cobalt composite oxide, lithium iron phosphate, and the like that can obtain a high positive electrode potential. The negative electrode is produced by applying a slurry containing a negative electrode active material to a current collector made of an aluminum foil or an aluminum alloy foil. As the negative electrode active material, metal oxides, metal sulfides, metal nitrides, alloys, and the like that can occlude and release lithium can be used. It is a substance. Since the negative electrode active material having such a lithium ion storage / release potential can suppress the alloy reaction between aluminum or an aluminum alloy and lithium, it is possible to use aluminum or an aluminum alloy for a negative electrode current collector and a negative electrode related component. And For example, there are titanium oxide, lithium titanium oxide, tungsten oxide, amorphous tin oxide, tin silicon oxide, silicon oxide, etc. Among them, lithium titanium composite oxide is preferable. As the separator, a microporous film, a woven fabric, a non-woven fabric, a laminate of the same material or different materials among these can be used. Examples of the material for forming the separator include polyethylene, polypropylene, ethylene-propylene copolymer, and ethylene-butene copolymer.

非水電解液(図示しない)は外装缶1内に収容されており、電極群2に含浸されている。非水電解液は、非水溶媒に電解質(例えば、リチウム塩)を溶解させることにより調製される。非水溶媒としては、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、γ−ブチロラクトン(γ−BL)、スルホラン、アセトニトリル、1,2−ジメトキシエタン、1,3−ジメトキシプロパン、ジメチルエーテル、テトラヒドロフラン(THF)、2−メチルテトラヒドロフラン等を挙げることができる。非水溶媒は、単独で使用しても、2種以上混合して使用してもよい。電解質としては、例えば、過塩素酸リチウム(LiClO4)、六フッ過リン酸リチウム(LiPF6)、四フッ化ホウ酸リチウム(LiBF4)、六フッ化砒素リチウム(LiAsF6)、トリフルオロメタンスルホン酸リチウム(LiCF3SO3)等のリチウム塩を挙げることができる。電解質は単独で使用しても、2種以上混合して使用してもよい。電解質の非水溶媒に対する溶解量は、0.2mol/L〜3mol/Lとすることが望ましい。 A non-aqueous electrolyte (not shown) is accommodated in the outer can 1 and impregnated in the electrode group 2. The non-aqueous electrolyte is prepared by dissolving an electrolyte (for example, a lithium salt) in a non-aqueous solvent. Examples of the non-aqueous solvent include ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), ethyl methyl carbonate (EMC), γ-butyrolactone (γ -BL), sulfolane, acetonitrile, 1,2-dimethoxyethane, 1,3-dimethoxypropane, dimethyl ether, tetrahydrofuran (THF), 2-methyltetrahydrofuran and the like. Nonaqueous solvents may be used alone or in combination of two or more. Examples of the electrolyte include lithium perchlorate (LiClO4), lithium hexafluorophosphate (LiPF6), lithium tetrafluoroborate (LiBF4), lithium hexafluoroarsenide (LiAsF6), and lithium trifluoromethanesulfonate (LiCF3SO3). ) And the like. The electrolyte may be used alone or in combination of two or more. The amount of electrolyte dissolved in the non-aqueous solvent is desirably 0.2 mol / L to 3 mol / L.

図1に示すように、複数の正極導電タブ3は、正極の複数個所と電気的に接続されており、それぞれが電極群2の上側の端面から上向きに導出されている。一方、複数の負極導電タブ4は、負極の複数個所と電気的に接続されており、それぞれが電極群2の上側の端面から上向きに導出されている。正極導電タブ3には、例えば、正極の集電体を部分的に延出させたものを使用することができるが、正極と別体であっても良い。また、負極導電タブ4には、例えば、負極の集電体を部分的に延出させたものを使用することができるが、負極と別体であっても良い。 As shown in FIG. 1, the plurality of positive electrode conductive tabs 3 are electrically connected to a plurality of locations of the positive electrode, and each is led upward from the upper end face of the electrode group 2. On the other hand, the plurality of negative electrode conductive tabs 4 are electrically connected to a plurality of portions of the negative electrode, and each is led upward from the upper end face of the electrode group 2. As the positive electrode conductive tab 3, for example, a positive electrode current collector partially extended can be used, but may be separate from the positive electrode. In addition, the negative electrode conductive tab 4 may be a negative electrode current collector partially extended, for example, but may be separate from the negative electrode.

正極導電タブ3は、少なくとも先端部が重ね合わされた後、重ね合わされた部分の両方の最外層がU字状もしくは二つに折り曲げられた正極保護リード5で被覆されている。この正極保護リード5は正極導電タブ3に溶接によって固定されている。一方、負極導電タブ4は、少なくとも先端部が重ね合わされた後、重ね合わされた部分の両方の最外層がU字状もしくは二つに折り曲げられた負極保護リード6で被覆されている。この負極保護リード6は、負極導電タブ4に溶接によって固定されている。なお、導電タブと保護リードとの溶接方法には、レーザ溶接、超音波溶接、抵抗溶接等の方法が用いられるが、超音波溶接が好ましい。正極保護リード5の材質は、例えば、アルミニウムもしくはアルミニウム合金にすることができる。負極保護リード6の材質は、例えば、アルミニウムもしくはアルミニウム合金にすることができる。また、正極保護リード5の材質は、正極導電タブ3と同一の材質であることが好ましく、負極保護リード6の材質は、負極導電タブ4と同一の材質であることが好ましい。 The positive electrode conductive tab 3 is covered with a positive electrode protection lead 5 in which the outermost layers of both of the overlapped portions are U-shaped or folded in two after at least the tip portions are overlapped. The positive electrode protection lead 5 is fixed to the positive electrode conductive tab 3 by welding. On the other hand, the negative electrode conductive tab 4 is covered with a negative electrode protective lead 6 in which at least the front end portions are overlapped, and the outermost layers of both of the overlapped portions are U-shaped or folded in two. The negative electrode protection lead 6 is fixed to the negative electrode conductive tab 4 by welding. In addition, although methods, such as laser welding, ultrasonic welding, resistance welding, are used for the welding method of a conductive tab and a protection lead, ultrasonic welding is preferable. The material of the positive electrode protection lead 5 can be, for example, aluminum or an aluminum alloy. The material of the negative electrode protection lead 6 can be aluminum or an aluminum alloy, for example. The material of the positive electrode protection lead 5 is preferably the same material as that of the positive electrode conductive tab 3, and the material of the negative electrode protection lead 6 is preferably the same material as that of the negative electrode conductive tab 4.

正極保護リード5の外側の一方の面には、四角形板状の正極中間リード7が溶接されている。正極中間リード7は、大きさを正極保護リード5との対向面積よりも大きくすることが望ましく、また、厚さについては正極リード15の厚さとの差が小さいことが望ましい。また、負極保護リード6の外側の一方の面には、四角形板状の負極中間リード8が溶接されている。負極中間リード8は、大きさを負極保護リード6との対向面積よりも大きくすることが望ましく、また、厚さについては負極リード14の厚さとの差が小さいことが望ましい。なお、溶接方法には、レーザー溶接、超音波溶接、抵抗溶接等の方法が用いられるが、超音波溶接が好ましい。正極中間リード7の材質は、例えば、アルミニウムもしくはアルミニウム合金にすることができる。負極中間リード8の材質は、例えば、アルミニウムもしくはアルミニウム合金にすることができる。また、正極中間リード7の材質は、正極導電タブ3と同一の材質であることが好ましく、負極中間リード8の材質は、負極導電タブ4と同一の材質であることが好ましい。 A square plate-like positive electrode intermediate lead 7 is welded to one surface outside the positive electrode protection lead 5. The positive intermediate lead 7 is desirably larger in size than the area facing the positive electrode protection lead 5, and the thickness is desirably small from the thickness of the positive electrode lead 15. A rectangular plate-like negative electrode intermediate lead 8 is welded to one surface outside the negative electrode protection lead 6. The negative electrode intermediate lead 8 is desirably larger in size than the area facing the negative electrode protection lead 6, and the thickness is desirably small with respect to the thickness of the negative electrode lead 14. As a welding method, laser welding, ultrasonic welding, resistance welding, or the like is used, but ultrasonic welding is preferable. The material of the positive electrode intermediate lead 7 can be, for example, aluminum or an aluminum alloy. The material of the negative electrode intermediate lead 8 can be, for example, aluminum or an aluminum alloy. The material of the positive electrode intermediate lead 7 is preferably the same material as that of the positive electrode conductive tab 3, and the material of the negative electrode intermediate lead 8 is preferably the same material as that of the negative electrode conductive tab 4.

外装缶1の開口部は封口部材9によって封止されている。封口部材9は、図1に示すように、外装缶1の開口部を塞ぐ電池封口体10と、電池封口体10の外面(上面)にガスケット11を介して取り付けられた出力端子(リベット)12と、電池封口体10の内面(下面)に絶縁体13を介して取り付けられた負極リード14及び正極リード15とを備える。ガスケット11の材質としては、ポリプロピレン(PP)、熱可塑性フッ素樹脂等を挙げることができる。熱可塑性フッ素樹脂としては、例えば、テトラフルオロエチレン−パーフルオロアルコキシエチレン共重合体(PFA)、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体(FEP)等を挙げることができる。 The opening of the outer can 1 is sealed with a sealing member 9. As shown in FIG. 1, the sealing member 9 includes a battery sealing body 10 that closes the opening of the outer can 1, and an output terminal (rivet) 12 that is attached to the outer surface (upper surface) of the battery sealing body 10 via a gasket 11. And a negative electrode lead 14 and a positive electrode lead 15 attached to the inner surface (lower surface) of the battery sealing body 10 via an insulator 13. Examples of the material of the gasket 11 include polypropylene (PP) and thermoplastic fluororesin. Examples of the thermoplastic fluororesin include tetrafluoroethylene-perfluoroalkoxyethylene copolymer (PFA) and tetrafluoroethylene-hexafluoropropylene copolymer (FEP).

電池封口体10は、アルミニウムまたはアルミニウム合金板材を素材にしたプレス成形品からなり、板面上にガスケット11の取付け用に貫通孔16が形成され、該貫通孔16の上面側の開口周縁には、ガスケット11用の受け座17が凹み形成されている。受け座17は、廻り止めのために円形以外の形状、例えば図1では四角形をしている。一方極端子としての正極端子18は、電池封口体10の上面側に凸状に張り出している。正極端子18の先端面は、廻り止めのために円形以外の形状、例えば図1では四角形をしている。また、圧力開放弁は、電池封口体10の上面における受け座17と正極端子18との間に位置する凹部内の底面に設けられたX字状の溝19を備え、ケース内圧が一定圧力を越えると溝19が破断して内圧を開放する役割を持つ。電解液注液口20は、電解液の注液後、封止栓21と弾性環状部材24により閉止される。この封止栓21は、電池封口体10に溶接される。 The battery sealing body 10 is made of a press-molded product made of aluminum or an aluminum alloy plate material. A through hole 16 is formed on the plate surface for attaching the gasket 11, and an opening peripheral edge on the upper surface side of the through hole 16 is formed. A receiving seat 17 for the gasket 11 is formed in a recess. The receiving seat 17 has a shape other than a circle, for example, a quadrangle in FIG. On the other hand, the positive electrode terminal 18 as the electrode terminal protrudes in a convex shape on the upper surface side of the battery sealing body 10. The tip surface of the positive electrode terminal 18 has a shape other than a circle, for example, a quadrangle in FIG. The pressure release valve includes an X-shaped groove 19 provided on the bottom surface in the recess located between the receiving seat 17 and the positive electrode terminal 18 on the upper surface of the battery sealing body 10, and the case internal pressure is constant. If it exceeds, the groove 19 breaks to release the internal pressure. The electrolyte solution injection port 20 is closed by the sealing plug 21 and the elastic annular member 24 after the electrolyte solution is injected. The sealing plug 21 is welded to the battery sealing body 10.

負極リード14は、絶縁体13の軸用貫通孔30と連通するように設けられ、少なくとも一部が円形以外の形状を持つ軸用貫通孔14cを有する第1のプレート部14aと、第1のプレート部14aから電極群2側に延出された第2のプレート部14bとを備え、L字型の断面形状を有するものである。第1のプレート部及び第2のプレート部は導電材料から形成されている。軸用貫通孔14cは、円形穴からなる。軸用貫通孔14cには、出力端子12の軸先端部24が挿入される。負極リード14の厚さは0.5〜1.5mmが望ましい。また、負極リード14の材質は、活物質の材質に合わせて変更される。負極活物質がチタン酸リチウムの場合、アルミニウムもしくはアルミニウム合金を使用することができる。 The negative electrode lead 14 is provided so as to communicate with the shaft through hole 30 of the insulator 13, and at least a part of the first plate portion 14 a having a shaft through hole 14 c having a shape other than a circular shape, And a second plate portion 14b extending from the plate portion 14a to the electrode group 2 side, and has an L-shaped cross-sectional shape. The first plate portion and the second plate portion are made of a conductive material. The shaft through hole 14c is a circular hole. The shaft tip 24 of the output terminal 12 is inserted into the shaft through hole 14c. The thickness of the negative electrode lead 14 is desirably 0.5 to 1.5 mm. The material of the negative electrode lead 14 is changed according to the material of the active material. When the negative electrode active material is lithium titanate, aluminum or an aluminum alloy can be used.

正極リード15は、四角形の板からなる第1のプレート部15aと、第1のプレート部15aから電極群2側に延出された第2のプレート部15bとを備える。第1のプレート部及び第2のプレート部は導電材料から形成されている。第1のプレート部15aと電池封口体10の下面と接触して正極端子18の周囲にレーザ溶接される。正極リード15の材質は、正極活物質の種類により変更されるものではあるが、例えば、アルミニウム、アルミニウム合金を使用することができる。 The positive electrode lead 15 includes a first plate portion 15a made of a rectangular plate, and a second plate portion 15b extending from the first plate portion 15a to the electrode group 2 side. The first plate portion and the second plate portion are made of a conductive material. Laser welding is performed around the positive electrode terminal 18 in contact with the first plate portion 15 a and the lower surface of the battery sealing body 10. Although the material of the positive electrode lead 15 is changed depending on the type of the positive electrode active material, for example, aluminum or an aluminum alloy can be used.

封口部材9の負極リード14の第2のプレート部14bに、図1及び図2に示すように、負極中間リード8がレーザ溶接され、かつ封口部材9の正極リード15の第2のプレート部15bに正極中間リード7がレーザ溶接される。正負極中間リード7,8を設けることによって、封口部材9と、電極群2の正負極導電タブ3,4との電気的接続が容易になる。すなわち、正負極導電タブ3,4を正負極保護リード5,6と中間リード7,8とで挟み、これらを超音波溶接により一体化した後、中間リード7,8を正負極リード14,15にレーザ溶接することによって、溶接の際に封口部材9に振動が加わらないため、封口部材9に設けられた圧力開放弁の溝19の破断を防止することができる。なお、保護リードを厚くすることができ、保護リードが溶接された導電タブをリード部材にレーザ溶接することが可能な場合、中間リードは用いなくても良い。 As shown in FIGS. 1 and 2, the negative electrode intermediate lead 8 is laser welded to the second plate portion 14b of the negative electrode lead 14 of the sealing member 9, and the second plate portion 15b of the positive electrode lead 15 of the sealing member 9 is used. The positive intermediate lead 7 is laser welded. Providing the positive and negative intermediate leads 7 and 8 facilitates electrical connection between the sealing member 9 and the positive and negative electrode conductive tabs 3 and 4 of the electrode group 2. That is, the positive and negative electrode conductive tabs 3 and 4 are sandwiched between the positive and negative electrode protective leads 5 and 6 and the intermediate leads 7 and 8, and these are integrated by ultrasonic welding, and then the intermediate leads 7 and 8 are connected to the positive and negative electrode leads 14 and 15 respectively. By performing laser welding on the sealing member 9, vibration is not applied to the sealing member 9 during welding, so that the breakage of the groove 19 of the pressure release valve provided in the sealing member 9 can be prevented. When the protective lead can be thickened and the conductive tab to which the protective lead is welded can be laser-welded to the lead member, the intermediate lead may not be used.

封口部材と電極群との電気的接続を行った後、電池封口体10を外装缶1に内嵌したうえで、電池封口体10と外装缶1との嵌合面が溶接により封止される。最後に、電池封口体10の電解液注液口20から電解液を外装缶1内へ注液した後、図3(a)に示すように、封止栓21の栓体23を環状弾性部材24の内側空隙部分へ挿入し、注液口20に封止栓21を内嵌して溶接し、注液口20を封止することによって図1に示す電池が得られる。 After electrical connection between the sealing member and the electrode group, the battery sealing body 10 is fitted into the outer can 1 and the fitting surface between the battery sealing body 10 and the outer can 1 is sealed by welding. . Finally, after the electrolyte solution is injected into the outer can 1 from the electrolyte solution injection port 20 of the battery sealing body 10, as shown in FIG. 3A, the plug body 23 of the sealing plug 21 is annular elastic member. The battery shown in FIG. 1 is obtained by inserting into the inner space part 24 of 24, fitting the sealing plug 21 into the liquid inlet 20 and welding it, and sealing the liquid inlet 20.

次に封止部材について説明する。図1に示すように、注液口は外装缶を密閉に封止する電池封口体に開口された1〜3mm程度の小さな径を有する孔である。 Next, the sealing member will be described. As shown in FIG. 1, the liquid injection port is a hole having a small diameter of about 1 to 3 mm opened in a battery sealing body that hermetically seals the outer can.

封止栓21は、図3(b)に示すように、平板状の蓋体22と蓋体の中央部に突出して設けられた栓体23とにより形成され、封止栓21の栓体23を環状弾性部材24の内側空隙部分へ挿入し、注液口20に封止栓21を内嵌して溶接し、注液口20を封止する。 As shown in FIG. 3B, the sealing plug 21 is formed by a flat lid body 22 and a plug body 23 provided so as to protrude from the center of the lid body. Is inserted into the inner space of the annular elastic member 24, and a sealing plug 21 is fitted into the liquid injection port 20 and welded to seal the liquid injection port 20.

蓋体22は、電池封口体10の電解液注液口を覆う形で設置され、栓体23は電池封口体に開口された注液口へ環状弾性部材24の内側空隙部を通り挿入され、前記環状弾性部材24は注液口の側壁部分と蓋体と栓体とにより形成された封止栓に圧接されている。 The lid body 22 is installed so as to cover the electrolyte solution injection port of the battery sealing body 10, and the plug body 23 is inserted through the inner space of the annular elastic member 24 into the liquid injection port opened in the battery sealing body, The annular elastic member 24 is in pressure contact with a sealing plug formed by a side wall portion of a liquid inlet, a lid body, and a plug body.

蓋体22は、注液口へ圧入された栓体23を注液口内で保持できる剛性を備えていることが好ましい。そして、注液口を密閉するために、レーザ溶接等により固着される。その為、蓋体22の材質は電池封口体と同様の材質であることが好ましい。具体的には、本実施例においては、電池封口体と同質であるアルミニウムまたはアルミニウム合金が適している。 It is preferable that the lid body 22 has rigidity capable of holding the plug body 23 press-fitted into the liquid injection port in the liquid injection port. And in order to seal a liquid injection port, it adheres by laser welding etc. Therefore, the material of the lid 22 is preferably the same material as the battery sealing body. Specifically, in this embodiment, aluminum or aluminum alloy that is the same quality as the battery sealing body is suitable.

栓体は、蓋体と一体に形成されていても、別部品として蓋体へ固着されていてもよい。材質は特に限定されないが、蓋体と一体に形成されるのであれば同質となり、別部品としてとして形成されるのであれば、環状弾性部材を介して注液口の側壁部分と封止栓との密閉を保持することから、剛性を備えていることが好ましい。そして、栓体は直接電解液に接することや、電池が過充電等の何らかの外的な不具合により発熱等した場合に備え、耐電解液性、耐熱性を有する材料が好ましい。具体的には、蓋体と同様の材質が適している。 The plug body may be formed integrally with the lid body or may be fixed to the lid body as a separate part. The material is not particularly limited, but if it is formed integrally with the lid, it will be of the same quality, and if it is formed as a separate part, the side wall portion of the liquid inlet and the sealing plug will be connected via an annular elastic member. In order to maintain the sealing, it is preferable to have rigidity. The plug body is preferably made of a material having an electrolytic solution resistance and a heat resistance in preparation for direct contact with the electrolytic solution or when the battery generates heat due to some external trouble such as overcharge. Specifically, the same material as the lid is suitable.

環状弾性部材24は、電極群を内蔵した電池容器の中へ注液口から電解液が注液され、その後、注液口へ配設される。このため、環状弾性部材は直接電解液に接することや、電池が過充電等の何らかの外的な不具合により発熱等した場合に備え、耐電解液性、耐熱性を有する材料が好ましい。具体的には、EPゴム、EPDM、シリコン系ゴム、ポリプロピレン、ポリエチレン等を使用することができる。特に、EPゴム、EPDMが好ましいい。 The annular elastic member 24 is injected into the battery container containing the electrode group from the injection port, and then disposed in the injection port. For this reason, the material which has electrolyte solution resistance and heat resistance is preferable for the case where the annular elastic member is in direct contact with the electrolyte solution or the battery generates heat due to some external trouble such as overcharge. Specifically, EP rubber, EPDM, silicon rubber, polypropylene, polyethylene and the like can be used. In particular, EP rubber and EPDM are preferable.

環状弾性部材の形状は、図4(a)に示すように、断面円形のリング状となっている。そして、この環状弾性部材と組み合わされる封止栓は、封止栓の蓋体の栓体外形から外方向へ伸びる鍔部の長さが、環状弾性部材のリング状部分の直径よりも長く設定される。封止栓の蓋体の栓体外形から外方向へ伸びる鍔部の長さが、環状弾性部材のリング状部分の直径の2倍以上であることが好ましい。但し、封止栓の蓋体の大きさは、密閉形電池の封口部材の外形からはみ出さない寸法であれば特に限定されない。 The shape of the annular elastic member is a ring shape with a circular cross section, as shown in FIG. In the sealing plug combined with the annular elastic member, the length of the collar portion extending outward from the outer shape of the lid body of the sealing plug is set longer than the diameter of the ring-shaped portion of the annular elastic member. The It is preferable that the length of the collar portion extending outward from the outer shape of the lid body of the sealing plug is twice or more the diameter of the ring-shaped portion of the annular elastic member. However, the size of the lid of the sealing plug is not particularly limited as long as it does not protrude from the outer shape of the sealing member of the sealed battery.

図4(a)に示す断面円形のリング状の環状弾性部材について説明したが、図4(b)〜(c)に示すように断面形状が、楕円形や、六角形などの多角形とすることもできる。 The ring-shaped annular elastic member having a circular cross section shown in FIG. 4A has been described. However, as shown in FIGS. 4B to 4C, the cross-sectional shape is an oval or a polygon such as a hexagon. You can also.

(実施例1)
外装缶1にはアルミニウム板を絞り成形した縦20mm、横100mm、高さ110mm、缶壁厚さ0.5mmの角形の外装缶を用いた。次に、正極としてLiCoO2を主活物質とし帯状の集電体へ塗布し作成した正極板と負極としてLi4+xTi5O12(xは−1≦x≦3)で表されるスピネル構造を有するチタン酸リチウムを主活物質とし帯状の集電体へ塗布し作成した負極板とをセパレータを介し捲回状とした電極群2を作成し、電極群2から延出する正極タブ3と正極端子18とを正極保護リード5、正極中間リード7と正極リード15を介して溶接し、同様に、一方の負極タブ4と負極端子12とを負極保護リード6、負極中間リード8と負極リード14を介して溶接した後、電極群2を外装缶1内に挿入し、該外装缶開口部に電池封口体10を嵌合し、嵌合部をレーザ溶接して一体化した。
(Example 1)
As the outer can 1, a rectangular outer can having a length of 20 mm, a width of 100 mm, a height of 110 mm, and a can wall thickness of 0.5 mm formed by drawing an aluminum plate was used. Next, a positive electrode plate prepared by applying LiCoO2 as a positive active material to a strip-shaped current collector as a positive electrode, and lithium titanate having a spinel structure represented by Li4 + xTi5O12 (x is -1≤x≤3) as a negative electrode Electrode group 2 is formed by winding a negative electrode plate formed by applying a main active material to a strip-shaped current collector through a separator, and a positive electrode tab 3 and a positive electrode terminal 18 extending from electrode group 2 are formed. Welding is performed via the positive electrode protection lead 5, the positive electrode intermediate lead 7, and the positive electrode lead 15. Similarly, one negative electrode tab 4 and the negative electrode terminal 12 are welded via the negative electrode protection lead 6, the negative electrode intermediate lead 8, and the negative electrode lead 14. After that, the electrode group 2 was inserted into the outer can 1, the battery sealing body 10 was fitted into the outer can opening, and the fitting portion was integrated by laser welding.

非水電解液として、エチレンカーボネート(EC)とγ−ブチロラクトン(GBL)が体積比(EC:GBL)で1:2の割合で混合された有機溶媒に、リチウム塩のLiBF4を1.5mol/L溶解させ、液状の非水電解質(非水電解液)を調製し、上述により得られた電池半製品を減圧下に置き、この非水電解液を電解液注液口20より注液した後、該注液口を封止栓21で閉止した後、封止栓21の周囲をレーザ溶接して電池封口体10に溶接することにより、縦20mm、横100mm、高さ110mmで、容量6000mAhの密閉型の角型リチウムイオン二次電池を作製した。 As a non-aqueous electrolyte, 1.5 mol / L of lithium salt LiBF4 was mixed with an organic solvent in which ethylene carbonate (EC) and γ-butyrolactone (GBL) were mixed at a volume ratio (EC: GBL) of 1: 2. After dissolving, preparing a liquid non-aqueous electrolyte (non-aqueous electrolyte), placing the battery semi-product obtained as described above under reduced pressure, and pouring this non-aqueous electrolyte from the electrolyte injection port 20, After closing the liquid injection port with the sealing plug 21, the periphery of the sealing plug 21 is laser welded and welded to the battery sealing body 10, so that the sealing is performed with a length of 20 mm, a width of 100 mm, a height of 110 mm, and a capacity of 6000 mAh. Type prismatic lithium ion secondary battery was fabricated.

封止栓21は、図3(a)〜(b)に示すように、平板状の蓋体22と蓋体の中央部に突出して設けられた栓体23とにより形成されている。 As shown in FIGS. 3A to 3B, the sealing plug 21 is formed by a flat lid body 22 and a plug body 23 that protrudes from the center of the lid body.

蓋体22は、封口電池封口体10の電解液注液口を覆う形で設置され、栓体23は電池封口体に開口された注液口へ環状弾性部材24の内側空隙部を通り挿入され、前記環状弾性部材24は注液口の側壁部分と蓋体と栓体とにより形成された封止栓に圧接されている。 The lid body 22 is installed so as to cover the electrolyte solution injection port of the sealed battery seal body 10, and the plug body 23 is inserted into the liquid injection port opened in the battery seal body through the inner space of the annular elastic member 24. The annular elastic member 24 is pressed against a sealing plug formed by a side wall portion of the liquid injection port, a lid body, and a plug body.

封止栓21は、全体の高さ2.5mm、蓋体の直径は8mm、蓋体の板厚は0.3mm、栓体の先端部23aの外径は2.1mm、根元部分23bの外径は2.4mmとし、環状弾性部材24の外径は3mm、内径は、2.2mmとしリング状部の断面形状は円形とし、円形部の直径は、0.4mmとした。この場合、環状弾性部材24は、弾性を持たせるためにゴム製(例えば、EPゴム等)とされている。また、封止栓21は、外装缶1の材質に等しいアルミニウム製とされている。 The sealing plug 21 has an overall height of 2.5 mm, a lid diameter of 8 mm, a lid plate thickness of 0.3 mm, an outer diameter of the distal end portion 23 a of the plug body of 2.1 mm, and an outer portion of the root portion 23 b. The diameter was 2.4 mm, the outer diameter of the annular elastic member 24 was 3 mm, the inner diameter was 2.2 mm, the cross-sectional shape of the ring-shaped part was circular, and the diameter of the circular part was 0.4 mm. In this case, the annular elastic member 24 is made of rubber (for example, EP rubber) in order to give elasticity. The sealing plug 21 is made of aluminum which is the same as the material of the outer can 1.

(実施例2)
環状弾性部材を、図4(b)示すよう、リング状部の断面形状を楕円形とし環状弾性部材25の外径は3mm、内径は、2.2mmとし、断面楕円形の長径を0.6mm、短径を0.4mmと変更した以外は実施例1と同様な構成の密閉形電池を作製した。
(Example 2)
As shown in FIG. 4B, the annular elastic member has an elliptical cross-sectional shape, the outer diameter of the annular elastic member 25 is 3 mm, the inner diameter is 2.2 mm, and the major axis of the elliptical cross-section is 0.6 mm. A sealed battery having the same configuration as in Example 1 was produced except that the minor axis was changed to 0.4 mm.

(実施例3)
環状弾性部材を、図4(c)示すよう、リング状部の断面形状を六角形とし環状弾性部材26の外径は3mm、内径は、2.2mmとし、断面六角形の中心から頂点までを0.25mmと変更した以外は実施例1と同様な構成の密閉形電池を作製した。
(Example 3)
As shown in FIG. 4 (c), the annular elastic member has a hexagonal cross section, and the annular elastic member 26 has an outer diameter of 3 mm and an inner diameter of 2.2 mm. A sealed battery having the same configuration as in Example 1 was produced except that the thickness was changed to 0.25 mm.

(実施例4)
図5に示すように、封止栓31を、弾性を有するゴム製の栓体33と、この栓体33を保持して電池封口体10に溶着される金属製の蓋体32とから形成され、栓体は樹脂の中実状となり、栓体33は金属製の蓋体32に接着されるために所定の面積を有する根元部と根元部からテーパー状にすぼまるように先端部へ形成された円錐台形とし、封止栓の形状は実施例1と同じとした。また、蓋体32としては外装缶1の材質に等しいアルミニウム製とされている。そして、蓋体32に栓体33を接着するには、まず、蓋体32にポリオレフィン系接着剤をスクリーン印刷などにより塗布しておき、これを加硫型に入れて、蓋体22の上にゴムを加硫して栓体23を形成するようにしている。上記の封止栓31を使用した以外は、実施例1と同様な構成の密閉形電池を作製した。
Example 4
As shown in FIG. 5, the sealing plug 31 is formed of an elastic rubber plug 33 and a metal lid 32 that holds the plug 33 and is welded to the battery sealing body 10. The plug body is solid resin, and the plug body 33 is bonded to the metal lid body 32, so that the base section has a predetermined area and is formed on the tip section so as to taper from the base section. The shape of the truncated cone was the same as that of Example 1. Further, the lid 32 is made of aluminum which is the same as the material of the outer can 1. In order to bond the plug 33 to the lid 32, first, a polyolefin-based adhesive is applied to the lid 32 by screen printing or the like, and this is put in a vulcanization mold and placed on the lid 22. The plug 23 is formed by vulcanizing rubber. A sealed battery having the same configuration as in Example 1 was produced except that the sealing plug 31 was used.

(比較例1)
図6に示すように、封止栓が蓋体42と、栓体内が樹脂で充填された中実状である栓体43で形成されている以外は実施例1と同様な構成の密閉形電池を作製した。
(Comparative Example 1)
As shown in FIG. 6, a sealed battery having the same configuration as that of Example 1 except that the sealing plug is formed of a lid 42 and a plug 43 having a solid shape filled with resin. Produced.

上記実施例及び比較例について、密閉形電池の製造設備により電池を製造し、その際の封止栓供給状態について確認した。外装缶開口部に電池封口体を嵌合し、嵌合部をレーザ溶接して一体化した電池半製品を減圧下に置き、電解液注液口より非水電解液を注液した後、注液口を封止栓で閉止した後、封止栓の周囲をレーザ溶接し密閉形電池を完成した。この封止栓を電池封口体に溶接する工程において、10000個の電池について注液口への封止栓の圧入状態、蓋体と電池封口体との密着状態について観察し、封止栓が浮いているもの、注液口へ圧入されていないものを不良とした。 About the said Example and comparative example, the battery was manufactured with the manufacturing equipment of a sealed battery, and the sealing plug supply state in that case was confirmed. A battery sealing body is fitted into the opening of the outer can, and the battery semi-finished product integrated by laser welding of the fitting part is placed under reduced pressure. After pouring a non-aqueous electrolyte from the electrolyte inlet, After the liquid port was closed with a sealing plug, the periphery of the sealing plug was laser welded to complete a sealed battery. In the process of welding the sealing plug to the battery sealing body, the sealing plug is pressed into the injection port and the contact state between the lid and the battery sealing body is observed for 10,000 batteries, and the sealing plug is floated. And those that were not press-fitted into the injection port were regarded as defective.

次に、完成した密閉形電池の3000個についてリーク試験を行い、電池の密閉性について評価した。リーク試験は、完成した密閉形電池を温度60℃、湿度90%Rhの高温高湿槽へ3ケ月貯蔵する高温高湿貯蔵試験を行い、蓋体と電池封口体との間の溶接部分から電解液の這い上がりなどのリーク不良がないかを確認し評価する。電解液注液後の蓋体と電池封口体との溶接は、栓体により十分に密閉されていないと蓋体と電池封口体とをレーザ溶接する際、電池内へ注液された電解液がレーザ溶接による熱により蒸気化し溶接部分に電池内から電池外部へと目視では確認できない小さなピンホールやブローホールを作り、電池内部から電解液が這い上がるリーク不良を起こしてしまう。上述の工程不良とリーク不良についてそれぞれの不良率をまとめたものが表1である。

Figure 2011210690
Next, a leak test was performed on 3000 completed sealed batteries, and the sealing performance of the batteries was evaluated. The leak test is a high-temperature, high-humidity storage test in which the completed sealed battery is stored in a high-temperature, high-humidity tank with a temperature of 60 ° C. and a humidity of 90% Rh for 3 months. Check and evaluate whether there is any leakage failure such as liquid scooping. When the lid and the battery sealing body are welded to each other after the electrolyte is injected, the electrolyte injected into the battery is not welded when the lid and the battery sealing body are laser-welded. It is vaporized by the heat generated by laser welding, creating small pinholes or blowholes that cannot be visually confirmed from the inside of the battery to the outside of the battery at the welded portion. Table 1 summarizes the defect rates of the above-described process defects and leak defects.
Figure 2011210690


表1から明らかなように、実施例の電池では、比較例の電池と比べてリーク不良率及び封止栓供給工程不良率が大幅に低下している。実施例の電池でリーク発生率が低いのは、注液口20と封止栓21との間における封止不良の発生が少ないことを示している。特に、環状弾性部材を用いることで、蓋体と栓体との接合位置がずれている場合においても、栓体が注液口へ十分圧入され蓋体と電池封口体との密着性が確保されることで、封止栓と電池封口体との溶接が十分に行われ確実に封止することができる。

As is clear from Table 1, in the battery of the example, the leak failure rate and the sealing plug supply process failure rate are significantly reduced as compared with the battery of the comparative example. The low leak rate in the battery of the example indicates that the occurrence of poor sealing between the liquid injection port 20 and the sealing plug 21 is small. In particular, by using an annular elastic member, even when the joining position of the lid body and the plug body is shifted, the plug body is sufficiently pressed into the liquid injection port, and the adhesion between the lid body and the battery sealing body is ensured. By doing so, welding between the sealing plug and the battery sealing body is sufficiently performed, and the sealing can be surely performed.

比較例で封止栓供給不良率が高いのは、封止栓21を連続供給する際に封止栓の蓋体と栓体との接合位置が、蓋体の中心部からずれている、栓体の外形寸法と注液口の内径寸法にばらつきがある、などにより、栓体と注液口の嵌合範囲も狭く、きつくて嵌合ができないもの、嵌合はできるがゆるくて密閉性を確保できないものなどが、供給不良を生じた原因である。 The sealing plug supply failure rate in the comparative example is high because when the sealing plug 21 is continuously supplied, the joining position of the lid of the sealing plug and the plug is shifted from the center of the lid. Due to variations in body external dimensions and liquid inlet inner diameter, the fitting range between the stopper and the liquid inlet is narrow, and the fitting range is tight and cannot be fitted. What cannot be secured is the cause of supply failure.

一方、実施例で封止栓供給不良率が低いのは、注液口へ封止栓を圧入する際、蓋体と栓体との接合位置がずれている場合においても、注液口と栓体との間を環状弾性部材により密着され、封止栓により注液口が密閉されるからである。 On the other hand, the sealing plug supply failure rate in the examples is low when the sealing plug is press-fitted into the liquid injection port, even when the joining position of the lid body and the plug body is shifted. This is because the annular elastic member is in close contact with the body, and the liquid injection port is sealed by the sealing plug.

以上のように本実施形態では、密閉形電池用電池封口体に開設された注液口を封止する際に用いる封止栓を、電池封口体の表面上に注液口を覆う状態で固着される蓋体と栓体とで構成し、栓体は電池封口体に開口された注液口へ環状弾性部材の内側空隙部を通り挿入される。 As described above, in this embodiment, the sealing plug used when sealing the liquid injection port established in the battery sealing body for a sealed battery is fixed on the surface of the battery sealing body in a state of covering the liquid injection port. The plug body is composed of a lid body and a plug body, and the plug body is inserted into the liquid injection port opened in the battery sealing body through the inner space of the annular elastic member.

環状弾性部材は注液口の側壁部分と蓋体と栓体とにより形成された封止栓に圧接されている。 The annular elastic member is pressed against a sealing plug formed by a side wall portion of the liquid injection port, a lid body, and a plug body.

このようにして注液口を封止すると、封止栓と電池封口体の注液口の内壁とが環状弾性部材により密閉することができ栓体の上に配置された蓋体と電池封口体とをレーザ溶接する前に気密性を確保することができる。 When the liquid injection port is sealed in this way, the sealing plug and the inner wall of the liquid injection port of the battery sealing body can be sealed by the annular elastic member, and the lid body and the battery sealing body arranged on the plug body Airtightness can be ensured before laser welding.

封止栓と電池封口体の注液口との間に環状弾性部材を配置することによって、封止栓の蓋体と栓体との接合位置が、蓋体の中心位置からずれていた場合においても、環状弾性部材により、一定の圧力で注液口へ栓体が十分に挿入されるため、栓体と電解液の注液口の内壁とが環状弾性部材を介して密着することで、封止栓が電池封口体と密着し、封止栓と電池封口体との溶接が十分行われる。これにより製造された密閉形電池は、漏液がなく長期信頼性を確保できる。 When the annular elastic member is disposed between the sealing plug and the liquid injection port of the battery sealing body, the joining position of the sealing plug lid body and the plug body is shifted from the center position of the lid body. In addition, since the plug body is sufficiently inserted into the liquid injection port at a constant pressure by the annular elastic member, the plug body and the inner wall of the electrolyte liquid injection port are in close contact with each other through the ring elastic member, so that the sealing is performed. The stopper plug comes into close contact with the battery sealing body, and the sealing stopper and the battery sealing body are sufficiently welded. The sealed battery thus manufactured has no leakage and can ensure long-term reliability.

つまり、本実施の形態によれば、封止栓挿入不良を低減し、密着性をあげたことによって漏液不良も低減し、信頼性の高い密閉形電池を提供することができる。このため、ヒートサイクルや大電流用途等において液漏れの無い信頼性に優れた密閉型の電池を提供でき、特にハイブリッド車や電気自動車に搭載する車載用二次電池、電力平準化に使用される電力貯蔵用二次電池として好適なものとなる。 In other words, according to the present embodiment, it is possible to provide a highly reliable sealed battery by reducing the sealing plug insertion failure and reducing the leakage due to the increased adhesion. For this reason, it is possible to provide a sealed battery excellent in reliability with no liquid leakage in heat cycle, large current applications, etc., and is particularly used for in-vehicle secondary batteries mounted on hybrid cars and electric cars, and power leveling. This is suitable as a secondary battery for power storage.

なお、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組み合わせにより、種々の発明を形成できる。例えば、実施形態に示される全構成要素から幾つかの構成要素を削除してもよい。さらに、異なる実施形態にわたる構成要素を適宜組み合わせてもよい。 The above-described embodiment is not limited to the above-described embodiment, and the constituent elements can be modified and embodied without departing from the spirit of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different embodiments may be appropriately combined.

1…外装缶、2…電極群、3…正極導電タブ、4…負極導電タブ、5…正極保護リード、6…負極保護リード、7…正極中間リード、8…負極中間リード、9…封口部材、10…電池封口体、11…ガスケット、12…出力端子、13…絶縁体、14…負極リード、15…正極リード、16…貫通孔、17…受け座、18…正極端子、19…圧力開放弁、20…電解液注液口、21,31,41…封止栓、22,32,42…蓋体、23,33,43…栓体、24…環状弾性部材 DESCRIPTION OF SYMBOLS 1 ... Exterior can, 2 ... Electrode group, 3 ... Positive electrode conductive tab, 4 ... Negative electrode conductive tab, 5 ... Positive electrode protective lead, 6 ... Negative electrode protective lead, 7 ... Positive electrode intermediate lead, 8 ... Negative electrode intermediate lead, 9 ... Sealing member DESCRIPTION OF SYMBOLS 10 ... Battery sealing body, 11 ... Gasket, 12 ... Output terminal, 13 ... Insulator, 14 ... Negative electrode lead, 15 ... Positive electrode lead, 16 ... Through-hole, 17 ... Receiving seat, 18 ... Positive electrode terminal, 19 ... Pressure release Valve, 20 ... Electrolyte injection port, 21, 31, 41 ... Sealing plug, 22, 32, 42 ... Lid, 23, 33, 43 ... Plug, 24 ... Ring elastic member

Claims (4)

外装缶と、前記外装缶内に収納され、正極及び負極を含む電極群と、前記外装缶の開口部に取り付けられる電池封口体と、前記電池封口体若しくは前記外装缶に設けられた前記外装缶内へ電解液を注液する注液口と、その注液口を封止する封止栓を具備する密閉形電池であって、
前記封止栓は、前記電池封口体若しくは前記外装缶に設けられた前記注液口を蓋う状態で固着される蓋体と、前記蓋体に支持された栓体とで形成され、前記注液口と前記注液口へ覆うように配置された前記封止栓との間に環状弾性部材を備えていることを特徴とする密閉形電池。
An outer can, an electrode group housed in the outer can and including a positive electrode and a negative electrode, a battery sealing body attached to an opening of the outer can, and the outer casing provided in the battery sealing body or the outer can A sealed battery comprising a liquid injection port for injecting an electrolyte solution therein and a sealing plug for sealing the liquid injection port,
The sealing plug is formed of a lid body fixed in a state of covering the liquid injection port provided in the battery sealing body or the outer can, and a plug body supported by the lid body, A sealed battery comprising an annular elastic member between a liquid port and the sealing plug disposed so as to cover the liquid injection port.
前記環状弾性部材が前記環状弾性部材の環状内側空隙部に前記封止栓の前記栓体が圧入された状態で形成され、前記環状弾性部材の外側が注液口の内側側壁部に密着した状態で封止されることを特徴とする請求項1記載の密閉型電池。 The annular elastic member is formed in a state in which the plug body of the sealing plug is press-fitted into the annular inner space of the annular elastic member, and the outer side of the annular elastic member is in close contact with the inner side wall portion of the liquid injection port The sealed battery according to claim 1, wherein the sealed battery is sealed. 前記環状弾性部材が前記封止栓の前記蓋体に接しない状態で封止されることを特徴とする請求項1記載の密閉型電池。 The sealed battery according to claim 1, wherein the annular elastic member is sealed without being in contact with the lid of the sealing plug. 前記環状部材の横断面形状が円形、楕円形若しくは多角形の形状であることを特徴とする請求項1記載の密閉形電池。 2. The sealed battery according to claim 1, wherein the annular member has a circular, oval or polygonal cross-sectional shape.
JP2010079851A 2010-03-30 2010-03-30 Sealed battery Pending JP2011210690A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010079851A JP2011210690A (en) 2010-03-30 2010-03-30 Sealed battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010079851A JP2011210690A (en) 2010-03-30 2010-03-30 Sealed battery

Publications (1)

Publication Number Publication Date
JP2011210690A true JP2011210690A (en) 2011-10-20

Family

ID=44941509

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010079851A Pending JP2011210690A (en) 2010-03-30 2010-03-30 Sealed battery

Country Status (1)

Country Link
JP (1) JP2011210690A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132632A1 (en) * 2012-03-08 2013-09-12 トヨタ自動車株式会社 Sealed cell and method for manufacturing same
WO2014068641A1 (en) * 2012-10-29 2014-05-08 日立ビークルエナジー株式会社 Prismatic accumulator element and method for fabricating same
CN104620421A (en) * 2012-09-14 2015-05-13 罗伯特·博世有限公司 Battery cell having a housing cover plate with an adhesively bonded sealing stopper
CN106624412A (en) * 2016-12-23 2017-05-10 深圳锦帛方激光科技有限公司 Battery buckle cover prewelding machine

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013132632A1 (en) * 2012-03-08 2013-09-12 トヨタ自動車株式会社 Sealed cell and method for manufacturing same
JPWO2013132632A1 (en) * 2012-03-08 2015-07-30 トヨタ自動車株式会社 Sealed battery and manufacturing method thereof
CN104620421A (en) * 2012-09-14 2015-05-13 罗伯特·博世有限公司 Battery cell having a housing cover plate with an adhesively bonded sealing stopper
WO2014068641A1 (en) * 2012-10-29 2014-05-08 日立ビークルエナジー株式会社 Prismatic accumulator element and method for fabricating same
JPWO2014068641A1 (en) * 2012-10-29 2016-09-08 日立オートモティブシステムズ株式会社 Rectangular storage element and method for manufacturing the same
CN106624412A (en) * 2016-12-23 2017-05-10 深圳锦帛方激光科技有限公司 Battery buckle cover prewelding machine

Similar Documents

Publication Publication Date Title
JP6538650B2 (en) Cylindrical sealed battery
KR101514827B1 (en) Secondary battery and method for manufacturing the same
JP5566641B2 (en) battery
KR100959090B1 (en) Pouch type secondary battery with enhanced stability
US11069916B2 (en) Cylindrical battery
US6866961B2 (en) Lithium secondary battery and manufacturing method thereof
US10263237B2 (en) Cylindrical battery, and collector member used therefor, and manufacturing method thereof
US10461304B2 (en) Cylindrical battery
US20180047973A1 (en) Cylindrical batteries
JP6250921B2 (en) battery
JPWO2015146078A1 (en) Cylindrical sealed battery and battery pack
US20140141293A1 (en) Prismatic storage battery
JP2009087722A (en) Battery and battery pack
JP2011086382A (en) Sealed battery
US20150010793A1 (en) Cylindrical lithium-ion cell
KR20040022716A (en) Cylindrical type lithium secondary battery and the fabrication method of the same
JP2001313022A (en) Nonaqueous electrolyte secondary battery
JP2008204754A (en) Sealed battery, and its manufacturing method
US9601735B2 (en) Cylindrical battery
US20110020674A1 (en) Enclosed battery
JP2013062199A (en) Sealed battery
KR101264425B1 (en) Cap assembly and rechargeable battery using the same
US11476550B2 (en) Secondary battery capable of equalizing internal/external pressure
JP2011210690A (en) Sealed battery
JP2011192518A (en) Secondary battery

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20111125

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20111205