JP3194344B2 - 窒化ホウ素含有材料およびその製造方法 - Google Patents

窒化ホウ素含有材料およびその製造方法

Info

Publication number
JP3194344B2
JP3194344B2 JP05933795A JP5933795A JP3194344B2 JP 3194344 B2 JP3194344 B2 JP 3194344B2 JP 05933795 A JP05933795 A JP 05933795A JP 5933795 A JP5933795 A JP 5933795A JP 3194344 B2 JP3194344 B2 JP 3194344B2
Authority
JP
Japan
Prior art keywords
aln
alon
boron nitride
sic
containing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP05933795A
Other languages
English (en)
Other versions
JPH08259330A (ja
Inventor
浩明 西尾
加藤  明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP05933795A priority Critical patent/JP3194344B2/ja
Publication of JPH08259330A publication Critical patent/JPH08259330A/ja
Application granted granted Critical
Publication of JP3194344B2 publication Critical patent/JP3194344B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】
【0001】
【産業上の利用分野】この発明はBNの他にAlNおよ
び/またはAlONを含有する窒化ホウ素含有材料およ
びその製造方法に関し、特に溶融金属、溶融スラグに対
する耐食性に優れた窒化ホウ素含有材料およびその製造
方法に関する。
【0002】
【従来の技術】六方晶の窒化ホウ素は高い熱伝導度、優
れた電気絶縁性、および優れた潤滑性を有し、鉄、銅、
ニッケル、亜鉛、ガリウム、砒素、ガラス、氷晶石など
の溶融体と反応しない化学的に安定な材料として知られ
ている。そして、空気中では950℃まで、不活性ガス
または窒素ガス雰囲気下では2200℃まで安定であ
り、熱衝撃にも強い。また、金属と同様に、切削および
研削などの機械加工が容易にできるという特長を有して
いる。このような特長を生かして窒化ホウ素単体、ある
いは窒化ホウ素含有複合材料として多岐に亘る用途に供
されている。
【0003】焼結体としての用途には、絶縁部品、耐熱
部品、溶融金属用坩堝、水平連続鋳造用ブレークリン
グ、放熱部品、金属あるいはセラミックスの粉末成形体
焼結用セッター、型材等がある。また、上ノズル、浸漬
ノズル等の鋳造用耐火物にも適用が試みられている。
【0004】特開昭63−84750号公報には脱酸鋼
の連続鋳造に用いて好適な、窒化ホウ素20〜70重量
部、窒化アルミニウム10〜40重量部および黒鉛10
〜30重量部を配合した連続鋳造ノズルが開示されてい
る。そして、この窒化ホウ素、窒化アルミニウムおよび
黒鉛を所定の割合で配合したノズルは、溶鋼に対する濡
れ性が小さいことから、ノズル内面への介在物付着を防
止することができるといった効果が挙げられている。ま
た、Interceram,Special Issue(1987)70頁には、窒化
ホウ素基の連続鋳造用ノズルとして、52.6wt%B
N、27.0wt%AlN、2.0wt%SiO2 、C
とSiCの合計で17.5wt%の組成のものが開示さ
れている。これら材料は、通常、製品を構成する成分に
対応する粉末を出発物質として用いる。
【0005】これに対して、反応により焼結体中に六方
晶窒化ホウ素を生成させる方法が知られており、例え
ば、特開平4−325461号公報には、ケイ素とB4
Cとの混合粉末を成形し、窒素雰囲気中で加熱すること
により、B4 Cの窒化によって生じたBNとC、ケイ素
の炭化によって生じたSiC、ケイ素の窒化によって生
じたSi34 を含有する焼結体について開示されてい
る。
【0006】
【発明が解決しようとする課題】六方晶窒化ホウ素材料
は上述のような特異な特性により市場拡大が期待されて
きたが、期待されたほど伸びていない。その主因として
出発物質の六方晶窒化ホウ素粉末が高価なことが挙げら
れる。BNとAlNとを含有する材料については、Al
Nも高価なことから一層高価なものとなってしまう。
【0007】一方、六方晶窒化ホウ素は軟質のセラミッ
クスであり、摩耗に弱い。このため、窒化ホウ素含有材
料は機械的な摩擦、例えば溶融金属、溶融スラグの流動
によって摩耗しやい欠点を有しており、AlNおよび/
またはAlONを含有させても、耐摩耗性が十分でない
場合が生じる。
【0008】この発明はかかる事情に鑑みてなされたも
のであって、高価なBNおよびAlN粉末を使用するこ
となく得ることができ、かつ溶融金属、溶融スラグに対
する耐食性に優れた窒化ホウ素含有材料およびその製造
方法を提供することを目的とする。また、さらに溶融金
属、溶融スラグに対する耐食性に優れた窒化ホウ素含有
材料およびその製造方法を提供することを目的とする。
【0009】
【課題を解決するための手段及び作用】本発明は、上記
課題を解決するために、第1に、10〜70wt%のB
4C,30〜90wt%のAl,10〜60wt%のS
iを含む混合粉末を窒化性雰囲気中で1300〜230
0℃にまで加熱し、22〜90wt%のBN,4〜48
wt%のAlN,6〜30wt%のSiCを含む窒化ホ
ウ素含有材料を得ることを特徴とする窒化ホウ素含有材
料の製造方法を提供する。
【0010】第2に、22〜90wt%のBN,4〜4
8wt%のAlNおよびAlON,6〜30wt%のS
iC,4〜30wt%のAl23を含むことを特徴とす
耐溶鋼性、耐スラグ性に優れた窒化ホウ素含有材料
提供する。
【0011】第3に、10〜70wt%のB4C,30
〜90wt%のAl,10〜60wt%のSiO2を含
む混合粉末を窒化性雰囲気中で1300〜2300℃に
まで加熱して得られる材料であって、22〜90wt%
のBN,4〜48wt%のAlNおよびAlON,6〜
30wt%のSiC,4〜30wt%のAl23を含む
ことを特徴とする耐溶鋼性、耐スラグ性に優れた窒化ホ
ウ素含有材料を提供する。
【0012】第4に、10〜70wt%のB4C,30
〜90wt%のAl,10〜60wt%のSiO2を含
む混合粉末を窒化性雰囲気中で1300〜2300℃に
まで加熱し、22〜90wt%のBN,4〜48wt%
のAlNおよび/またはAlON,6〜30wt%のS
iC,4〜30wt%のAl23を含む窒化ホウ素含有
材料を得ることを特徴とする窒化ホウ素含有材料の製造
方法を提供する。
【0013】第5に、22〜90wt%のBN,4〜4
8wt%のAlON,6〜30wt%のSiCを含むこ
とを特徴とする耐溶鋼性、耐スラグ性に優れた窒化ホウ
素含有材料を提供する。
【0014】第6に、10〜70wt%のB4C,30
〜90wt%のAl,10〜60wt%のSiO2を含
む混合粉末を窒化性雰囲気中で1700〜2300℃に
まで加熱して得られる材料であって、22〜90wt%
のBN,4〜48wt%のAlON,6〜30wt%の
SiCを含むことを特徴とする耐溶鋼性、耐スラグ性に
優れた窒化ホウ素含有材料を提供する。
【0015】第7に、10〜70wt%のB4C,30
〜90wt%のAl,10〜60wt%のSiO2を含
む混合粉末を窒化性雰囲気中で1700〜2300℃に
まで加熱し、22〜90wt%のBN,4〜48wt%
のAlON,6〜30wt%のSiC含む窒化ホウ素含
有材料を得ることを特徴とする窒化ホウ素含有材料の製
造方法を提供する。
【0016】第8に、22〜90wt%のBN,4〜4
8wt%のAlNおよび/またはAlON,6〜30w
t%のSiCを含む材料であって、表面に厚さ2〜10
mmのAlNおよび/またはAlONの濃縮層を有する
ことを特徴とする窒化ホウ素含有材料を提供する。
【0017】第9に、表面から2mmまでの範囲のBN
のX線回折の最大ピークの回折強度に対するAlNとA
lONのX線回折の最大ピークの回折強度の和の比(A
lN+AlON)/BNの値と、表面から10mm以上
内部の(AlN+AlON)/BNの値との比が1.3
以上であることを特徴とする請求項8に記載の窒化ホウ
素含有材料を提供する。
【0018】第10に、10〜70wt%のB4C,3
0〜90wt%のAl,10〜60wt%のSiまたは
SiO2を含む混合粉末を窒化性雰囲気中で1300〜
2300℃にまで加熱して得られる材料であって、22
〜90wt%のBN,4〜48wt%のAlNおよび/
またはAlON,6〜30wt%のSiCを含み、表面
に厚さ2〜10mmのAlNおよび/またはAlONの
濃縮層を有することを特徴とする窒化ホウ素含有材料を
提供する。第11に、10〜70wt%のB4C,30
〜90wt%のAl,10〜60wt%のSiまたはS
iO2を含む混合粉末を窒化性雰囲気中で1300〜2
300℃にまで加熱し、22〜90wt%のBN,4〜
48wt%のAlNおよび/またはAlON,6〜30
wt%のSiCを含み、表面に厚さ2〜10mmのAl
Nおよび/またはAlONの濃縮層を有する窒化ホウ素
含有材料を得ることを特徴とする窒化ホウ素含有材料の
製造方法を提供する。
【0019】以下、本発明について具体的に説明する。
本発明では、基本的にB4 C、Al、Siまたは/およ
びSiO2 を出発原料として用い、窒化性雰囲気中で所
定の温度に加熱することにより、BN、SiC、並びに
AlN、Al23 およびAlONの1種以上を含む窒
化ホウ素含有材料を得るものである。
【0020】本発明において、AlN、Al23 、A
lONの各結晶相の生成割合は、雰囲気温度、その温度
での保持時間、雰囲気の窒素分圧、窒化に供される充填
体あるいは保形性のある成形体の密度、寸法、形状、充
填体あるいは成形体を構成する粉末の粒径等に支配され
るが、これらのうち最も大きな影響を及ぼす因子は雰囲
気温度である。例えば、肉厚30mm以下の成形体で保
持時間を3時間以上とると、1300〜1500℃では
生成相はAlN、Al23 が主体となる。また、14
00〜1900℃では、AlNとAl23 の固溶が進
行し、AlN、AlON、Al23 が共存する。さら
に1700〜2100℃では、AlN、AlONが主体
となる。そして2000〜2300℃ではAlONが主
体となる。肉厚がもっと大きくなると、表面に比べて内
部の固溶が遅れ、全体としては上記のような温度区分に
よる生成相の特徴が不明確となり、高温域で多相が併存
する傾向を示す。例えば2000〜2300℃でも、A
lNのほか、AlN、Al23 がX線回折で検出され
ることがある。
【0021】このように、種々の因子があるものの、少
なくとも後述する各態様のように原料を選択して、各態
様において1300〜2300℃の中で選択される温度
範囲に加熱することにより、後述する反応を有効に生じ
させることができ、各態様の窒化ホウ素含有材料を得る
ことが可能となる。
【0022】また、本発明では原料として用いられるB
4 C、Al、Siまたは/およびSiO2 の粉末の粒径
が大きすぎるとこれらの反応物質が未反応のまま残留す
るので好ましくない。粉末の粒径は本発明の反応を完結
させるために細かいほうがよく、150メッシュ篩目通
過粉が好ましい。さらに好ましいのは200メッシュ篩
目通過粉である。この中でAlは溶融後液相で窒化する
ので反応は比較的容易である。一方、B4 C、Si、S
iO2 は固相で反応するので、粒内への窒素の拡散が反
応率に重大な影響を及ぼす。したがって、これらの原料
は、上記メッシュ篩目を規定するのに加えて、平均粒径
で10μm以下とすることが一層好ましい。
【0023】次に、本発明の各態様について個別的に説
明する。まず本発明の第1の態様は、10〜70wt%
4 C、30〜90wt%のAl、10〜60wt%の
Siを含む混合粉末を窒化性雰囲気中で1300〜23
00℃にまで加熱することにより、22〜90wt%の
BN、4〜48wt%のAlN、6〜30wt%のSi
Cを含む窒化ホウ素含有材料を得るものである。
【0024】ここで、加熱の際の窒化性雰囲気は特に制
約はないが、窒素、アンモニア、アンモニア分解ガス、
これらを含むガス等を適用することができる。このよう
な雰囲気下で以下の反応を生じさせる。
【0025】Al+(1/2)N2 → AlN B4 C+2N2 +Si → 4BN+SiC まず、出発物質のAlを窒化させるのであるが、Alの
窒化には雰囲気温度で650℃以上とすることが好まし
い。これは650℃未満では反応が遅く窒化時間が過大
になるからである。一方このAlの窒化は2300℃以
下で終了することが好ましい。なぜならば、Alの窒化
は大きな発熱を伴うので、処理物の温度が雰囲気温度よ
り高くなり、雰囲気温度が2300℃を超えると揮散損
失が大きくなるからである。これらの反応が生じる温度
サイクルのなかで最高到達温度は1300℃以上にする
ことが必要であり、好ましくは1400℃以上である。
この温度が1300℃未満の場合には、Alの一部はB
4 Cと反応してAlB2 とCまたはAl43 を生成す
るに留まり、またSiの一部はSi34 になり、目的
とするBN、AlN、SiCの生成が不十分となるから
である。
【0026】生成される材料は、溶融金属、特に溶鋼に
対する耐食性の優れたAlNと、耐スラグ性に優れたS
iCと、耐食性および機械加工性に優れたBNを組み合
わせた材料であり、22〜90wt%のBN、4〜48
wt%のAlN、6〜30wt%のSiCを少なくとも
含む必要がある。なぜならば、この組成から外れると、
上述したような多様な材料特性が十分に発現しないから
である。
【0027】次に、本発明の第2の態様は、10〜70
wt%B4 C、30〜90wt%のAl、10〜60w
t%のSiO2 を含む混合粉末を窒化性雰囲気中で13
00〜2300℃にまで加熱し、22〜90wt%のB
N、4〜48wt%のAlNまたはAlON、6〜30
wt%のSiC、4〜30wt%のAl23 を含む窒
化ホウ素含有材料を得るものである。
【0028】ここで、本態様の窒化ホウ素含有材料の組
成を満足する限り、原料のSi源としてSiO2 の他に
Siが含まれていてもよい。また、加熱の際の窒化性雰
囲気は特に制約はないが、窒素、アンモニア、アンモニ
ア分解ガス、これらを含むガス等を適用することができ
る。このような雰囲気下で以下の反応を生じさせる。
【0029】Al+(1/2)N2 → AlN B4 C+2N2 +SiO2 → 4BN+SiC+(2
/3)Al23 まず、出発物質のAlを窒化させるのであるが、Alの
窒化には雰囲気温度で650℃以上とすることが好まし
い。これは650℃未満では反応が遅く窒化時間が過大
になるからである。一方このAlの窒化は2300℃以
下で終了することが好ましい。なぜならば、Alの窒化
は大きな発熱を伴うので、処理物の温度が雰囲気温度よ
り高くなり、雰囲気温度が2300℃を超えると揮散損
失が大きくなるからである。これらの反応が生じる温度
サイクルのなかで最高到達温度は1300℃以上にする
ことが必要であり、好ましくは1400℃以上である。
この温度が1300℃未満の場合には、Alの一部はB
4 Cと反応してAlB2 とCまたはAl43 を生成
し、またSiO2 を還元してAl23 とSiを生成し
てSiの一部はSi34 になり、目的とするBN、A
lN、SiCの生成が不十分となるからである。AlN
とAl23 の一部が固溶してAlONに転化してもよ
い。ここでAlONは、Al、O、Nの固溶体の総称で
あるが組成については、特に限定されるものではなく、
いかなる組成であってもよい。
【0030】生成される材料は、溶融金属、特に溶鋼に
対する耐食性の優れたAlNまたはAlONと、耐スラ
グ性に優れたSiCと、耐食性および機械加工性に優れ
たBNと、耐酸化性に優れたAl23 を組み合わせた
材料であり、22〜90wt%のBN、4〜48wt%
のAlNまたはAlON、6〜30wt%のSiCを少
なくとも含む必要がある。なぜならば、この組成から外
れると、上述したような多様な材料特性が十分に発現し
ないからである。
【0031】さらに、本発明の第3の態様は、10〜7
0wt%B4 C、30〜90wt%のAl、10〜60
wt%のSiO2 を含む混合粉末を窒化性雰囲気中で1
700〜2300℃にまで加熱し、22〜90wt%の
BN、4〜48wt%のAlON、6〜30wt%のS
iCを含む窒化ホウ素含有材料を得るものである。
【0032】上記BN、AlNまたはAlON、SiC
を含む材料が1700〜2300℃の高温で好ましくは
2時間以上、さらに好ましくは3時間以上保持されるこ
とにより、AlNとAl23 の固溶が十分行われ、A
lONへの転化率が高まる。AlONは、AlNの溶融
金属に対する耐食性とAl23 の耐酸化性とを合わせ
持ち、材料の溶融金属に対する耐食性と酸化性とを向上
させる。
【0033】ここで、本態様においても本態様の窒化ホ
ウ素含有材料の組成を満足する限り、原料のSi源とし
てSiO2 の他にSiが含まれていてもよい。生成され
る材料は、溶融金属、特に溶鋼に対する耐食性の優れた
AlONと、耐スラグ性に優れたSiCと、耐食性およ
び機械加工性に優れたBNとを組み合わせた材料であ
り、22〜90wt%のBN、4〜48wt%のAlO
N、6〜30wt%のSiCを少なくとも含む必要があ
る。なぜならば、この組成から外れると、上述したよう
な多様な材料特性が十分に発現しないからである。
【0034】さらにまた、本発明の第4の態様は、10
〜70wt%のB4 C、30〜90wt%のAl、10
〜60wt%のSiまたはSiO2 を含む混合粉末を窒
化性雰囲気中で1300〜2300℃にまで加熱するこ
とにより、22〜90wt%のBN、4〜48wt%の
AlNおよび/またはAlON、6〜30wt%のSi
Cを含み、表面に厚さ2〜10mmのAlNおよび/ま
たはAlONの濃縮層を有する窒化ホウ素含有材料を得
るものである。
【0035】この材料を溶融金属、特に溶鋼に対する耐
食性の優れたAlNおよび/またはAlONと、耐スラ
グ性に優れたSiCと、耐食性、機械加工性に優れたB
Nとを組み合わせた材料であり、22〜90wt%のB
N、4〜48wt%のAlNおよび/またはAlON、
6〜30wt%のSiCを少なくとも含む必要がある。
なぜならば、この組成から外れると、上述したような多
様な材料特性が十分に発現しないからである。
【0036】また、本発明者らの研究の結果、全体の組
成が上記組成の範囲内であってかつ表面に厚さ2〜10
mmのAlNおよび/またはAlONの濃縮層を形成す
ることによって材料の耐摩耗性が著しく改善されること
が見出された。
【0037】従って、本態様では表面に厚さ2〜10m
mのAlNおよび/またはAlONの濃縮層を有するこ
とを要件としている。具体的には、表面から2mmまで
の範囲のBNのX線回折の最大ピークの回折強度に対す
るAlNとAlONのX線回折の最大ピークの回折強度
の和の比(AlN+AlON)/BNの値と、表面から
10mm以上内部の(AlN+AlON)/BNの値と
の比が1.3以上になるようにすることが好ましい。こ
のように濃縮層を形成することによって、表面部分が本
発明の窒化ホウ素含有材料が本質的に有している溶融金
属および溶融スラグに対する耐食性に加え、これらに対
する耐摩耗性をも兼備したものとなるのである。
【0038】この濃縮層はAlNおよび/またはAlO
Nが濃縮されているため内部よりも硬く、もって耐摩耗
性を向上させるものであるが、この濃縮層の厚さが2m
mよりも小さいか、または10mmを超えると以下に示
すような不都合がある。すなわち、その厚さが2mm未
満であると材料表面に荷重が加わった際に濃縮層に亀裂
が入りやすく耐摩耗性が不十分となる。一方、濃縮層を
構成する材料の耐熱衝撃性は内部を構成する材料よりも
耐熱衝撃性が劣るため、その厚さが10mm以内では熱
衝撃によって濃縮層に発生する熱応力が材料内部の変形
によって緩和されるが、10mmを超えると緩和が困難
となり、亀裂が発生しやすくなる。従って、耐摩耗性の
観点および耐熱衝撃性の観点から、この濃縮層の厚さを
2〜10mmと規定したのである。
【0039】この態様の材料は、AlNおよび/または
AlONの濃縮層の厚さが2〜10mmの範囲になりさ
えすれば、成形体の厚さ、形状には特に制限はないが、
厚さが薄くなると相対的に成形体内部から散逸する後述
する成形体を加熱する際に発生するガスの量が少なくな
るのでAlの拡散が不十分となり、表面に2〜10mm
の濃縮層を形成しにくくなる。このため成形体の厚さは
8mm以上が好ましい。
【0040】次に、この態様の材料を製造する方法につ
いて述べる。上述したように、この態様においては、1
0〜70wt%のB4 C、30〜90wt%のAl、1
0〜60wt%のSiまたはSiO2 を含む混合粉末を
窒化性雰囲気中で1300〜2300℃にまで加熱する
ことにより、上述の窒化ホウ素含有材料を得る。
【0041】ここで、加熱の際の窒化性雰囲気は特に制
約はないが、窒素、アンモニア、アンモニア分解ガス、
これらを含むガス等を適用することができる。このよう
な雰囲気下で以下の反応を生じさせる。
【0042】Al+(1/2)N2 → AlN B4 C+2N2 +Si → 4BN+SiC および/
または B4 C+2N2 +SiO2 → 4BN+SiC+(2
/3)Al23 まず、出発物質のAlを窒化させるのであるが、Alの
窒化には雰囲気温度で650℃以上とすることが好まし
い。これは650℃未満では反応が遅く窒化時間が過大
になるからである。一方このAlの窒化は2300℃以
下で終了することが好ましい。なぜならば、Alの窒化
は大きな発熱を伴うので、処理物の温度が雰囲気温度よ
り高くなり、雰囲気温度が2300℃を超えると揮散損
失が大きくなるからである。これらの反応が生じる温度
サイクルのなかで最高到達温度は1300℃以上にする
ことが必要であり、好ましくは1400℃以上である。
この温度が1300℃未満の場合には、Alの一部はB
4 Cと反応してAlB2 とCまたはAl43 を生成
し、Siの一部はSi34 になり、目的とするBN、
AlN、SiCの生成が不十分となるからである。Al
NとAl23 の一部が固溶してAlONに転化しても
よい。AlONの組成については、特に限定されるもの
ではなく、いかなる組成であってもよい。また、AlO
NのAlの一部がSiで置換されていてもよい。ただ
し、Si/Alのモル比で1.0以下であることが耐食
性の観点から好ましい。これが1.0を超えると溶融
物、特に溶鋼、溶融スラグに対する耐食性が低下するか
らである。このようなAlONの例としては、Al11
15N、AlON、Al1982884 、Al2739N、
Al1083 、Al937 、SiAl72
7 、Si3 Al3455 等が挙げられる。
【0043】成形体を加熱すると、その成形体を構成す
る粉末の表面に吸着した湿分の蒸発、あるいは600℃
を超えるとB23 の分圧が上昇する等によりガスが発
生し、成形体表面へ拡散し、外部へ散逸する。このた
め、Alは650℃以上では溶融して液相となるためガ
スの移動に伴って表面へ移動する。このAlの表面への
移動現象を利用して、表面にAlを濃縮させる。そし
て、表面に濃縮されたAlを窒化させることによりAl
Nとし、またAlとSiO2 とを反応させてAl23
とする。条件によっては、これらがAlONに転化す
る。このようにして、AlNおよび/またはAlONの
濃縮層を材料表面に形成するのである。
【0044】なお、上記いずれの態様においても、本発
明で規定された組成を満足する範囲内で、AlB2
C、Si34 が含有されていてもよいし、また、Ti
2 、ZrO2 、Cr23 、Al23 、SiO2
中から選択された1種または2種以上の酸化物、または
これらの酸化物の少なくとも1種を含む複合酸化物が含
有されていてもよい。また、MgB2 、CaB6 、Ti
2 、ZrB2 、CrB2 、CrBの中から選択された
1種または2種以上のホウ化物が含有されていてもよ
い。さらに、TiC、ZrC、Cr32 、Al43
の中から選択された1種または2種以上の炭化物が含有
されていてもよい。さらにまたTiN、ZrN、Cr2
Nの中から選択された1種または2種以上の窒化物が含
有されていてもよい。
【0045】
【実施例】以下、この発明の実施例について説明する。 (実施例1)325メッシュの篩目通過(粒径44μm
以下)のB4 C、200メッシュの篩目通過(粒径74
μm以下)のAl、325メッシュの篩目通過(粒径4
4μm以下)のSiをそれぞれ28.9wt%、56.
4wt%、14.7wt%の割合で混合し、直径60m
m、高さ50mmのキャビティを持つ黒鉛容器に100
g充填し、直径60mm、厚さ5mmの黒鉛板を介して
面圧10MPaをかけて圧密した。このようにして密度
1.43g/cm3 の成形体が得られた。これを黒鉛ヒ
ーター炉に配設し、真空ポンプで排気後、窒素ガスを導
入し、窒素圧力0.14MPa(絶対圧)とし、昇温速
度15℃/min で700℃まで加熱し3時間保持後、再
び昇温速度15℃/min で1500℃まで加熱し3時間
保持後放冷した。
【0046】このようにして得られた焼結体の重量は1
42g、嵩密度は2.27g/cm3 であった。X線回
折により、BN、AlN、SiCが同定された。計算に
よる推定組成は、BN:32.7wt%、AlN:5
4.1wt%、SiC:13.2wt%であった。
【0047】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.12%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
【0048】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が96度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は8
0MPaであり、鋳造用耐火物として使用可能なレベル
にあることが確認された。
【0049】(実施例2)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、325
メッシュパスの粒径(粒径44μm以下)を有するS
i、粒径10μm以下のAl23 をそれぞれ22.8
wt%、44.6wt%、11.6wt%、21.0w
t%の割合で混合し、直径60mm、高さ50mmのキ
ャビティを持つ黒鉛容器に100g充填し、直径60m
m、厚さ5mmの黒鉛板を介して面圧10MPaをかけ
て圧密した。このようにして密度1.62g/cm3
成形体が得られた。これを黒鉛ヒーター炉に配設し、真
空ポンプで排気後、窒素ガスを導入し、窒素圧力0.1
4MPa(絶対圧)とし、昇温速度15℃/min で70
0℃まで加熱し3時間保持後、再び昇温速度15℃/mi
n で1500℃まで加熱し3時間保持後放冷した。
【0050】このようにして得られた焼結体の重量は1
46g、嵩密度は2.37g/cm3 であった。X線回
折により、BN、AlN、SiC、Al23 が同定さ
れた。計算による推定組成は、BN:28.0wt%、
AlN:46.3wt%、SiC:11.3wt%、A
23 :14.4wt%であった。
【0051】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.05%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
【0052】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が92度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
10MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
【0053】(実施例3)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、325
メッシュパスの粒径(粒径44μm以下)を有するS
i、粒径10μm以下のAl23 をそれぞれ22.8
wt%、44.6wt%、11.6wt%、21.0w
t%の割合で混合し、直径60mm、高さ50mmのキ
ャビティを持つ黒鉛容器に100g充填し、直径60m
m、厚さ5mmの黒鉛板を介して面圧10MPaをかけ
て圧密した。このようにして密度1.62g/cm3
成形体が得られた。これを黒鉛ヒーター炉に配設し、真
空ポンプで排気後、窒素ガスを導入し、窒素圧力0.1
4MPa(絶対圧)とし、昇温速度15℃/min で70
0℃まで加熱し3時間保持後、再び昇温速度15℃/mi
n で1900℃まで加熱し6時間保持後放冷した。
【0054】このようにして得られた焼結体の重量は1
45g、嵩密度は2.37g/cm3 であった。X線回
折により、BN、AlN、AlON、SiC、Al2
3 が同定された。
【0055】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.03%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
【0056】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が95度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
20MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
【0057】(実施例4)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、325
メッシュパスの粒径(粒径44μm以下)を有するS
i、粒径10μm以下のAl23 をそれぞれ22.8
wt%、44.6wt%、11.6wt%、21.0w
t%の割合で混合し、直径60mm、高さ50mmのキ
ャビティを持つ黒鉛容器に100g充填し、直径60m
m、厚さ5mmの黒鉛板を介して面圧10MPaをかけ
て圧密した。このようにして密度1.62g/cm3
成形体が得られた。これを黒鉛ヒーター炉に配設し、真
空ポンプで排気後、窒素ガスを導入し、窒素圧力0.1
4MPa(絶対圧)とし、昇温速度15℃/min で70
0℃まで加熱し3時間保持後、再び昇温速度15℃/mi
n で2200℃まで加熱し5時間保持後放冷した。
【0058】このようにして得られた焼結体の重量は1
42g、嵩密度は2.41g/cm3 であった。X線回
折により、BN、AlON、SiCが同定された。計算
による推定組成は、BN:28.0wt%、AlON:
60.7wt%、SiC:11.3wt%であった。
【0059】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.03%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
【0060】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が92度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
70MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
【0061】(実施例5)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、平均粒
径5μmのSiO2をそれぞれ23.8wt%、50.
3wt%、25.9wt%の割合で混合し、直径60m
m、高さ50mmのキャビティを持つ黒鉛容器に100
g充填し、直径60mm、厚さ5mmの黒鉛板を介して
面圧10MPaをかけて圧密した。このようにして密度
1.46g/cm3 の成形体が得られた。これを黒鉛ヒ
ーター炉に配設し、真空ポンプで排気後、窒素ガスを導
入し、窒素圧力0.14MPa(絶対圧)とし、昇温速
度15℃/min で700℃まで加熱し3時間保持後、再
び昇温速度15℃/min で1500℃まで加熱し3時間
保持後放冷した。
【0062】このようにして得られた焼結体の重量は1
42g、嵩密度は2.08g/cm3 であった。X線回
折により、BN、AlN、SiC、Al23 が同定さ
れた。計算による推定組成は、BN:30.1wt%、
AlN:37.2wt%、SiC:12.1wt%、A
23 :20.6wt%であった。
【0063】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.17%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
【0064】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が95度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は7
2MPaであり、鋳造用耐火物として使用可能なレベル
にあることが確認された。
【0065】(実施例6)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、平均粒
径5μmのSiO2をそれぞれ23.8wt%、50.
3wt%、25.9wt%の割合で混合し、直径60m
m、高さ50mmのキャビティを持つ黒鉛容器に100
g充填し、直径60mm、厚さ5mmの黒鉛板を介して
面圧10MPaをかけて圧密した。このようにして密度
1.46g/cm3 の成形体が得られた。これを黒鉛ヒ
ーター炉に配設し、真空ポンプで排気後、窒素ガスを導
入し、窒素圧力0.14MPa(絶対圧)とし、昇温速
度15℃/min で700℃まで加熱し3時間保持後、再
び昇温速度15℃/min で1900℃まで加熱し6時間
保持後放冷した。
【0066】このようにして得られた焼結体の重量は1
40g、嵩密度は2.18g/cm3 であった。X線回
折により、BN、AlN、AlON、SiC、Al2
3 が同定された。
【0067】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.05%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
【0068】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が95度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
00MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
【0069】(実施例7)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、平均粒
径5μmのSiO2をそれぞれ23.8wt%、50.
3wt%、25.9wt%の割合で混合し、直径60m
m、高さ50mmのキャビティを持つ黒鉛容器に100
g充填し、直径60mm、厚さ5mmの黒鉛板を介して
面圧10MPaをかけて圧密した。このようにして密度
1.46g/cm3 の成形体が得られた。これを黒鉛ヒ
ーター炉に配設し、真空ポンプで排気後、窒素ガスを導
入し、窒素圧力0.14MPa(絶対圧)とし、昇温速
度15℃/min で700℃まで加熱し3時間保持後、再
び昇温速度15℃/min で2200℃まで加熱し5時間
保持後放冷した。
【0070】このようにして得られた焼結体の重量は1
39g、嵩密度は2.21g/cm3 であった。X線回
折により、BN、AlON、SiCが同定された。計算
による推定組成はBN:30.1wt%、AlON:5
7.8wt%、SiC:12.1wt%であった。
【0071】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.03%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
【0072】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が98度であり、このBN含有材料は溶鋼にも溶融
スラグにも濡れにくく、接触界面に反応は見られなかっ
た。また、スパン長30mmの3点曲げ試験の結果は1
90MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
【0073】(実施例8)325メッシュパスの粒径
(粒径44μm以下)を有するB4 C、200メッシュ
パスの粒径(粒径74μm以下)を有するAl、平均粒
径5μmのSiO2、平均粒径3.5μmのZrO2
それぞれ22.8wt%、44.6wt%、11.6w
t%、21.0wt%の割合で混合し、直径60mm、
高さ50mmのキャビティを持つ黒鉛容器に100g充
填し、直径60mm、厚さ5mmの黒鉛板を介して面圧
10MPaをかけて圧密した。このようにして密度1.
71g/cm3 の成形体が得られた。これを黒鉛ヒータ
ー炉に配設し、真空ポンプで排気後、窒素ガスを導入
し、窒素圧力0.14MPa(絶対圧)とし、昇温速度
15℃/min で700℃まで加熱し3時間保持後、再び
昇温速度15℃/min 1500℃まで加熱し3時間保持
後放冷した。
【0074】このようにして得られた焼結体の重量は1
45g、嵩密度は2.51g/cm3 であった。X線回
折により、BN、AlN、SiC、ZrO2 、ZrNが
同定された。
【0075】この焼結体を大気炉に設置し、1500℃
に加熱して1時間保持後放冷し、重量増加を測定した。
その結果、重量増加は0.29%とわずかであった。こ
の焼結体から1/4に分割した試料2個と、1/2分割
した試料1個を用意し、前者を耐食性試験に供し、後者
から3mm×4mm×40mmの曲げ試験用試験片を切
り出した。
【0076】耐食試験片の一方に一辺5mmの立方体の
13Cr鋼(Cr:13.0重量%、C:0.20重量
%、Si:0.8重量%を含む鋼)を、もう一方に直径
5mm高さ5mmのタブレット状の粉末成形体(SiO
2 35.2wt%、Al23 4.1wt%、CaO2
7.5wt%)を載せてアルゴン雰囲気で1550℃ま
で加熱し、1550℃で2時間保持後放冷した。そし
て、凝固後の13Cr鋼の接触角およびタブレット状の
粉末成形体から生成されたスラグの接触角を測定した。
その結果、13Cr鋼の接触角が110度、スラグの接
触角が105度であり、このBN含有材料は溶鋼にも溶
融スラグにも濡れにくく、接触界面に反応は見られなか
った。また、スパン長30mmの3点曲げ試験の結果は
65MPaであり、鋳造用耐火物として使用可能なレベ
ルにあることが確認された。
【0077】(実施例9)325メッシュの篩目通過
(粒径44μm以下)のB4 C、200メッシュの篩目
通過(粒径74μm以下)のAl、325メッシュの篩
目通過(粒径44μm以下)のSiをそれぞれ28.9
wt%、56.4wt%、14.7wt%の割合で混合
し、ウレタンゴム製容器に充填して封入し、50MPa
の水圧をかけて圧密した。このようにして密度1.63
g/cm3 の3本の成形体が得られた。これらより30
mm×30mm×90mmの直方体試料を3本切り出し
た。これらを黒鉛ヒーター炉に配設し、真空ポンプで排
気後、窒素ガスを導入し、窒素圧力0.14MPa(絶
対圧)とし、昇温速度15℃/min で700℃まで加熱
し3時間保持後、再び昇温速度15℃/min で1500
℃まで加熱し3時間保持後放冷した。このようにして3
本の焼結体を得た。
【0078】3本の焼結体のうち1本の一端を回転軸に
固定してアルミナるつぼに上部より挿入し、周囲に13
Cr鋼チップを充填した。このるつぼをArガスでシー
ルし、1550℃まで加熱後、回転数60rpmで試料
を回転させながら1550℃に20時間保持し、その後
放冷した。その後るつぼごと切断して浸漬先端より10
mm上の位置の試料断面の対角線距離を求めた。その結
果0.2mmの減少が認められ、変化が僅少であること
が確認された。
【0079】次に、2本目の焼結体試料を回転軸に固定
して黒鉛るつぼに上部より挿入し、周囲にスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を充填した。このるつぼをAr
ガスでシールし、1550℃まで加熱後、回転数60r
pmで試料を回転させながら1550℃に20時間保持
し、その後放冷した。その後るつぼごと切断して浸漬先
端より10mm上の位置の試料断面の対角線距離を求め
た。その結果0.4mmの減少が認められ、変化が僅少
であることが確認された。
【0080】さらに、3本目の試料をその一端より10
mmの位置で切断し、表面から2mmまでの範囲と表面
から10mmより内部の2箇所から電動ドリルで粉末を
削り出してX線回折に供した。その結果、BN、Al
N、SiCが同定された。計算による推定平均組成はB
N32.7wt%、AlN54.1wt%、SiC1
3.2wt%であるが、AlNとBNのX線回折強度比
は表面と内部とで差が認められた。X線回折の最大ピー
ク比AlN/BNの値で比較すると、表面ではこの値が
7.8であったのに対し内部では4.0であり、両者の
比は1.95であった。ちなみに電動ドリルの触診によ
り、表面から8mm内側で急激に硬度が減少することが
確認された。
【0081】比較のため、上記試料と同一の原料を用
い、同一条件で成形を行って3本の成形体を得、これら
を切り出すことなく上記条件と同一条件で焼結を行って
3本の焼結体を作製した後、これらの表面を10〜13
mmの厚さで削って30mm×30mm×90mmの3
本の直方体試料を得た。
【0082】これらのうち2本について上記試料と同一
条件で、それぞれ13Cr鋼チップおよびスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を用いて同様の試験を行い、浸
漬先端より10mm上の位置の試料断面の対角線距離の
変化を求めた。その結果、それぞれ2.4mmおよび
2.9mmの減少が認められ、上記試料よりも摩耗量が
大きかった。
【0083】さらに、3本目の試料について同様にX線
回折を行った結果、BN、AlN、SiCが同定された
が、表面と内部とで最大ピーク比AlN/BNの値に有
意な差は認められなかった。ちなみに電動ドリルによる
触診によっても、表面と内部とで硬度に差が認められな
かった。
【0084】(実施例10)325メッシュの篩目通過
(粒径44μm以下)のB4 C、200メッシュの篩目
通過(粒径74μm以下)のAl、平均粒径5μmのS
iO2 をそれぞれ23.8wt%、50.3wt%、2
5.9wt%の割合で混合し、ウレタンゴム製容器に充
填して封入し、50MPaの水圧をかけて圧密した。こ
のようにして密度1.66g/cm3 の3本の成形体が
得られた。これらより30mm×30mm×90mmの
直方体試料を3本切り出した。これらを黒鉛ヒーター炉
に配設し、真空ポンプで排気後、窒素ガスを導入し、窒
素圧力0.14MPa(絶対圧)とし、昇温速度15℃
/min で700℃まで加熱し3時間保持後、再び昇温速
度15℃/min で1500℃まで加熱し3時間保持後放
冷した。このようにして3本の焼結体を得た。
【0085】3本の焼結体のうち1本の一端を回転軸に
固定してアルミナるつぼに上部より挿入し、周囲に13
Cr鋼チップを充填した。このるつぼをArガスでシー
ルし、1550℃まで加熱後、回転数60rpmで試料
を回転させながら1550℃に20時間保持し、その後
放冷した。その後るつぼごと切断して浸漬先端より10
mm上の位置の試料断面の対角線距離を求めた。その結
果0.3mmの減少が認められ、変化が僅少であること
が確認された。
【0086】次に、2本目の焼結体試料を回転軸に固定
して黒鉛るつぼに上部より挿入し、周囲にスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を充填した。このるつぼをAr
ガスでシールし、1550℃まで加熱後、回転数60r
pmで試料を回転させながら1550℃に20時間保持
し、その後放冷した。その後るつぼごと切断して浸漬先
端より10mm上の位置の試料断面の対角線距離を求め
た。その結果0.4mmの減少が認められ、変化が僅少
であることが確認された。
【0087】さらに、3本目の試料をその一端より10
mmの位置で切断し、表面から2mmまでの範囲と表面
から10mmより内部の2箇所から電動ドリルで粉末を
削り出してX線回折に供した。その結果、BN、Al
N、SiCが同定された。計算による推定平均組成はB
N30.1wt%、AlN37.2wt%、SiC1
2.1wt%、Al23 20.6wt%であるが、A
lNとBNのX線回折強度比は表面と内部とで差が認め
られた。X線回折の最大ピーク比AlN/BNの値で比
較すると、表面ではこの値が8.0であったのに対し内
部では4.7であり、両者の比は1.70であった。ち
なみに電動ドリルの触診により、表面から7mm内側で
急激に硬度が減少することが確認された。
【0088】比較のため、上記試料と同一の原料を用
い、同一条件で成形を行って3本の成形体を得、これら
を切り出すことなく上記条件と同一条件で焼結を行って
3本の焼結体を作製した後、これらの表面を10〜13
mmの厚さで削って30mm×30mm×90mmの3
本の直方体試料を得た。
【0089】これらのうち2本について上記試料と同一
条件で、それぞれ13Cr鋼チップおよびスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を用いて同様の試験を行い、浸
漬先端より10mm上の位置の試料断面の対角線距離の
変化を求めた。その結果、それぞれ3.2mmおよび
3.9mmの減少が認められ、上記試料よりも摩耗量が
大きかった。
【0090】さらに、3本目の試料について同様にX線
回折を行った結果、BN、AlN、SiC、Al23
が同定されたが、表面と内部とで最大ピーク比AlN/
BNの値に有意な差は認められなかった。ちなみに電動
ドリルによる触診によっても、表面と内部とで硬度に差
が認められなかった。
【0091】(実施例11)325メッシュの篩目通過
(粒径44μm以下)のB4 C、200メッシュの篩目
通過(粒径74μm以下)のAl、平均粒径5μmのS
iO2 をそれぞれ23.8wt%、50.3wt%、2
5.9wt%の割合で混合し、ウレタンゴム製容器に充
填して封入し、50MPaの水圧をかけて圧密した。こ
のようにして密度1.66g/cm3 の3本の成形体が
得られた。これらより30mm×30mm×90mmの
直方体試料を3本切り出した。これらを黒鉛ヒーター炉
に配設し、真空ポンプで排気後、窒素ガスを導入し、窒
素圧力0.14MPa(絶対圧)とし、昇温速度15℃
/min で700℃まで加熱し3時間保持後、再び昇温速
度15℃/min で1900℃まで加熱し6時間保持後放
冷した。このようにして3本の焼結体を得た。
【0092】3本の焼結体のうち1本の一端を回転軸に
固定してアルミナるつぼに上部より挿入し、周囲に13
Cr鋼チップを充填した。このるつぼをArガスでシー
ルし、1550℃まで加熱後、回転数60rpmで試料
を回転させながら1550℃に20時間保持し、その後
放冷した。その後るつぼごと切断して浸漬先端より10
mm上の位置の試料断面の対角線距離を求めた。その結
果0.2mmの減少が認められ、変化が僅少であること
が確認された。
【0093】次に、2本目の焼結体試料を回転軸に固定
して黒鉛るつぼに上部より挿入し、周囲にスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を充填した。このるつぼをAr
ガスでシールし、1550℃まで加熱後、回転数60r
pmで試料を回転させながら1550℃に20時間保持
し、その後放冷した。その後るつぼごと切断して浸漬先
端より10mm上の位置の試料断面の対角線距離を求め
た。その結果0.5mmの減少が認められ、変化が僅少
であることが確認された。
【0094】さらに、3本目の試料をその一端より10
mmの位置で切断し、表面から2mmまでの範囲と表面
から10mmより内部の2箇所から電動ドリルで粉末を
削り出してX線回折に供した。その結果、BN、Al
N、SiAl727 、SiC、Al23 が同定さ
れた。AlNおよびAlON(ここではSiAl72
7 )とBNのX線回折強度比は表面と内部とで差が認
められた。X線回折の最大ピーク比(AlN+AlO
N)/BNの値で比較すると、表面ではこの値が7.0
であったのに対し内部では3.7であり、両者の比は
1.89であった。
【0095】比較のため、上記試料と同一の原料を用
い、同一条件で成形を行って3本の成形体を得、これら
を切り出すことなく上記条件と同一条件で焼結を行って
3本の焼結体を作製した後、これらの表面を10〜13
mmの厚さで削って30mm×30mm×90mmの3
本の直方体試料を得た。
【0096】これらのうち2本について上記試料と同一
条件で、それぞれ13Cr鋼チップおよびスラグ粉末
(SiO2 35.2wt%、Al23 4.1wt%、
CaO27.5wt%)を用いて同様の試験を行い、浸
漬先端より10mm上の位置の試料断面の対角線距離の
変化を求めた。その結果、それぞれ3.7mmおよび
4.4mmの減少が認められ、上記試料よりも摩耗量が
大きかった。
【0097】さらに、3本目の試料について同様にX線
回折を行った結果、BN、AlN、SiAl72
7 、SiC、Al23 が同定されたが、表面と内部と
で最大ピーク比(AlN+AlON)/BNの値に有意
な差は認められなかった。なお、上記実施例1〜11ま
でのデータをまとめて表1、表2、表3に示す。
【0098】
【表1】
【0099】
【表2】
【0100】
【表3】
【0101】
【発明の効果】以上のように、本発明によれば、高価な
BNおよびAlN粉末を使用することなく安価なB4
C、Alを出発原料として、溶融金属、溶融スラグに対
する耐食性に極めて優れた窒化ホウ素含有材料およびそ
の製造方法が提供される。また、本発明に従って表面に
AlNおよび/またはAlONの濃縮層を形成すること
により、さらに溶融金属、溶融スラグに対する耐摩耗性
に優れた窒化ホウ素含有材料およびその製造方法が提供
される。本発明の材料は、溶融金属、溶融スラグに対す
る耐食性および耐摩耗性に極めて優れており、しかも安
価に製造することができるので極めて適用範囲が広い。
───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 平7−48105(JP,A) 特開 平2−44067(JP,A) 特開 昭53−136015(JP,A) 特開 昭55−67576(JP,A) 特開 平1−172270(JP,A) 実開 平2−108548(JP,U) 特許3175483(JP,B2) (58)調査した分野(Int.Cl.7,DB名) C04B 35/583 - 35/5835

Claims (9)

    (57)【特許請求の範囲】
  1. 【請求項1】 10〜70wt%のB4C,30〜90
    wt%のAl,10〜60wt%のSiを含む混合粉末
    を窒化性雰囲気中で1300〜2300℃にまで加熱
    し、22〜90wt%のBN,4〜48wt%のAl
    N,6〜30wt%のSiCを含む窒化ホウ素含有材料
    を得ることを特徴とする窒化ホウ素含有材料の製造方
    法。
  2. 【請求項2】 22〜90wt%のBN,4〜48wt
    %のAlNおよびAlON,6〜30wt%のSiC,
    4〜30wt%のAl23を含むことを特徴とする耐溶
    鋼性、耐スラグ性に優れた窒化ホウ素含有材料。
  3. 【請求項3】 10〜70wt%のB4C,30〜90
    wt%のAl,10〜60wt%のSiO2を含む混合
    粉末を窒化性雰囲気中で1300〜2300℃にまで加
    熱して得られる材料であって、22〜90wt%のB
    N,4〜48wt%のAlNおよびAlON,6〜30
    wt%のSiC,4〜30wt%のAl23を含むこと
    を特徴とする耐溶鋼性、耐スラグ性に優れた窒化ホウ素
    含有材料。
  4. 【請求項4】 10〜70wt%のB4C,30〜90
    wt%のAl,10〜60wt%のSiO2を含む混合
    粉末を窒化性雰囲気中で1300〜2300℃にまで加
    熱し、22〜90wt%のBN,4〜48wt%のAl
    Nおよび/またはAlON,6〜30wt%のSiC,
    4〜30wt%のAl23を含む窒化ホウ素含有材料を
    得ることを特徴とする窒化ホウ素含有材料の製造方法。
  5. 【請求項5】 10〜70wt%のB4C,30〜90
    wt%のAl,10〜60wt%のSiO2を含む混合
    粉末を窒化性雰囲気中で1700〜2300℃にまで加
    熱し、22〜90wt%のBN,4〜48wt%のAl
    ON,6〜30wt%のSiC含む窒化ホウ素含有材料
    を得ることを特徴とする窒化ホウ素含有材料の製造方
    法。
  6. 【請求項6】 22〜90wt%のBN,4〜48wt
    %のAlNおよび/またはAlON,6〜30wt%の
    SiCを含む材料であって、表面に厚さ2〜10mmの
    AlNおよび/またはAlONの濃縮層を有することを
    特徴とする窒化ホウ素含有材料。
  7. 【請求項7】 表面から2mmまでの範囲のBNのX線
    回折の最大ピークの回折強度に対するAlNとAlON
    のX線回折の最大ピークの回折強度の和の比(AlN+
    AlON)/BNの値と、表面から10mm以上内部の
    (AlN+AlON)/BNの値との比が1.3以上で
    あることを特徴とする請求項8に記載の窒化ホウ素含有
    材料。
  8. 【請求項8】 10〜70wt%のB4C,30〜90
    wt%のAl,10〜60wt%のSiまたはSiO2
    を含む混合粉末を窒化性雰囲気中で1300〜2300
    ℃にまで加熱して得られる材料であって、22〜90w
    t%のBN,4〜48wt%のAlNおよび/またはA
    lON,6〜30wt%のSiCを含み、表面に厚さ2
    〜10mmのAlNおよび/またはAlONの濃縮層を
    有することを特徴とする窒化ホウ素含有材料。
  9. 【請求項9】 10〜70wt%のB4C,30〜90
    wt%のAl,10〜60wt%のSiまたはSiO2
    を含む混合粉末を窒化性雰囲気中で1300〜2300
    ℃にまで加熱し、22〜90wt%のBN,4〜48w
    t%のAlNおよび/またはAlON,6〜30wt%
    のSiCを含み、表面に厚さ2〜10mmのAlNおよ
    び/またはAlONの濃縮層を有する窒化ホウ素含有材
    料を得ることを特徴とする窒化ホウ素含有材料の製造方
    法。
JP05933795A 1995-03-17 1995-03-17 窒化ホウ素含有材料およびその製造方法 Expired - Fee Related JP3194344B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP05933795A JP3194344B2 (ja) 1995-03-17 1995-03-17 窒化ホウ素含有材料およびその製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP05933795A JP3194344B2 (ja) 1995-03-17 1995-03-17 窒化ホウ素含有材料およびその製造方法

Publications (2)

Publication Number Publication Date
JPH08259330A JPH08259330A (ja) 1996-10-08
JP3194344B2 true JP3194344B2 (ja) 2001-07-30

Family

ID=13110415

Family Applications (1)

Application Number Title Priority Date Filing Date
JP05933795A Expired - Fee Related JP3194344B2 (ja) 1995-03-17 1995-03-17 窒化ホウ素含有材料およびその製造方法

Country Status (1)

Country Link
JP (1) JP3194344B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100972567B1 (ko) * 2008-05-15 2010-07-28 인하대학교 산학협력단 내플라즈마 부재 및 그 제조방법
JP5430449B2 (ja) * 2010-03-05 2014-02-26 電気化学工業株式会社 高熱伝導性フィラー
CN106626099B (zh) * 2016-11-30 2018-09-07 宁波宫铁智能科技有限公司 一种适用于不同直径的管件切割装置

Also Published As

Publication number Publication date
JPH08259330A (ja) 1996-10-08

Similar Documents

Publication Publication Date Title
JP3175483B2 (ja) 窒化ホウ素含有材料およびその製造方法
JPH07242466A (ja) 多結晶立方晶窒化ホウ素の製造方法
US4647405A (en) Boride-alumina composite
JP4312293B2 (ja) 炭化珪素系セラミック複合材料とその製造方法
EP0170889B1 (en) Zrb2 composite sintered material
JP3194344B2 (ja) 窒化ホウ素含有材料およびその製造方法
JPH0354159A (ja) セラミック焼結体の製造方法
JPS629548B2 (ja)
JPS6210954B2 (ja)
JP2519076B2 (ja) 炭化珪素ウィスカ―強化セラミックスの製造方法
JPH07315937A (ja) 窒化ホウ素常圧焼結体及びその製造方法
AU645721B2 (en) Process for manufacturing ceramic-metal composites
JPH0780708B2 (ja) 強度の高い酸化アルミニウム基焼結体及びその製造方法
JP2927149B2 (ja) 窒化ホウ素含有無機材料の製造方法
JPS6337069B2 (ja)
JPH0912371A (ja) 窒化ホウ素含有材料およびその製造方法
JPS6337074B2 (ja)
JPH0463030B2 (ja)
JPS5934676B2 (ja) β′−サイアロンを主成分とする反応焼成体の製造方法
JPS6126566A (ja) SiC質複合体の焼結方法
JPH0559073B2 (ja)
EP0241514A1 (en) Dense ceramics containing a solid solution and method for making the same
JPH09175866A (ja) 窒化ホウ素含有材料
JP3591799B2 (ja) 高靱性窒化珪素質焼結体及びその製造方法
JP2916934B2 (ja) サイアロン質焼結体の製造方法

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees