JP3879220B2 - Explosion-proof sealing device for secondary batteries - Google Patents

Explosion-proof sealing device for secondary batteries Download PDF

Info

Publication number
JP3879220B2
JP3879220B2 JP00728598A JP728598A JP3879220B2 JP 3879220 B2 JP3879220 B2 JP 3879220B2 JP 00728598 A JP00728598 A JP 00728598A JP 728598 A JP728598 A JP 728598A JP 3879220 B2 JP3879220 B2 JP 3879220B2
Authority
JP
Japan
Prior art keywords
cap
shaped terminal
sealing device
explosion
proof sealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00728598A
Other languages
Japanese (ja)
Other versions
JPH11204089A (en
Inventor
英樹 肥後
哲哉 村上
敬士 横山
彰規 粟野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP00728598A priority Critical patent/JP3879220B2/en
Publication of JPH11204089A publication Critical patent/JPH11204089A/en
Application granted granted Critical
Publication of JP3879220B2 publication Critical patent/JP3879220B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、二次電池用防爆封口装置に関するものであり、生産工程における不良低減および二次電池のパック構成時の不良低減をする技術に属するものである。
【0002】
【従来の技術】
近年、AV機器,パソコン等の機器のコードレス化,ポータブル化に伴い、その駆動用電源として小型,軽量で、高エネルギー密度の電池が求められている。特に、リチウムイオン二次電池は高エネルギー密度を有する電池であり、次世代電池の主力として大いに期待され、その潜在的市場規模も大きい。
【0003】
このリチウムイオン二次電池用防爆封口装置の前記キャップ状端子には、従来表面が平滑で凹凸がRa=0.3μm以下である材料(以下、ブライト材という)が用いられてきた。
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の構成では、第一の課題としてパック構成の際に、前記キャップ状端子と接続板とのリードスポット溶接不良が多発するという欠点を有していた。また、第二の課題として高所からの落下等の衝撃やヒートサイクル等の熱的衝撃が加わった時、前記キャップ状端子とPTC素子との間に空隙が発生し、電池の内部抵抗が増大し、電池性能を著しく低下させるという欠点を有していた。
【0005】
本発明は、このような従来の課題を解決するものであり、パック構成の際に、確実に前記キャップ状端子と接続板とがリードスポット溶接され、不良を低減し、かつ内部抵抗の増大が抑制された二次電池用防爆封口装置を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
上記の課題を解決するために本発明の二次電池用防爆封口装置は、前記キャップ状端子を表面がRa=0.5〜1.0μmの凹凸処理された材料を用いて構成したものである。
【0007】
上記構成によって、前記キャップ状端子にリードスポット溶接を行うと前記キャップ状端子表面における接触抵抗は、従来の表面が平滑なブライト材を用いた場合に比べ、増大する。このことにより、スポット溶接される接続板とキャップ状端子に発生するジュール熱が増加し、前記キャップ状端子と接続板とのリードスポット溶接を、より強固かつ確実に行うことができる。さらに、前記キャップ状端子の凹凸が従来と比べ、大きいことからPTC素子に凹凸部が深く食い込むことにより、キャップ状端子とPTC素子の密着度は高くなる。
【0008】
【発明の実施の形態】
本発明は、請求項1記載のように正極板と負極板をセパレーターを介して巻回して構成した極板群と、電解液を収納した電槽を封口する封口装置であって、前記封口装置はキャップ状端子,PTC素子,防爆弁体および絶縁インナーガスケットを金属ケースに収納して、かしめて一体になっており、しかも前記キャップ状端子は表面がRa=0.5〜1.0μmの凹凸処理された材料により構成して二次電池用防爆封口装置とすることができる。
【0009】
以上の構成とすることで、前記キャップ状端子にリードスポット溶接を行うと前記キャップ状端子表面における接触抵抗は、従来の表面が平滑なブライト材を用いた場合に比べ、増大する。このことにより、スポット溶接される接続板とキャップ状端子に発生するジュール熱が増加し、前記キャップ状端子と接続板とのリードスポット溶接を、より強固かつ確実に行うことができる。さらに、前記キャップ状端子の凹凸が従来と比べ大きいことから前記PTC素子に凹凸部が深く食い込み、キャップ状端子とPTC素子の密着度は高くなる。これにより、落下試験やヒートサイクル試験を行った際の電池の内部抵抗の増大が抑制される。
【0010】
なお、キャップ状端子の表面の凹凸がRa=0.5μm以下であると、凹凸が小さいため効果があまり見られず、Ra=1.0μm以上であると、凹凸が大きすぎるためPTC素子との接触が保てなくなる。このことから、表面の凹凸はRa=0.5〜1.0μmにすると良い。
【0011】
【実施例】
(実施例1)
図1は、本発明の実施例1における二次電池用防爆封口装置の断面図を示す。図1に示すように、本実施例1の封口装置のキャップ状端子1は表面がRa=0.5〜1.0μmの凹凸処理されたものであり、PTC素子2と、薄肉部を有する弁体3と、ガス排出口を有する導電性金属板4と、弁体3と導電性金属板4の間に配設されて開口部を有する絶縁ガスケット5を備えている。そして、弁体3の一部と導電性金属板4の一部を絶縁ガスケット5の開口部内で溶着し、絶縁ガスケット5と接触する弁体3の上面を、弁体3と導電性金属板4との溶着部6より上方に位置させるとともに、弁体3を山部3aを有する波状にして、電池内圧が所定の圧力値に達すると、弁体3が上方に反転し、弁体3と導電性金属板4との電気的接続を遮断する構造を有している。なお、7は金属ケースを示す。
【0012】
(実施例2)
図2は、本発明の実施例2における二次電池用防爆封口装置の断面図を示す。図2に示すように、実施例1で用いた弁体3の山部3aをなくし、谷部3bをPTC素子2の底面と弁体3との接触面よりも下方に位置させる。
【0013】
(実施例3)
図3は、本発明の実施例3における二次電池用防爆封口装置の断面図を示す。図3に示すように、実施例1で用いた弁体3の山部3a,谷部3bが設けられていない構造とする。
【0014】
以下に、本発明の実施例による二次電池用防爆封口装置と、キャップ状端子にブライト材を使用した従来の二次電池用防爆封口装置との性能を比較して示す。
【0015】
本発明の防爆封口装置は、開口部を有する絶縁ガスケット5の上部に配設される弁体3の底面と導電性金属板4とが、絶縁ガスケット5の開口部内で溶着部6により電気的に接続されている。絶縁ガスケット5と、弁体3と、弁体3の上部に配設されるPTC素子2と、PTC素子2の上部に配設されるキャップ状端子1と凹凸段差部を設けた導電性金属板4は、開口部を有する金属ケース7に収納され、かしめ封口されている。
【0016】
電槽内部には、金属箔集電体にLiCoO2 を主成分とするペーストを塗布,乾燥し短冊状に切断した正極板と、カーボンをペースト状にして金属箔集電体に塗布,乾燥し短冊状に切断した負極板とを、フィルム状セパレーターを介して巻回した発電要素を内蔵し、電槽開口部に、絶縁性樹脂からなるガスケットを介して、前記防爆封口装置はかしめ封口される。本発明の防爆封口装置は成分組成が、Cが0.12%以下、Siが0.75%以下、Mnが1.00%以下、Pが0.040%以下、Sが0.030%以下、Crが16.00〜18.00%であるSUSを用い、キャップ状端子1に表面がRa=0.5〜1.0μmの凹凸処理された材料(以下、ダル材という)を用いた。
【0017】
また、従来例にはキャップ状端子に実施例と同様のSUSを用い、表面の凹凸がRa=0.3μm以下の平滑なブライト材を用いた。
【0018】
以上のように構成された本発明の防爆封口装置と従来例の防爆封口装置について、パック構成時のキャップ状端子とNi,Al,Fe等を材料とする接続板のリードスポット溶接不良の割合により評価を行い、その結果を表1に示す。
【0019】
【表1】

Figure 0003879220
【0020】
表1の結果から、キャップ状端子に表面が平滑なブライト材を用いた従来例には、キャップ状端子と接続板とのリードスポット溶接不良は0.8%発生していたのに対して、キャップ状端子1に表面が凹凸処理されたダル材を用いた本発明の実施例では、全く溶接不良は発生しなかった。
【0021】
また、上記構成の本発明の実施例の防爆封口装置と従来例の防爆封口装置を用いて電池を組み、5回の落下試験と、10〜60℃で1週間のヒートサイクル試験を行い、電池の内部抵抗を測定し、落下試験とヒートサイクル試験前後の変化を調べ、その評価の結果を表2,表3に示す。
【0022】
【表2】
Figure 0003879220
【0023】
【表3】
Figure 0003879220
【0024】
表2の結果から、キャップ状端子に表面が平滑なブライト材を用いた従来例に比べて、キャップ状端子に表面が凹凸処理されたダル材を用いた本実施例は、落下試験前後での内部抵抗は、本発明の実施例が0.03mΩの増加、従来例が0.89mΩの増加で、本発明の実施例のキャップ状端子が従来例のキャップ状端子に比較して内部抵抗の増加が小さかった。
【0025】
また、表3の結果から、従来例ではヒートサイクル試験後に電池の内部抵抗が増大するものが100個中34個あったが、本実施例においては電池の内部抵抗が増大する電池はなかった。
【0026】
以上の結果から、キャップ状端子に表面が凹凸処理されたダル材を用いることにより、パック構成時のリードスポット溶接の向上と落下試験やヒートサイクル試験での内部抵抗の増大の抑制が見られた。
【0027】
なお、本実施例において、キャップ状端子の材質は成分組成が、Cが0.12%以下、Siが0.75%以下、Mnが1.00%以下、Pが0.040%以下、Sが0.030%以下、Crが16.00〜18.00%であるSUSのダル材としたが、鉄のダル材でも同様の結果が得られる。
【0028】
【発明の効果】
以上のように本発明は、キャップ状端子の材質を表面が凹凸処理されたダル材とすることにより、キャップ状端子と接続板とのリードスポット溶接を確実に行うことができ、またキャップ状端子とPTC素子の密着度が高い優れた二次電池用防爆封口装置を実現できるものである。
【図面の簡単な説明】
【図1】本発明の実施例1における二次電池用防爆封口装置の断面図
【図2】本発明の実施例2における二次電池用防爆封口装置の断面図
【図3】本発明の実施例3における二次電池用防爆封口装置の断面図
【符号の説明】
1 キャップ状端子
2 PTC素子
3 弁体
3a 山部
3b 谷部
4 導電性金属板
5 絶縁ガスケット
6 溶着部
7 金属ケース[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an explosion-proof sealing device for a secondary battery, and belongs to a technique for reducing defects in a production process and reducing defects during the construction of a secondary battery pack.
[0002]
[Prior art]
In recent years, with cordless and portable devices such as AV devices and personal computers, small, lightweight and high energy density batteries are required as driving power sources. In particular, a lithium ion secondary battery is a battery having a high energy density, and is highly expected as a mainstay of next-generation batteries, and has a large potential market scale.
[0003]
For the cap-shaped terminal of the explosion-proof sealing device for a lithium ion secondary battery, a material having a smooth surface and an unevenness of Ra = 0.3 μm or less (hereinafter referred to as a bright material) has been used.
[0004]
[Problems to be solved by the invention]
However, the conventional configuration has a drawback that lead spot welding defects frequently occur between the cap-shaped terminal and the connection plate in the pack configuration as a first problem. In addition, as a second problem, when a shock such as a drop from a high place or a thermal shock such as a heat cycle is applied, a gap is generated between the cap-shaped terminal and the PTC element, increasing the internal resistance of the battery. However, it has the disadvantage of significantly reducing battery performance.
[0005]
The present invention solves such a conventional problem, and in the pack configuration, the cap-shaped terminal and the connection plate are surely lead spot welded to reduce defects and increase internal resistance. An object of the present invention is to provide a suppressed explosion-proof sealing device for a secondary battery.
[0006]
[Means for Solving the Problems]
In order to solve the above-described problems, the explosion-proof sealing device for a secondary battery according to the present invention is configured such that the cap-shaped terminal is made of an unevenly processed material having a surface with Ra = 0.5 to 1.0 μm. .
[0007]
With the above configuration, when lead spot welding is performed on the cap-shaped terminal, the contact resistance on the surface of the cap-shaped terminal is increased as compared with a conventional bright material having a smooth surface. As a result, Joule heat generated in the spot-welded connection plate and the cap-shaped terminal increases, and lead spot welding between the cap-shaped terminal and the connection plate can be performed more firmly and reliably. Furthermore, since the unevenness of the cap-shaped terminal is larger than that of the conventional case, the unevenness of the cap-shaped terminal deeply penetrates into the PTC element, thereby increasing the adhesion between the cap-shaped terminal and the PTC element.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
The present invention is a sealing device for sealing an electrode plate group formed by winding a positive electrode plate and a negative electrode plate via a separator as in claim 1, and a battery case containing an electrolyte solution, wherein the sealing device The cap-shaped terminal, PTC element, explosion-proof valve body, and insulating inner gasket are housed in a metal case and are integrated by caulking. Moreover, the cap-shaped terminal has a surface roughness Ra = 0.5 to 1.0 μm. It can comprise by the processed material and can be set as the explosion-proof sealing apparatus for secondary batteries.
[0009]
With the above configuration, when lead spot welding is performed on the cap-shaped terminal, the contact resistance on the surface of the cap-shaped terminal is increased as compared with a conventional bright material having a smooth surface. As a result, Joule heat generated in the spot-welded connection plate and the cap-shaped terminal increases, and lead spot welding between the cap-shaped terminal and the connection plate can be performed more firmly and reliably. Further, since the unevenness of the cap-shaped terminal is larger than that of the prior art, the unevenness portion deeply penetrates into the PTC element, and the adhesion between the cap-shaped terminal and the PTC element is increased. Thereby, the increase in the internal resistance of the battery when performing a drop test or a heat cycle test is suppressed.
[0010]
In addition, when the unevenness on the surface of the cap-shaped terminal is Ra = 0.5 μm or less, the effect is not so much seen because the unevenness is small, and when Ra = 1.0 μm or more, the unevenness is too large, Contact cannot be maintained. For this reason, the surface irregularities are preferably Ra = 0.5 to 1.0 μm.
[0011]
【Example】
Example 1
FIG. 1 shows a cross-sectional view of an explosion-proof sealing device for a secondary battery in Example 1 of the present invention. As shown in FIG. 1, the cap-shaped terminal 1 of the sealing device of the first embodiment has a surface subjected to unevenness treatment with Ra = 0.5 to 1.0 μm, and has a PTC element 2 and a valve having a thin portion. A body 3, a conductive metal plate 4 having a gas discharge port, and an insulating gasket 5 disposed between the valve body 3 and the conductive metal plate 4 and having an opening. Then, a part of the valve body 3 and a part of the conductive metal plate 4 are welded in the opening of the insulating gasket 5, and the upper surface of the valve body 3 in contact with the insulating gasket 5 is connected to the valve body 3 and the conductive metal plate 4. When the internal pressure of the battery reaches a predetermined pressure value, the valve body 3 is inverted upward, and the valve body 3 is electrically connected to the valve body 3. The electrical connection with the conductive metal plate 4 is cut off. Reference numeral 7 denotes a metal case.
[0012]
(Example 2)
FIG. 2 shows a cross-sectional view of an explosion-proof sealing device for a secondary battery in Example 2 of the present invention. As shown in FIG. 2, the crest 3 a of the valve body 3 used in Example 1 is eliminated, and the trough 3 b is positioned below the contact surface between the bottom surface of the PTC element 2 and the valve body 3.
[0013]
(Example 3)
FIG. 3 shows a cross-sectional view of an explosion-proof sealing device for a secondary battery in Example 3 of the present invention. As shown in FIG. 3, it is set as the structure where the peak part 3a of the valve body 3 used in Example 1 and the trough part 3b are not provided.
[0014]
The performance of the secondary battery explosion-proof sealing device according to the embodiment of the present invention is compared with the performance of a conventional secondary battery explosion-proof sealing device using a bright material for the cap-shaped terminal.
[0015]
In the explosion-proof sealing device of the present invention, the bottom surface of the valve body 3 and the conductive metal plate 4 disposed on the upper part of the insulating gasket 5 having the opening are electrically connected by the welded portion 6 within the opening of the insulating gasket 5. It is connected. Insulating gasket 5, valve body 3, PTC element 2 disposed on the top of valve body 3, cap-shaped terminal 1 disposed on the top of PTC element 2, and conductive metal plate provided with uneven steps 4 is housed in a metal case 7 having an opening and is caulked and sealed.
[0016]
Inside the battery case, a paste containing LiCoO 2 as a main component is applied to a metal foil current collector, dried and cut into strips, and carbon is pasted into the metal foil current collector and dried. The explosion-proof sealing device is caulked and sealed through a gasket made of an insulating resin in a battery case opening, incorporating a power generation element wound with a negative electrode plate cut into a strip shape through a film-like separator. . The explosion-proof sealing device of the present invention has a component composition of C of 0.12% or less, Si of 0.75% or less, Mn of 1.00% or less, P of 0.040% or less, and S of 0.030% or less. SUS with Cr of 16.00 to 18.00% was used, and the cap-shaped terminal 1 was made of a surface-treated surface with Ra = 0.5 to 1.0 μm (hereinafter referred to as a dull material).
[0017]
In the conventional example, the same SUS as that of the example was used for the cap-shaped terminal, and a smooth bright material having a surface irregularity of Ra = 0.3 μm or less was used.
[0018]
About the explosion-proof sealing device of the present invention and the conventional explosion-proof sealing device configured as described above, depending on the ratio of lead spot welding failure of the cap-shaped terminal and the connection plate made of Ni, Al, Fe or the like at the time of pack configuration. Evaluation was performed and the results are shown in Table 1.
[0019]
[Table 1]
Figure 0003879220
[0020]
From the results in Table 1, in the conventional example using a bright material with a smooth surface for the cap-shaped terminal, lead spot welding failure between the cap-shaped terminal and the connection plate occurred 0.8%, In the example of the present invention in which the cap-shaped terminal 1 was made of a dull material whose surface was processed to be uneven, no welding failure occurred.
[0021]
Further, the battery is assembled using the explosion-proof sealing device of the embodiment of the present invention having the above-described configuration and the conventional explosion-proof sealing device, and subjected to five drop tests and a heat cycle test at 10 to 60 ° C. for one week. The internal resistance was measured, the changes before and after the drop test and the heat cycle test were examined, and the results of the evaluation are shown in Tables 2 and 3.
[0022]
[Table 2]
Figure 0003879220
[0023]
[Table 3]
Figure 0003879220
[0024]
From the results of Table 2, compared to the conventional example using a bright material with a smooth surface for the cap-shaped terminal, the present example using the dull material whose surface was unevenly processed on the cap-shaped terminal was measured before and after the drop test. The internal resistance increased by 0.03 mΩ in the embodiment of the present invention, and increased by 0.89 mΩ in the conventional example. The cap-shaped terminal of the embodiment of the present invention increased the internal resistance compared to the cap-shaped terminal of the conventional example. Was small.
[0025]
Further, from the results of Table 3, in the conventional example, there were 34 batteries out of 100 in which the internal resistance of the battery increased after the heat cycle test, but in this example, there was no battery in which the internal resistance of the battery increased.
[0026]
From the above results, by using a dull material whose surface was processed to be uneven on the cap-shaped terminal, improvement of lead spot welding at the time of pack configuration and suppression of increase of internal resistance in drop test and heat cycle test were seen. .
[0027]
In this embodiment, the material of the cap-shaped terminal is as follows: component composition: C is 0.12% or less, Si is 0.75% or less, Mn is 1.00% or less, P is 0.040% or less, S SUS dull material with 0.030% or less and Cr of 16.00-18.00%, but similar results are obtained with iron dull material.
[0028]
【The invention's effect】
As described above, the present invention can reliably perform lead spot welding between the cap-shaped terminal and the connecting plate by using a cap-shaped terminal made of a dull material having an uneven surface. And an excellent explosion-proof sealing device for a secondary battery having a high degree of adhesion between the PTC element and the PTC element.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a secondary battery explosion-proof sealing device in Example 1 of the present invention. FIG. 2 is a cross-sectional view of a secondary battery explosion-proof sealing device in Example 2 of the present invention. Sectional view of the secondary battery explosion-proof sealing device in Example 3 [Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Cap-shaped terminal 2 PTC element 3 Valve body 3a Mountain part 3b Valley part 4 Conductive metal plate 5 Insulation gasket 6 Welding part 7 Metal case

Claims (1)

正極板と負極板をセパレーターを介して巻回して構成した極板群と、電解液を収納した電槽を封口する封口装置であって、前記封口装置はキャップ状端子,PTC素子,防爆弁体および絶縁インナーガスケットを金属ケースに収納して、かしめて一体になっており、しかも前記キャップ状端子は表面がRa=0.5〜1.0μmの凹凸処理された材料により構成されたものであることを特徴とする二次電池用防爆封口装置。A sealing device for sealing an electrode plate group formed by winding a positive electrode plate and a negative electrode plate through a separator, and a battery case containing an electrolyte solution, the sealing device comprising a cap-shaped terminal, a PTC element, and an explosion-proof valve body The insulating inner gasket is housed in a metal case and is integrated by caulking, and the cap-shaped terminal is made of a surface-treated surface with Ra = 0.5 to 1.0 μm. An explosion-proof sealing device for a secondary battery.
JP00728598A 1998-01-19 1998-01-19 Explosion-proof sealing device for secondary batteries Expired - Fee Related JP3879220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00728598A JP3879220B2 (en) 1998-01-19 1998-01-19 Explosion-proof sealing device for secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00728598A JP3879220B2 (en) 1998-01-19 1998-01-19 Explosion-proof sealing device for secondary batteries

Publications (2)

Publication Number Publication Date
JPH11204089A JPH11204089A (en) 1999-07-30
JP3879220B2 true JP3879220B2 (en) 2007-02-07

Family

ID=11661776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00728598A Expired - Fee Related JP3879220B2 (en) 1998-01-19 1998-01-19 Explosion-proof sealing device for secondary batteries

Country Status (1)

Country Link
JP (1) JP3879220B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005093239A (en) 2003-09-17 2005-04-07 Sony Corp Battery
JP4590856B2 (en) * 2003-11-14 2010-12-01 新神戸電機株式会社 Sealed battery
JP5821969B2 (en) 2011-11-23 2015-11-24 トヨタ自動車株式会社 Secondary battery manufacturing method and secondary battery
CN106784440B (en) * 2017-01-04 2021-11-19 上海电气国轩新能源科技(苏州)有限公司 Cylinder battery spring type cap
CN106969980B (en) * 2017-03-08 2019-09-03 北京新能源汽车股份有限公司 Battery explosion-proof valve test system
CN113659257A (en) * 2021-07-21 2021-11-16 广州市金特电子科技有限公司 Battery cap structure and lithium battery structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60858U (en) * 1983-06-16 1985-01-07 松下電器産業株式会社 Button battery
JPS6247945A (en) * 1985-08-26 1987-03-02 Matsushita Electric Ind Co Ltd Cell
JP2576014B2 (en) * 1993-04-30 1997-01-29 東洋鋼鈑株式会社 Battery

Also Published As

Publication number Publication date
JPH11204089A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP5032737B2 (en) Electrochemical element
CN110034326A (en) A kind of lithium battery and preparation method thereof of no tab
JP2002100342A (en) Cylindrical secondary battery
JP3221324B2 (en) Thin battery and manufacturing method thereof
JP3879220B2 (en) Explosion-proof sealing device for secondary batteries
CN211265619U (en) Button cell
WO2022000308A1 (en) Bipolar current collector, electrochemical device, and electronic device
JP3588264B2 (en) Rechargeable battery
JP2008204839A (en) Sealing plate for cylindrical battery cell
CN217768425U (en) Pole piece, battery monomer, battery and power consumption device
CN216750218U (en) Cylindrical battery cell adopting non-welding conductive connection
CN113328133B (en) Battery cell
KR20090051381A (en) Negative electrode for lithium rechargeable battery and lithium rechargeable battery comprising the same
JPH10308206A (en) Cylindrical non-aqueous electrolyte battery
CN113793972A (en) Battery and preparation method thereof
JP3550953B2 (en) Non-aqueous electrolyte battery
CN220753482U (en) Current collecting unit, pole piece and battery
CN220172163U (en) Current collecting unit, pole piece and battery
CN220233235U (en) Current collecting unit, pole piece and battery
CN117996370B (en) Manufacturing method of composite current collector pole piece and evaluating method of composite current collector pole piece
JPH10172523A (en) Nonaqueous cylindrical battery
TWI778151B (en) Nonaqueous electrolyte secondary battery
JP3627433B2 (en) Sealed nickel-cadmium storage battery
JPH0778603A (en) Nonaqueous electrolyte battery
JPH0378745B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041213

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050113

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061017

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091117

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101117

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111117

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121117

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131117

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees