JP5716543B2 - Lithium ion secondary battery and manufacturing method thereof - Google Patents

Lithium ion secondary battery and manufacturing method thereof Download PDF

Info

Publication number
JP5716543B2
JP5716543B2 JP2011116198A JP2011116198A JP5716543B2 JP 5716543 B2 JP5716543 B2 JP 5716543B2 JP 2011116198 A JP2011116198 A JP 2011116198A JP 2011116198 A JP2011116198 A JP 2011116198A JP 5716543 B2 JP5716543 B2 JP 5716543B2
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
battery
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011116198A
Other languages
Japanese (ja)
Other versions
JP2012243737A (en
Inventor
隆彦 中野
隆彦 中野
憲司 土屋
憲司 土屋
橋本 達也
達也 橋本
井上 薫
薫 井上
直之 和田
直之 和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011116198A priority Critical patent/JP5716543B2/en
Publication of JP2012243737A publication Critical patent/JP2012243737A/en
Application granted granted Critical
Publication of JP5716543B2 publication Critical patent/JP5716543B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、負極活物質層にカルボキシメチルセルロースの金属塩(以下、CMC−金属ともいう)を含む負極板を備えるリチウムイオン二次電池、及び、このリチウムイオン二次電池の製造方法に関する。 The present invention relates to a lithium ion secondary battery including a negative electrode plate containing a metal salt of carboxymethyl cellulose (hereinafter also referred to as CMC-metal) in a negative electrode active material layer, and a method for producing the lithium ion secondary battery .

近年、ハイブリッド自動車、電気自動車などの車両や、ノート型パソコン、ビデオカムコーダなどのポータブル電子機器の駆動用電源に、充放電可能なリチウムイオン二次電池(以下、単に電池ともいう)が利用されている。
このような電池として、例えば、負極活物質層に、負極活物質粒子と共に、カルボキシメチルセルロースのナトリウム塩(以下、CMC−Naともいう)を含む負極板を備える電池が知られている(例えば、特許文献1)。なお、CMC−Naは、ペーストを用いて負極活物質層を形成するにあたり、ペーストの粘度を上昇させることを目的として添加される。
In recent years, lithium-ion secondary batteries (hereinafter also simply referred to as “batteries”) that can be charged and discharged have been used as driving power sources for vehicles such as hybrid vehicles and electric vehicles, and portable electronic devices such as notebook computers and video camcorders. Yes.
As such a battery, for example, a battery including a negative electrode plate containing a sodium salt of carboxymethyl cellulose (hereinafter also referred to as CMC-Na) together with negative electrode active material particles in a negative electrode active material layer is known (for example, a patent). Reference 1). CMC-Na is added for the purpose of increasing the viscosity of the paste when the negative electrode active material layer is formed using the paste.

特開2005−228620号公報JP 2005-228620 A

しかしながら、CMC−Na等のCMC−金属をなすCMCは親水基を有するので、吸湿しやすく、水分の存在下で金属イオンを遊離しやすい。このため、特許文献1の電池では、負極活物質層中のCMC−Naが、例えば、電池ケースの内部や電解液中の水分を取り込みやすい。そして、CMCの吸湿性によって、負極活物質層中に水分が多く取り込まれると、放電容量が充電容量よりも小さく、即ち、電池の充電容量に対する放電容量の比率である充放電容量比(=放電容量/充電容量×100(%))が低くなってしまう。これは、CMCが水に再溶解して、活物質粒子上に皮膜を形成したり、リチウムイオンと水とが反応してリチウムイオンが失活してしまうためであると考えられる。   However, since CMC which forms CMC-metal such as CMC-Na has a hydrophilic group, it easily absorbs moisture and easily releases metal ions in the presence of moisture. For this reason, in the battery of Patent Document 1, CMC-Na in the negative electrode active material layer easily takes in moisture in the battery case or in the electrolytic solution, for example. When a large amount of moisture is taken into the negative electrode active material layer due to the hygroscopicity of the CMC, the discharge capacity is smaller than the charge capacity, that is, the charge / discharge capacity ratio (= discharge capacity ratio, which is the ratio of the discharge capacity to the battery charge capacity). (Capacity / charge capacity × 100 (%)) becomes low. This is presumably because CMC is redissolved in water to form a film on the active material particles, or lithium ions react with water to deactivate lithium ions.

本発明は、かかる問題を鑑みてなされたものであって、負極活物質層中にCMC金属塩を含む電池において、その充放電容量比の低下を抑制したリチウムイオン二次電池、及び、このようなリチウムイオン二次電池の製造方法を提供することを目的とする。 The present invention has been made in view of such a problem, and in a battery including a CMC metal salt in a negative electrode active material layer, a lithium ion secondary battery in which a decrease in charge / discharge capacity ratio is suppressed, and such An object of the present invention is to provide a method for manufacturing a lithium ion secondary battery .

本発明の一態様は、負極集電板と、上記負極集電板上に形成され、負極活物質粒子及びカルボキシメチルセルロースの金属塩を含む負極活物質層と、を有する負極板を備える電池であって、上記負極板は、上記負極活物質層の表面上に、カルボキシメチルセルロースのアンモニウム塩を含む水溶液を乾燥させてなる表面層を有するリチウムイオン二次電池である。 One embodiment of the present invention is a battery including a negative electrode plate having a negative electrode current collector plate and a negative electrode active material layer formed on the negative electrode current collector plate and including a negative electrode active material particle and a metal salt of carboxymethyl cellulose. The negative electrode plate is a lithium ion secondary battery having a surface layer obtained by drying an aqueous solution containing an ammonium salt of carboxymethyl cellulose on the surface of the negative electrode active material layer.

上述の電池では、負極活物質層中にCMC−金属を有していながらも、その負極活物質層の表面上に、カルボキシメチルセルロースのアンモニウム塩(以下、CMC−NH4ともいう)を含む水溶液を乾燥してできた表面層を形成してなる。このため、充放電容量比の低下を抑制した電池とすることができる。CMC−NH4の水溶液を乾燥させた表面層は、水分を透過しにくく、負極活物質層(CMC−金属)の吸湿を妨げるためであると解される。 In the battery described above, an aqueous solution containing an ammonium salt of carboxymethyl cellulose (hereinafter, also referred to as CMC-NH 4 ) is formed on the surface of the negative electrode active material layer while having a CMC-metal in the negative electrode active material layer. A surface layer formed by drying is formed. For this reason, it can be set as the battery which suppressed the fall of charge / discharge capacity ratio. It is understood that the surface layer obtained by drying an aqueous solution of CMC-NH 4 is less permeable to moisture and prevents moisture absorption of the negative electrode active material layer (CMC-metal).

加えて、負極活物質層中のCMC−金属とCMC−NH4とは、基本構造が同じであるため、CMC−金属を有する負極活物質層と表面層との間の密着性が良好となる利点もある。 In addition, since the basic structure of CMC-metal and CMC-NH 4 in the negative electrode active material layer is the same, the adhesion between the negative electrode active material layer having CMC-metal and the surface layer becomes good. There are also advantages.

なお、CMC−金属としては、CMC−Na、カルボキシメチルセルロースのカルシウム塩(CMC−Ca)やカルボキシメチルセルロースのリチウム塩(CMC−Li)が挙げられる。
また、負極活物質粒子としては、例えば、鱗片状黒鉛や塊状黒鉛等の天然黒鉛粒子や人造黒鉛の黒鉛(グラファイト)粒子、非晶質炭素粒子が挙げられる。
また、表面層の表面に、さらに例えば、アルミナ、マグネシア、ジルコニア、シリカ等の無機粒子と、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等の結着材とからなる耐熱層(Heat Resistance Layer:HRL)を配置しても良い。
Examples of the CMC-metal include CMC-Na, calcium salt of carboxymethyl cellulose (CMC-Ca), and lithium salt of carboxymethyl cellulose (CMC-Li).
Examples of the negative electrode active material particles include natural graphite particles such as flaky graphite and massive graphite, artificial graphite graphite (graphite) particles, and amorphous carbon particles.
Further, on the surface of the surface layer, for example, a heat-resistant layer (Heat composed of inorganic particles such as alumina, magnesia, zirconia, and silica and a binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE). Resistance Layer (HRL) may be arranged.

さらに、上述のリチウムイオン二次電池であって、前記表面層は、層厚が0.10〜1.00μmであるリチウムイオン二次電池とすると良い。 Furthermore, in the above-described lithium ion secondary battery , the surface layer may be a lithium ion secondary battery having a layer thickness of 0.10 to 1.00 μm.

負極活物質層の表面上に形成する表面層の層厚を0.10μm以上とした電池では、その充放電容量比を充分高く、例えば100%に(放電容量と充電容量とを等しく)できる。層厚を0.10μm以上としたことで、この表面層を通じて水分が負極活物質層に侵入するのを効果的に防止できるためと考えられる。
一方、表面層の層厚を1.00μm以下とした電池では、低温下、例えば−30℃における反応抵抗を、層厚を1.00μmより大きくしたものに比して小さくできる。表面層の層厚が1.00μmより大きいと、この表面層がリチウムイオンの透過を阻害してしまうためであると考えられる。
かくして、上述の電池では、充放放電比率の低下を確実に抑制しつつ、電池の反応抵抗の小さい電池とすることができる。
In a battery in which the thickness of the surface layer formed on the surface of the negative electrode active material layer is 0.10 μm or more, the charge / discharge capacity ratio can be sufficiently high, for example, 100% (the discharge capacity and the charge capacity are equal). It is considered that, by setting the layer thickness to 0.10 μm or more, it is possible to effectively prevent moisture from entering the negative electrode active material layer through this surface layer.
On the other hand, in a battery in which the layer thickness of the surface layer is 1.00 μm or less, the reaction resistance at a low temperature, for example, −30 ° C., can be reduced as compared with that having a layer thickness greater than 1.00 μm. This is considered to be because when the thickness of the surface layer is larger than 1.00 μm, the surface layer inhibits the transmission of lithium ions.
Thus, the above-described battery can be a battery having a small reaction resistance while reliably suppressing a decrease in charge / discharge ratio.

なお、表面層の層厚の測定手法としては、例えば、走査型電子顕微鏡(SEM)やX線マイクロアナライザ(EPMA)を用いて、負極板の断面について元素分析する。そして、断面のうち、負極活物質層に含まれるCMC−金属をなす金属元素(例えば、Na)の存在しない部分の厚みを計測する手法が挙げられる。   In addition, as a measuring method of the layer thickness of the surface layer, for example, an elemental analysis is performed on the cross section of the negative electrode plate using a scanning electron microscope (SEM) or an X-ray microanalyzer (EPMA). And the method of measuring the thickness of the part in which the metal element (for example, Na) which makes the CMC-metal contained in a negative electrode active material layer does not exist among cross sections is mentioned.

或いは、本発明の他の態様は、負極集電板と、上記負極集電板上に形成され、負極活物質粒子及びカルボキシメチルセルロースの金属塩を含む負極活物質層と、を有する負極板を備えるリチウムイオン二次電池であって、上記負極板は、上記負極活物質層の表面上に、カルボキシメチルセルロースのアンモニウム塩を含む水溶液を乾燥させてなる表面層を有する電池の製造方法であって、上記カルボキシメチルセルロースのアンモニウム塩を水に溶解した水溶液を上記負極活物質層の上記表面に塗布する塗布工程と、塗布された上記水溶液中の水分を蒸発させる乾燥工程と、を備えるリチウムイオン二次電池の製造方法である。 Alternatively, another aspect of the invention includes a negative electrode plate having a negative electrode current collector plate and a negative electrode active material layer formed on the negative electrode current collector plate and containing negative electrode active material particles and a metal salt of carboxymethyl cellulose. A lithium ion secondary battery , wherein the negative electrode plate is a method for producing a battery having a surface layer obtained by drying an aqueous solution containing an ammonium salt of carboxymethyl cellulose on the surface of the negative electrode active material layer, a coating step of applying the aqueous solution of ammonium salt of carboxymethyl cellulose dissolved in water to the surface of the negative electrode active material layer, the lithium ion secondary battery and a drying step for evaporating the moisture in the coated the aqueous solution It is a manufacturing method.

上述の電池の製造方法では、上述の塗布工程と乾燥工程とを備えるので、表面層を負極活物質層の表面上に、容易かつ適切に形成することができる。   Since the above-described battery manufacturing method includes the above-described coating step and drying step, the surface layer can be easily and appropriately formed on the surface of the negative electrode active material layer.

さらに、上述のリチウムイオン二次電池の製造方法であって、前記水溶液は、粘度が、300〜700Pa・sであるリチウムイオン二次電池の製造方法とすると良い。 Further, a method for manufacturing a lithium ion secondary battery described above, the aqueous solution has a viscosity, it may be a method for producing a lithium ion secondary battery as 300~700Pa · s.

水溶液の粘度が300Pa・sよりも低いと、水溶液を負極活物質層の表面に塗布した際に、水溶液が負極活物質層の内部に浸透してしまい、適切に表面層を形成できない。逆に、粘度が700Pa・sよりも高いと、負極活物質層の表面上に水溶液を均一に塗布し難く、形成した表面層にピンホール等の空隙が発生しやすくなる。
これに対し、上述の電池の製造方法では、水溶液の粘度を300〜700Pa・sの範囲内としたので、負極活物質層の表面に水溶液を均一に塗布でき、負極活物質層の表面上に表面層を確実に形成できる。
When the viscosity of the aqueous solution is lower than 300 Pa · s, when the aqueous solution is applied to the surface of the negative electrode active material layer, the aqueous solution penetrates into the negative electrode active material layer, and the surface layer cannot be appropriately formed. On the other hand, when the viscosity is higher than 700 Pa · s, it is difficult to uniformly apply the aqueous solution on the surface of the negative electrode active material layer, and voids such as pinholes are easily generated in the formed surface layer.
In contrast, in the battery manufacturing method described above, the viscosity of the aqueous solution is in the range of 300 to 700 Pa · s, so that the aqueous solution can be uniformly applied to the surface of the negative electrode active material layer, and the surface of the negative electrode active material layer can be applied. A surface layer can be reliably formed.

実施例にかかる電池の斜視図である。It is a perspective view of the battery concerning an Example. 実施例の正極板の斜視図である。It is a perspective view of the positive electrode plate of an Example. 実施例の負極板の斜視図である。It is a perspective view of the negative electrode plate of an Example. 実施例の負極板の部分拡大端面図(図3中、A部)である。It is the elements on larger scale of the negative electrode plate of an Example (A part in FIG. 3). 実施形態にかかる電池の製造方法を示す説明図である。It is explanatory drawing which shows the manufacturing method of the battery concerning embodiment.

(実施例1)
次に、本発明の実施例1について、図面を参照しつつ説明する。
なお、本実施例1にかかる電池1について、図1を参照しつつ説明する。
この電池1は、いずれも帯状の正極板20及び負極板30と、これら正極板20及び負極板30との間に介在する帯状のセパレータ40とを扁平形状に捲回した電極体10を備えるリチウムイオン二次電池である(図1参照)。
この電池1では、負極板30が、後述する負極活物質層31の表面(層表面31A)上に、後述する表面層36を有している。
なお、電池1は、図1に示すように、電極体10を電池ケース80に収容してなる。
Example 1
Next, Example 1 of the present invention will be described with reference to the drawings.
The battery 1 according to Example 1 will be described with reference to FIG.
This battery 1 is a lithium battery including an electrode body 10 in which a belt-like positive electrode plate 20 and a negative electrode plate 30 and a belt-like separator 40 interposed between the positive electrode plate 20 and the negative electrode plate 30 are wound in a flat shape. It is an ion secondary battery (see FIG. 1).
In this battery 1, the negative electrode plate 30 has a surface layer 36 described later on the surface (layer surface 31A) of a negative electrode active material layer 31 described later.
In addition, the battery 1 accommodates the electrode body 10 in the battery case 80, as shown in FIG.

この電池ケース80は、共にアルミニウム製の電池ケース本体81及び封口蓋82を有する。このうち電池ケース本体81は有底矩形箱形であり、この電池ケース80と電極体10との間には、樹脂からなり、箱状に折り曲げた絶縁フィルム(図示しない)が介在させてある。また、封口蓋82は矩形板状であり、電池ケース本体81の開口を閉塞して、この電池ケース本体81に溶接されている。この封口蓋82には、電極体10と接続している正極集電部材91及び負極集電部材92のうち、それぞれ先端に位置する正極端子部91A及び負極端子部92Aが貫通しており、図1中、上方に向く蓋表面82aから突出している。これら正極端子部91A及び負極端子部92Aと封口蓋82との間には、それぞれ絶縁性の樹脂からなる絶縁部材95が介在し、互いを絶縁している。さらに、この封口蓋82には矩形板状の安全弁97も封着されている。   The battery case 80 has a battery case body 81 and a sealing lid 82 both made of aluminum. Among these, the battery case main body 81 has a bottomed rectangular box shape, and an insulating film (not shown) made of a resin and bent into a box shape is interposed between the battery case 80 and the electrode body 10. The sealing lid 82 has a rectangular plate shape, closes the opening of the battery case body 81, and is welded to the battery case body 81. Of the positive electrode current collector 91 and the negative electrode current collector 92 connected to the electrode body 10, the positive electrode terminal portion 91 </ b> A and the negative electrode terminal portion 92 </ b> A located at the tips of the sealing lid 82 penetrate, respectively. 1 protrudes from the lid surface 82a facing upward. Insulating members 95 made of insulating resin are interposed between the positive electrode terminal portion 91A and the negative electrode terminal portion 92A and the sealing lid 82 to insulate each other. Further, a rectangular plate-shaped safety valve 97 is also sealed on the sealing lid 82.

また、電極体10をなす、帯状のセパレータ40は、多孔質状のポリエチレン(PE)からなるフィルム状である。このセパレータ40には、電池1(電極体10)において、エチレンカーボネート(EC)とエチルメチルカーボネート(EMC)との混合有機溶媒に溶質(LiPF6)を添加してなる電解液(図示しない)が含浸されている。 Moreover, the strip | belt-shaped separator 40 which comprises the electrode body 10 is a film form which consists of porous polyethylene (PE). The separator 40 has an electrolyte solution (not shown) formed by adding a solute (LiPF 6 ) to a mixed organic solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) in the battery 1 (electrode body 10). Impregnated.

また、薄板形状の正極板20は、帯状のアルミニウム箔28と、このアルミニウム箔28の両主面上のうち、幅方向の一方側(図2中、左上)の端縁に沿って帯状に形成・配置された2つの正極活物質層21,21とを有している(図2参照)。
このうち正極活物質層21は、リチウム含有複合酸化物であるLiNiCoMnO2からなる正極活物質粒子、アセチレンブラックからなる導電助剤、及び、PVDFからなる結着材を含む(図2参照)。
Further, the thin plate-shaped positive electrode plate 20 is formed in a band shape along the edge of one side in the width direction (upper left in FIG. 2) of both the main surfaces of the band-shaped aluminum foil 28 and the aluminum foil 28. -It has the two positive electrode active material layers 21 and 21 arrange | positioned (refer FIG. 2).
Among these, the positive electrode active material layer 21 includes positive electrode active material particles made of LiNiCoMnO 2 which is a lithium-containing composite oxide, a conductive auxiliary agent made of acetylene black, and a binder made of PVDF (see FIG. 2).

一方、薄板形状の負極板30は、帯状で銅製の銅箔38と、この銅箔38の両主面上のうち、幅方向の一方側(図3中、左上)の端縁に沿って帯状に形成・配置された2つの負極活物質層31,31とを有している(図3参照)。
このうち負極活物質層31は、天然黒鉛(塊状黒鉛)からなる負極活物質粒子、及び、カルボキシメチルセルロースのナトリウム塩(CMC−Na)を含む(図3参照)。また、これらの他、スチレンブタジエンゴム(SBR)からなる結着材を含む(図3参照)。このうち、CMC−Naは、ペースト31Pを用いて負極活物質層31を形成する際、ペースト31Pの粘度Vを高めると共に、負極活物質粒子同士や、負極活物質層31(負極活物質粒子)と銅箔38とを結着している。
On the other hand, the thin plate-like negative electrode plate 30 is a belt-like copper foil 38 and a belt-like shape along the edge on one side in the width direction (upper left in FIG. 3) on both main surfaces of the copper foil 38. And two negative electrode active material layers 31 and 31 formed and arranged (see FIG. 3).
Among these, the negative electrode active material layer 31 contains the negative electrode active material particle which consists of natural graphite (lump graphite), and the sodium salt (CMC-Na) of carboxymethylcellulose (refer FIG. 3). In addition to these, a binder made of styrene butadiene rubber (SBR) is included (see FIG. 3). Among these, CMC-Na increases the viscosity V of the paste 31P when the negative electrode active material layer 31 is formed using the paste 31P, and also negative electrode active material particles or negative electrode active material layers 31 (negative electrode active material particles). And copper foil 38 are bound together.

なお、この負極板30は、負極活物質層31の表面(層表面31A)上に、カルボキシメチルセルロースのアンモニウム塩を含む水溶液AQ(後述)を乾燥させてなる表面層36を有する(図3参照)。本実施例1にかかる電池1において、表面層36の層厚Tは0.50μmである(図4参照)。なお、この層厚Tは、走査型電子顕微鏡(SEM)を用いて、負極板30の断面について元素分析し、断面のうち、負極活物質層31に含まれるCMC−NaをなすNaの存在しない部分の厚みを計測する手法により得た。   The negative electrode plate 30 has a surface layer 36 formed by drying an aqueous solution AQ (described later) containing an ammonium salt of carboxymethyl cellulose on the surface (layer surface 31A) of the negative electrode active material layer 31 (see FIG. 3). . In the battery 1 according to Example 1, the layer thickness T of the surface layer 36 is 0.50 μm (see FIG. 4). In addition, this layer thickness T is subjected to elemental analysis on the cross section of the negative electrode plate 30 using a scanning electron microscope (SEM). Obtained by measuring the thickness of the part.

本発明者らは、上述した本実施例1にかかる電池1の特性について、以下の調査を行った。
まず、JIS K 0068に規定のカールフィッシャ法を用いて、電極体10をなす負極板30に含まれる水分量を測定した。
具体的には、露点が−55〜−35℃のドライボックス内に設置した、水分測定装置(平沼産業(株)製アクアカウンターAQ−7)、及び、加熱気化装置(平沼産業(株)製エバポレータユニットEV−6)を用いて、負極板30の水分量を測定した。なお、測定中の加熱気化装置内の温度を180℃に保った。また、溶液にはハイドラナールRアクアライトRS−A(SIGMA−ALDICH社製)を、キャリアガスには高純度窒素(99.99%、(株)ダイオー製)をそれぞれ用いた。そして、キャリアガスの流量を0.15L/分として30分間測定を行った(水分量の測定単位はμg)。
また、予め、25℃の温度環境下で放置した負極板30(具体的には、銅箔38上に負極活物質層31を形成してなる部位を100mm×100mmに切断した切断片)を用いた。
測定結果について、表1に記載する。
The inventors conducted the following investigation on the characteristics of the battery 1 according to Example 1 described above.
First, the amount of water contained in the negative electrode plate 30 constituting the electrode body 10 was measured using the Karl Fischer method defined in JIS K 0068.
Specifically, a moisture measuring device (Aqua Counter AQ-7 manufactured by Hiranuma Sangyo Co., Ltd.) and a heating vaporizer (Hiranuma Sangyo Co., Ltd. manufactured) installed in a dry box having a dew point of −55 to −35 ° C. The water content of the negative electrode plate 30 was measured using an evaporator unit EV-6). In addition, the temperature in the heating vaporizer during measurement was kept at 180 ° C. Further, Hydranal R Aqualite RS-A (manufactured by SIGMA-ALDICH) was used as the solution, and high purity nitrogen (99.99%, manufactured by Daio Corporation) was used as the carrier gas. And it measured for 30 minutes by making the flow volume of carrier gas into 0.15 L / min (the unit of measurement of moisture content is micrograms).
Moreover, the negative electrode plate 30 (specifically, a cut piece obtained by cutting a portion formed by forming the negative electrode active material layer 31 on the copper foil 38 into 100 mm × 100 mm) left in a temperature environment of 25 ° C. in advance is used. It was.
The measurement results are shown in Table 1.

Figure 0005716543
Figure 0005716543

次いで、電池1の充電容量に対する放電容量の比率である充放電容量比(=放電容量/充電容量×100(%))を測定した。
具体的には、まず、製造して間もない新品(初期)の電池1について、25℃の温度環境下において、電池1の電圧(端子間電圧)が4.2Vとなるまで、1/3Cの電流値で充電し、その後、この電圧を保持してさらに1時間充電した(定電流−定電圧充電)。この定電流−定電圧充電で電池1に充電した電気量(電荷量)を測定し、この値を充電容量とした。
続いて、同じ25℃の温度環境下で、電池1の電圧が3.0Vとなるまで、1/3Cの一定電流値で定電流放電を行い、その後、電圧を3.0Vに保持して1時間放電した(定電流−定電圧放電)。この定電流−定電圧放電で電池1から放電した電気量(電荷量)を測定し、この値を放電容量とした。
そして、放電容量を充電容量で割った値(百分率)を充放電容量比とし、上述の表1に示す。
Next, a charge / discharge capacity ratio (= discharge capacity / charge capacity × 100 (%)) which is a ratio of the discharge capacity to the charge capacity of the battery 1 was measured.
Specifically, first, for a new (initial) battery 1 that has just been manufactured, in a temperature environment of 25 ° C., until the voltage of the battery 1 (voltage between terminals) becomes 4.2 V, 1/3 C Then, the battery was charged at a current value of 1 mm and charged for another hour while maintaining this voltage (constant current-constant voltage charging). The amount of electricity (charge amount) charged in the battery 1 by this constant current-constant voltage charge was measured, and this value was defined as the charge capacity.
Subsequently, under the same temperature environment of 25 ° C., constant current discharge is performed at a constant current value of 1/3 C until the voltage of the battery 1 reaches 3.0 V, and then the voltage is maintained at 3.0 V and 1 Discharge for hours (constant current-constant voltage discharge). The amount of electricity (charge amount) discharged from the battery 1 by this constant current-constant voltage discharge was measured, and this value was defined as the discharge capacity.
The value (percentage) obtained by dividing the discharge capacity by the charge capacity is taken as the charge / discharge capacity ratio and shown in Table 1 above.

(比較例1,2)
一方、比較例1,2の各電池を用意し、これら各電池についての特性(負極板の水分量、及び、充放電容量比)を、上述した実施例1の電池1と同様にそれぞれ測定した。
表1に示すように、比較例1の電池は、負極活物質層31の層表面31A上に表面層を有していない点で電池1と異なる。また、比較例2の電池は、表面層36に代えて、CMC−Naを含む水溶液を乾燥させた表面層(層厚は電池1と同じ0.50μm)を負極活物質層31上に有している点で、実施例1の電池1と異なる。
これら比較例1,2の各電池における負極板の水分量、及び、充放電容量比の測定結果についても併せて表1に示す。
(Comparative Examples 1 and 2)
On the other hand, each battery of Comparative Examples 1 and 2 was prepared, and the characteristics (moisture content of the negative electrode plate and charge / discharge capacity ratio) of each battery were measured in the same manner as the battery 1 of Example 1 described above. .
As shown in Table 1, the battery of Comparative Example 1 differs from the battery 1 in that it does not have a surface layer on the layer surface 31 </ b> A of the negative electrode active material layer 31. In addition, the battery of Comparative Example 2 has a surface layer (layer thickness is 0.50 μm, the same as that of the battery 1) obtained by drying an aqueous solution containing CMC-Na on the negative electrode active material layer 31 instead of the surface layer 36. It differs from the battery 1 of Example 1 by the point.
Table 1 also shows the moisture content of the negative electrode plate in each of the batteries of Comparative Examples 1 and 2 and the measurement results of the charge / discharge capacity ratio.

表1によれば、表面層を形成していない比較例1にかかる負極板は、その水分量が1000ppmであるのに対し、実施例1の負極板30の水分量は200ppmである。このことから、負極活物質層31上に表面層36を設けることで、負極活物質層31中に取り込まれる水分量を減少させうることが判る。これは、CMC−NaをなすCMCは親水基を有するので、CMC−Naを含む負極活物質層31は吸湿しやすいが、この負極活物質層31の表面上に形成した表面層36が、水分の透過を抑えて、負極活物質層31(CMC−Na)の吸湿を妨げたためと考えられる。   According to Table 1, the moisture content of the negative electrode plate 30 of Example 1 is 200 ppm while the moisture content of the negative electrode plate according to Comparative Example 1 in which the surface layer is not formed is 1000 ppm. From this, it can be seen that the amount of moisture taken into the negative electrode active material layer 31 can be reduced by providing the surface layer 36 on the negative electrode active material layer 31. This is because, since CMC forming CMC-Na has a hydrophilic group, the negative electrode active material layer 31 containing CMC-Na easily absorbs moisture. However, the surface layer 36 formed on the surface of the negative electrode active material layer 31 has moisture. This is considered to be because the negative electrode active material layer 31 (CMC-Na) was prevented from absorbing moisture.

また、比較例2にかかる負極板の水分量は1230ppmであり、表面層36を有する実施例1や、表面層を有しない比較例1よりも負極板の水分量が多かった。比較例2の負極板では、CMC−Naを含む負極活物質層31に加え、CMC−Naを含む水溶液を乾燥してできた表面層もまた吸湿しやすいため、負極板の水分量が比較例1よりも多くなったと考えられる。
また、実施例1、比較例1及び比較例2の結果から、実施例1のように、CMC−NH4を含む水溶液を乾燥して表面層36を形成すると、吸湿を抑えて、負極活物質層31(CMC−Na)中の水分量を減少させうることが判る。
Moreover, the moisture content of the negative electrode plate concerning the comparative example 2 was 1230 ppm, and there was more moisture content of the negative electrode plate than Example 1 which has the surface layer 36, and the comparative example 1 which does not have a surface layer. In the negative electrode plate of Comparative Example 2, since the surface layer formed by drying the aqueous solution containing CMC-Na in addition to the negative electrode active material layer 31 containing CMC-Na is also easy to absorb moisture, the moisture content of the negative electrode plate is comparative. It is thought that it was more than 1.
Further, from the results of Example 1, Comparative Example 1 and Comparative Example 2, when the surface layer 36 is formed by drying an aqueous solution containing CMC-NH 4 as in Example 1, moisture absorption is suppressed, and the negative electrode active material It can be seen that the amount of water in the layer 31 (CMC-Na) can be reduced.

また、実施例1、比較例1及び比較例2の電池の各充放電容量比について見ると、それぞれ93%、95%及び100%であった。このことから、負極板の水分量が最も多い比較例2の電池は、その充放電容量比が最も低く、逆に、負極板の水分量が最も少ない実施例1の電池は、その充放電容量比が高いことが判る。
負極活物質層31中に多くの水分が存在すると、CMCが水に再溶解して、活物質粒子上に皮膜を形成したり、リチウムイオンと水とが反応してリチウムイオンが失活して、放電容量が充電容量よりも小さくなってしまうためと考えられる。
In addition, the charge / discharge capacity ratios of the batteries of Example 1, Comparative Example 1 and Comparative Example 2 were 93%, 95% and 100%, respectively. From this, the battery of Comparative Example 2 having the largest moisture content of the negative electrode plate has the lowest charge / discharge capacity ratio, and conversely, the battery of Example 1 having the smallest moisture content of the negative electrode plate has the charge / discharge capacity. It can be seen that the ratio is high.
If a large amount of water is present in the negative electrode active material layer 31, CMC is re-dissolved in water to form a film on the active material particles, or lithium ions react with water to deactivate lithium ions. This is because the discharge capacity becomes smaller than the charge capacity.

以上から判るように、負極活物質層31中にCMC−Naを有していながらも、その負極活物質層31の層表面31A上に、CMC−NH4を含む水溶液を乾燥してできた表面層36を形成した負極板30を用いた実施例1の電池1は、上述した比較例1,2の各電池に比して、充放電容量比の低下を抑制できる。 As can be seen from the above, the surface formed by drying an aqueous solution containing CMC-NH 4 on the layer surface 31A of the negative electrode active material layer 31 while having CMC-Na in the negative electrode active material layer 31 The battery 1 of Example 1 using the negative electrode plate 30 on which the layer 36 is formed can suppress a decrease in charge / discharge capacity ratio as compared with the batteries of Comparative Examples 1 and 2 described above.

(実施例2,3,4,5,6)
次に、実施例1とは表面層36の層厚Tがそれぞれ異なる実施例2,3,4,5,6の電池をそれぞれ用意し、これらの電池についての特性(負極板の水分量、及び、充放電容量比)を、電池1と同様に測定した。なお、具体的には、実施例2,3,4,5,6の各電池における表面層36の層厚Tをそれぞれ0.10,1.00,1.20,1.50,0.05μmとした。
これらの実施例2〜6の各電池における負極板の水分量、及び、充放電容量比の測定結果も表1に示す。
(Examples 2, 3, 4, 5, 6)
Next, the batteries of Examples 2, 3, 4, 5, and 6 having different surface layer thicknesses T from Example 1 were prepared, respectively, and characteristics of these batteries (the moisture content of the negative electrode plate, and , Charge / discharge capacity ratio) was measured in the same manner as the battery 1. Specifically, the layer thicknesses T of the surface layers 36 in the batteries of Examples 2, 3, 4, 5, and 6 were 0.10, 1.00, 1.20, 1.50, and 0.05 μm, respectively. It was.
Table 1 also shows the measurement results of the moisture content of the negative electrode plate and the charge / discharge capacity ratio in each of the batteries of Examples 2 to 6.

さらに、実施例1〜6及び比較例1,2の各電池について、低温下(−30℃)での各電池の反応抵抗の値をそれぞれ測定した。
具体的には、まず、図示しない電源装置を用いて、25℃の温度環境下で、各電池の電圧をそれぞれ3.65Vにして、各電池の充電状態(SOC)を50%に調整した。
調整後、電池温度を−30℃にした各電池について、Solartron製の電気化学インピーダンス測定装置を用いた交流インピーダンス法(周波数は10-1〜105MHzの範囲)により、各電池の反応抵抗の値を測定した。なお、各電池の反応抵抗の値は、上述の交流インピーダンス法によって得られたコール−コールプロットの円弧を用いて求めた。即ち、コール−コールプロットを行った複素平面の原点から、コール−コールプロットとx軸(電気抵抗)との交点までの距離(絶対値)を反応抵抗の値とした。
各電池の反応抵抗の値を、表1に示す。
Furthermore, about each battery of Examples 1-6 and Comparative Examples 1 and 2, the value of the reaction resistance of each battery under low temperature (-30 degreeC) was measured, respectively.
Specifically, first, using a power supply device (not shown), the voltage of each battery was adjusted to 3.65 V in a temperature environment of 25 ° C., and the state of charge (SOC) of each battery was adjusted to 50%.
After the adjustment, for each battery having a battery temperature of −30 ° C., the reaction resistance of each battery was measured by the AC impedance method (frequency is in the range of 10 −1 to 10 5 MHz) using a Solartron electrochemical impedance measuring device. The value was measured. In addition, the value of the reaction resistance of each battery was calculated | required using the circular arc of the Cole-Cole plot obtained by the above-mentioned alternating current impedance method. That is, the distance (absolute value) from the origin of the complex plane where the Cole-Cole plot was performed to the intersection of the Cole-Cole plot and the x axis (electrical resistance) was taken as the value of the reaction resistance.
Table 1 shows the reaction resistance value of each battery.

表1によれば、実施例2〜6における負極板の水分量が190〜500ppmであり、負極活物質層31上に表面層36を有する実施例2〜6は、実施例1と同様、表面層を有しない比較例1(1000ppm)よりも、負極活物質層31中の水分量がいずれも少ないことが判る。
また、実施例2〜6の電池の各充放電容量比は97〜100%であった。負極活物質層31上に表面層36を有する実施例2〜6はいずれも、実施例1と同様、表面層を有しない比較例1(95%)よりも、充放電容量比が高いことが判る。
According to Table 1, the moisture content of the negative electrode plate in Examples 2-6 is 190-500 ppm, and Examples 2-6 which have the surface layer 36 on the negative electrode active material layer 31 are the surface like Example 1. It can be seen that the amount of water in the negative electrode active material layer 31 is less than that of Comparative Example 1 (1000 ppm) having no layer.
Moreover, each charge / discharge capacity ratio of the batteries of Examples 2 to 6 was 97 to 100%. Each of Examples 2 to 6 having the surface layer 36 on the negative electrode active material layer 31 has a higher charge / discharge capacity ratio than Comparative Example 1 (95%) having no surface layer, as in Example 1. I understand.

また、実施例1〜6の電池における各拡充放電容量比を見てみると、実施例1〜5は100%であるのに対し、実施例6は97%である。このことから、表面層36の層厚Tを0.10〜1.50μmとした実施例1〜5の電池では、放電容量と充電容量が等しくなるが、0.10μmよりも層厚Tが小さいものでは、放電容量が充電容量よりも小さくなることが判る。
このことから、表面層36の層厚Tを0.10μm以上とすると、水分が負極活物質層に侵入するのをさらに効果的に防止できることが判る。
Moreover, when looking at each expansion / discharge capacity ratio in the batteries of Examples 1 to 6, Examples 1 to 5 are 100%, while Example 6 is 97%. From this, in the batteries of Examples 1 to 5 in which the layer thickness T of the surface layer 36 is 0.10 to 1.50 μm, the discharge capacity and the charge capacity are equal, but the layer thickness T is smaller than 0.10 μm. It can be seen that the discharge capacity is smaller than the charge capacity.
From this, it can be seen that when the layer thickness T of the surface layer 36 is 0.10 μm or more, it is possible to more effectively prevent moisture from entering the negative electrode active material layer.

また、実施例1〜6の電池のうち、実施例1〜3,6の各電池では、−30℃における反応抵抗の値がいずれも同じ2500mΩであるのに対し、実施例4,5の各電池では、反応抵抗の値がそれぞれ2750mΩ、3200mΩである。このことから、層厚Tを1.00μmより大きくすると、これと共に、反応抵抗の値が大きくなることが判る。
これは、表面層36の層厚Tが1.00μmより大きい場合、低温下では、この表面層36がリチウムイオンの透過を阻害してしまうためであると考えられる。
Moreover, among the batteries of Examples 1 to 6, in each of Examples 1 to 3 and 6, the reaction resistance value at −30 ° C. is the same 2500 mΩ, whereas each of Examples 4 and 5 In the battery, the reaction resistance values are 2750 mΩ and 3200 mΩ, respectively. From this, it can be seen that when the layer thickness T is larger than 1.00 μm, the value of the reaction resistance is increased.
This is considered to be because when the layer thickness T of the surface layer 36 is larger than 1.00 μm, the surface layer 36 inhibits lithium ion permeation at low temperatures.

以上により、実施例1の電池1及び実施例2〜6の各電池では、負極活物質層31中にCMC−金属であるCMC−Naを有していながらも、その負極活物質層31の層表面31A上に、CMC−NH4を含む水溶液を乾燥してできた表面層36を形成してなる。このため、充放電容量比の低下を抑制した電池1、及び、実施例2〜6の各電池とすることができる。
加えて、負極活物質層31中のCMC−Naと、表面層36をなしているCMC−NH4とは、基本構造が同じであるため、CMC−Naを有する負極活物質層31と表面層36との間の密着性が良好となる利点もある。
As described above, in the battery 1 of Example 1 and the batteries of Examples 2 to 6, the negative electrode active material layer 31 has the CMC-Na in the negative electrode active material layer 31 but the layer of the negative electrode active material layer 31. A surface layer 36 formed by drying an aqueous solution containing CMC-NH 4 is formed on the surface 31A. For this reason, it can be set as the battery 1 which suppressed the fall of charging / discharging capacity ratio, and each battery of Examples 2-6.
In addition, since CMC-Na 4 in the negative electrode active material layer 31 and CMC-NH 4 forming the surface layer 36 have the same basic structure, the negative electrode active material layer 31 having CMC-Na and the surface layer There is also an advantage that the adhesiveness between the two is good.

また、負極活物質層31の層表面31A上に形成する表面層36の層厚Tを0.10μm以上とした、電池1及び実施例2〜5の各電池では、その充放電容量比を充分高く、例えば100%に(放電容量と充電容量とを等しく)できる。
一方、表面層36の層厚Tを1.00μm以下とした電池1及び実施例2,3,6の各電池では、−30℃における反応抵抗を、層厚を1.00μmより大きくしたものに比して小さくできる。
かくして、表面層36の層厚Tが0.10〜1.00μmの範囲内の、実施例1の電池1及び実施例2,3の各電池では、充放放電比率の低下を確実に抑制しつつ、反応抵抗の小さい電池とすることができる。
Moreover, in each battery of the battery 1 and Examples 2 to 5 in which the layer thickness T of the surface layer 36 formed on the layer surface 31A of the negative electrode active material layer 31 is 0.10 μm or more, the charge / discharge capacity ratio is sufficiently high For example, it can be 100% (the discharge capacity and the charge capacity are equal).
On the other hand, in the battery 1 and the batteries of Examples 2, 3, and 6 in which the layer thickness T of the surface layer 36 was 1.00 μm or less, the reaction resistance at −30 ° C. was set to a layer thickness larger than 1.00 μm. It can be made smaller.
Thus, in the battery 1 of Example 1 and the batteries of Examples 2 and 3 in which the layer thickness T of the surface layer 36 is in the range of 0.10 to 1.00 μm, the decrease in the charge / discharge ratio is reliably suppressed. However, a battery having a low reaction resistance can be obtained.

次に、本実施例1にかかる電池1の製造方法について、図面を参照しつつ説明する。
まず、負極板30を作製する。具体的には、負極活物質粒子、結着材及びCMC−Naを溶媒中で混練してできたペースト(図示しない)を、公知の手法で、帯状の銅箔38の両主面に塗布し、その後、ペーストを乾燥させた。
その後、公知の手法で、銅箔38の両主面上で乾燥させたペーストを圧縮して、銅箔38の両主面上に負極活物質層31,31を担持させた活物質層担持箔30Bを作製した。
Next, a method for manufacturing the battery 1 according to Example 1 will be described with reference to the drawings.
First, the negative electrode plate 30 is produced. Specifically, a paste (not shown) made by kneading negative electrode active material particles, a binder and CMC-Na in a solvent is applied to both main surfaces of the strip-shaped copper foil 38 by a known method. Then, the paste was dried.
Thereafter, the paste dried on both main surfaces of the copper foil 38 is compressed by a known technique, and the active material layer-carrying foil in which the negative electrode active material layers 31, 31 are supported on both the main surfaces of the copper foil 38. 30B was produced.

次の塗布工程では、図5に示す塗工装置110を用いる。この塗工装置110は、巻出し部111、ダイ115及び巻取り部112を備えている。
このうち、ダイ115は、水溶液AQを内部に貯留する貯留部116と、この貯留部116の水溶液AQを負極活物質層31の表面(層表面31A)上に向かって連続的に吐出する吐出口117とを有する。このうち吐出口117は、スリット状で、負極活物質層31の幅方向(図5中、奥行き方向)に平行に開口している。
In the next coating process, a coating apparatus 110 shown in FIG. 5 is used. The coating apparatus 110 includes an unwinding unit 111, a die 115, and a winding unit 112.
Among these, the die 115 has a storage portion 116 that stores the aqueous solution AQ therein, and a discharge port that continuously discharges the aqueous solution AQ of the storage portion 116 toward the surface of the negative electrode active material layer 31 (layer surface 31A). 117. Among these, the discharge port 117 is slit-shaped and opens in parallel to the width direction (depth direction in FIG. 5) of the negative electrode active material layer 31.

この塗布工程では、まず、粘度Vが500Pa・sである水溶液AQを用意した。具体的には、CMC−NH4を1重量部と、水を99重量部とを、貯留部116内にそれぞれ投入し、CMC−NH4を水に溶解させた。なお、水溶液AQの粘度Vについては、JIS K 7117−2に規定の手法で、回転粘度計(例えば、B型回転粘度計)を用いて測定した(剪断速度は2rpm)。
次いで、塗工装置110の巻出し部111に予め捲回した帯状の活物質層担持箔30Bを、巻出し部151から長手方向DAに移動させ、その活物質層担持箔30Bにおける負極活物質層31の層表面31A上に、ダイ151により水溶液AQを塗布する。これにより、負極活物質層31の層表面31A上に、水溶液AQからなる塗膜36Sが形成される。
In this coating step, first, an aqueous solution AQ having a viscosity V of 500 Pa · s was prepared. Specifically, 1 part by weight of CMC-NH 4 and 99 parts by weight of water were respectively charged into the storage part 116, and CMC-NH 4 was dissolved in water. The viscosity V of the aqueous solution AQ was measured using a rotational viscometer (for example, a B-type rotational viscometer) according to the method specified in JIS K 7117-2 (shear rate is 2 rpm).
Next, the strip-shaped active material layer carrying foil 30B wound in advance on the unwinding part 111 of the coating apparatus 110 is moved in the longitudinal direction DA from the unwinding part 151, and the negative electrode active material layer in the active material layer carrying foil 30B is moved. The aqueous solution AQ is applied to the layer surface 31A of 31 by the die 151. Thereby, the coating film 36 </ b> S made of the aqueous solution AQ is formed on the layer surface 31 </ b> A of the negative electrode active material layer 31.

続いて、乾燥工程では、図5に示す温風乾燥機120を用いて、塗膜36S内の水を蒸発させ、塗膜36Sを乾燥させる。このようにして、負極活物質層31の層表面31A上に表面層36を形成した。この乾燥工程の後、巻取り部112に一旦巻き取る。
その後、活物質層担持箔30Bの他方の負極活物質層31の層表面31Aについても、上述の塗膜工程及び乾燥工程を行って表面層36を形成して、負極板30を作製した(図3,4参照)。
Subsequently, in the drying process, the water in the coating film 36S is evaporated using the warm air dryer 120 shown in FIG. 5, and the coating film 36S is dried. Thus, the surface layer 36 was formed on the layer surface 31A of the negative electrode active material layer 31. After this drying step, the material is once wound around the winding unit 112.
Then, also about the layer surface 31A of the other negative electrode active material layer 31 of the active material layer carrying foil 30B, the above-mentioned coating film process and a drying process were performed, the surface layer 36 was formed, and the negative electrode plate 30 was produced (FIG. 3 and 4).

一方、電極体10をなす正極板20を公知の手法で作製した(図2参照)。
その後、上述した正極板20及び負極板30を、前述したセパレータ40と共に捲回して電極体10とした。さらに、正極板20及び負極板30にそれぞれ正極集電部材91及び負極集電部材92を溶接する。その後、電極体10を電池ケース本体81に収容し、封口蓋82で電池ケース本体81を溶接で封口する。そして、図示しない注液孔から電解液を注液し、その注液孔を封止して、電池1を完成させた(図1参照)。
On the other hand, the positive electrode plate 20 constituting the electrode body 10 was produced by a known method (see FIG. 2).
Thereafter, the positive electrode plate 20 and the negative electrode plate 30 described above were wound together with the separator 40 described above to obtain the electrode body 10. Further, the positive electrode current collecting member 91 and the negative electrode current collecting member 92 are welded to the positive electrode plate 20 and the negative electrode plate 30, respectively. Thereafter, the electrode body 10 is accommodated in the battery case main body 81, and the battery case main body 81 is sealed by welding with the sealing lid 82. Then, an electrolytic solution was injected from a not-shown injection hole, and the injection hole was sealed to complete the battery 1 (see FIG. 1).

本実施例1の電池1の製造方法では、上述の塗布工程と乾燥工程とを備えるので、表面層36を負極活物質層31の層表面31A上に、容易かつ適切に形成することができる。   Since the manufacturing method of the battery 1 of the first embodiment includes the above-described coating process and drying process, the surface layer 36 can be easily and appropriately formed on the layer surface 31A of the negative electrode active material layer 31.

また、塗工工程に用いる水溶液AQの粘度Vが300Pa・sよりも低いと、水溶液AQを負極活物質層31の層表面31Aに塗布した際に、水溶液AQが負極活物質層31の内部に浸透してしまい、適切に表面層36を形成できない。逆に、粘度Vが700Pa・sよりも高いと、負極活物質層31の層表面31A上に水溶液AQを均一に塗布し難く、形成した表面層36にピンホール等の空隙が発生しやすくなる。
これに対し、本実施例1の電池1の製造方法では、水溶液AQの粘度Vを300〜700Pa・sの範囲内の500Pa・sとしたので、負極活物質層31の層表面31Aに水溶液AQを均一に塗布でき、負極活物質層31の層表面31A上に表面層36を確実に形成できる。
Further, when the viscosity V of the aqueous solution AQ used in the coating process is lower than 300 Pa · s, the aqueous solution AQ is placed inside the negative electrode active material layer 31 when the aqueous solution AQ is applied to the layer surface 31A of the negative electrode active material layer 31. The surface layer 36 cannot be formed properly. On the other hand, when the viscosity V is higher than 700 Pa · s, it is difficult to uniformly apply the aqueous solution AQ on the layer surface 31A of the negative electrode active material layer 31, and voids such as pinholes are easily generated in the formed surface layer 36. .
On the other hand, in the manufacturing method of the battery 1 of Example 1, the viscosity V of the aqueous solution AQ was set to 500 Pa · s within the range of 300 to 700 Pa · s, and thus the aqueous solution AQ was applied to the layer surface 31A of the negative electrode active material layer 31. The surface layer 36 can be reliably formed on the layer surface 31 A of the negative electrode active material layer 31.

以上において、本発明を実施例1〜6に即して説明したが、本発明は上記実施例1等に限定されるものではなく、その要旨を逸脱しない範囲で、適宜変更して適用できることは言うまでもない。
例えば、実施例1等では、負極活物質層にCMC−Naを含む負極板を例示したが、このCMC−Na以外に、CMC−CaやCMC−Li等のCMC−金属を負極活物質層に含む負極板が挙げられる。
また、実施例1では、負極活物質層31上に表面層36のみを設けた形態を示したが、例えば、その表面層36の表面に、耐熱層を更に設けても良い。なお、耐熱層は、アルミナ、マグネシア、ジルコニア、シリカ等の無機粒子と、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)等の結着材とからなる層が挙げられる。
In the above, the present invention has been described with reference to the first to sixth embodiments. However, the present invention is not limited to the first embodiment and the like, and can be appropriately modified and applied without departing from the gist thereof. Needless to say.
For example, in Example 1 and the like, the negative electrode plate containing CMC-Na in the negative electrode active material layer is exemplified, but in addition to this CMC-Na, CMC-metal such as CMC-Ca and CMC-Li is used as the negative electrode active material layer. Examples of the negative electrode plate include.
In the first embodiment, only the surface layer 36 is provided on the negative electrode active material layer 31. However, for example, a heat resistant layer may be further provided on the surface of the surface layer 36. Examples of the heat-resistant layer include a layer made of inorganic particles such as alumina, magnesia, zirconia, and silica and a binder such as polyvinylidene fluoride (PVDF) and polytetrafluoroethylene (PTFE).

1 電池
30 負極板
31 負極活物質層
31A 層表面((負極活物質層の)表面)
36 表面層
38 銅箔(負極集電板)
AQ 水溶液
T 層厚
V 粘度
1 Battery 30 Negative Electrode Plate 31 Negative Electrode Active Material Layer 31A Layer Surface (Surface of (Negative Electrode Active Material Layer))
36 Surface layer 38 Copper foil (Negative electrode current collector plate)
AQ aqueous solution T Layer thickness V Viscosity

Claims (4)

負極集電板と、
上記負極集電板上に形成され、負極活物質粒子及びカルボキシメチルセルロースの金属塩を含む負極活物質層と、を有する
負極板を備える
リチウムイオン二次電池であって、
上記負極板は、
上記負極活物質層の表面上に、カルボキシメチルセルロースのアンモニウム塩を含む水溶液を乾燥させてなる表面層を有する
リチウムイオン二次電池
A negative electrode current collector plate;
And a negative electrode active material layer formed on the negative electrode current collector plate and containing a negative electrode active material particle and a metal salt of carboxymethyl cellulose.
A lithium ion secondary battery ,
The negative electrode plate is
On the surface of the negative electrode active material layer, there is a surface layer formed by drying an aqueous solution containing an ammonium salt of carboxymethyl cellulose.
Lithium ion secondary battery .
請求項1に記載のリチウムイオン二次電池であって、
前記表面層は、
層厚が0.10〜1.00μmである
リチウムイオン二次電池
The lithium ion secondary battery according to claim 1,
The surface layer is
The layer thickness is 0.10 to 1.00 μm
Lithium ion secondary battery .
負極集電板と、
上記負極集電板上に形成され、負極活物質粒子及びカルボキシメチルセルロースの金属塩を含む負極活物質層と、を有する
負極板を備える
リチウムイオン二次電池であって、
上記負極板は、
上記負極活物質層の表面上に、カルボキシメチルセルロースのアンモニウム塩を含む水溶液を乾燥させてなる表面層を有する
電池の製造方法であって、
上記カルボキシメチルセルロースのアンモニウム塩を水に溶解した水溶液を上記負極活物質層の上記表面に塗布する塗布工程と、
塗布された上記水溶液中の水分を蒸発させる乾燥工程と、を備える
リチウムイオン二次電池の製造方法。
A negative electrode current collector plate;
And a negative electrode active material layer formed on the negative electrode current collector plate and containing a negative electrode active material particle and a metal salt of carboxymethyl cellulose.
A lithium ion secondary battery ,
The negative electrode plate is
On the surface of the negative electrode active material layer, a method for producing a battery having a surface layer obtained by drying an aqueous solution containing an ammonium salt of carboxymethyl cellulose,
An application step of applying an aqueous solution in which the ammonium salt of carboxymethyl cellulose is dissolved in water to the surface of the negative electrode active material layer;
And a drying step for evaporating water in the applied aqueous solution.
A method for producing a lithium ion secondary battery .
請求項3に記載のリチウムイオン二次電池の製造方法であって、
前記水溶液は、
その粘度が、300〜700Pa・sである
リチウムイオン二次電池の製造方法。
It is a manufacturing method of the lithium ion secondary battery according to claim 3,
The aqueous solution is
The viscosity is 300 to 700 Pa · s.
A method for producing a lithium ion secondary battery .
JP2011116198A 2011-05-24 2011-05-24 Lithium ion secondary battery and manufacturing method thereof Active JP5716543B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011116198A JP5716543B2 (en) 2011-05-24 2011-05-24 Lithium ion secondary battery and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011116198A JP5716543B2 (en) 2011-05-24 2011-05-24 Lithium ion secondary battery and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012243737A JP2012243737A (en) 2012-12-10
JP5716543B2 true JP5716543B2 (en) 2015-05-13

Family

ID=47465186

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011116198A Active JP5716543B2 (en) 2011-05-24 2011-05-24 Lithium ion secondary battery and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5716543B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6120065B2 (en) * 2013-04-09 2017-04-26 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and manufacturing method thereof
JP6605996B2 (en) * 2016-03-17 2019-11-13 株式会社東芝 Batteries, battery packs, and vehicles
JP7024480B2 (en) * 2018-02-14 2022-02-24 トヨタ自動車株式会社 Manufacturing method of negative electrode for lithium ion battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010186716A (en) * 2009-02-13 2010-08-26 Sanyo Electric Co Ltd Method for manufacturing negative electrode active material mixture, and non-aqueous electrolyte secondary battery
JP2010225545A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5444781B2 (en) * 2009-03-25 2014-03-19 Tdk株式会社 Electrode for lithium ion secondary battery and lithium ion secondary battery
JP2010225539A (en) * 2009-03-25 2010-10-07 Tdk Corp Electrode for lithium ion secondary battery, and lithium ion secondary battery
US8557437B2 (en) * 2009-03-25 2013-10-15 Tdk Corporation Electrode comprising protective layer for lithium ion secondary battery and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2012243737A (en) 2012-12-10

Similar Documents

Publication Publication Date Title
US11349119B2 (en) Method for making silicon-containing composite electrodes for lithium-based batteries
Zhamu et al. Reviving rechargeable lithium metal batteries: enabling next-generation high-energy and high-power cells
TWI511356B (en) Graphene electrode, energy storage device employing the same, and method for fabricating the same
WO2016031335A1 (en) Lithium metal secondary battery
US20090305143A1 (en) Non-aqueous electrolyte secondary battery
CN110828777B (en) Electrode for secondary battery and secondary battery
JP6664148B2 (en) Lithium ion secondary battery
US20210257618A1 (en) Energy storage device and method for manufacturing energy storage device
JP7205717B2 (en) positive electrode
WO2013124950A1 (en) Lithium ion battery
JP5716543B2 (en) Lithium ion secondary battery and manufacturing method thereof
US10217984B2 (en) Separator and lithium ion secondary battery including the same
JP6902206B2 (en) Lithium ion secondary battery
JP6770701B2 (en) Power storage element
JP7338234B2 (en) Non-aqueous electrolyte storage element
JP2014130729A (en) Method for manufacturing nonaqueous electrolyte secondary battery
CN105493319A (en) Negative-electrode active material, negative electrode using same, and lithium-ion secondary battery
JP6631095B2 (en) Separator and lithium ion secondary battery using the same
JP2018098141A (en) Nonaqueous electrolyte secondary battery
JP2013073867A (en) Positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery
CN112420980A (en) Electrode for lithium ion secondary battery and lithium ion secondary battery
JP6812928B2 (en) Non-aqueous electrolyte secondary battery
JP7237055B2 (en) Non-aqueous electrolyte secondary battery
JPWO2019066065A1 (en) Electrodes and power storage elements
JP2020113484A (en) Negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150302

R151 Written notification of patent or utility model registration

Ref document number: 5716543

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250