JP3193271U - Auxiliary heating system for detached houses - Google Patents

Auxiliary heating system for detached houses Download PDF

Info

Publication number
JP3193271U
JP3193271U JP2014003701U JP2014003701U JP3193271U JP 3193271 U JP3193271 U JP 3193271U JP 2014003701 U JP2014003701 U JP 2014003701U JP 2014003701 U JP2014003701 U JP 2014003701U JP 3193271 U JP3193271 U JP 3193271U
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
collecting chamber
sunlight
foundation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014003701U
Other languages
Japanese (ja)
Inventor
勝博 下重
勝博 下重
Original Assignee
株式会社創鑑システムズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社創鑑システムズ filed Critical 株式会社創鑑システムズ
Priority to JP2014003701U priority Critical patent/JP3193271U/en
Application granted granted Critical
Publication of JP3193271U publication Critical patent/JP3193271U/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems

Landscapes

  • Building Environments (AREA)

Abstract

【課題】外壁の二重構造をとらず、衛生的に、寒冷地における戸建住宅の暖房効率を向上させて化石燃料の節減を図る戸建住宅の補助暖房システムを提供する。【解決手段】戸建住宅10の外壁11の外側に透明板材を用いた陽光集熱室20を設けるとともに、戸建住宅10にヒートポンプ装置を設ける。陽光集熱室20は、外壁11のうち少なくとも一の外壁11の外側に設け、熱交換機31を、陽光集熱室20または住宅基礎空間14−2に設置する一方、放熱機32を、住宅基礎空間14−2に設置する。熱交換機31から排出される空気流A1を、陽光集熱室20を経由させた上で熱交換機31に還流させ、放熱機32から排出される排熱A2を住宅基礎のコンクリート基礎14に蓄熱する。【選択図】図3PROBLEM TO BE SOLVED: To provide an auxiliary heating system for a detached house, which does not have a double structure of an outer wall and hygienically improves the heating efficiency of the detached house in a cold region to save fossil fuels. SOLUTION: A sunlight heat collecting chamber 20 using a transparent plate material is provided on the outside of an outer wall 11 of a detached house 10, and a heat pump device is provided in the detached house 10. The sunlight collecting chamber 20 is provided outside at least one of the outer walls 11 of the outer wall 11, and the heat exchanger 31 is installed in the sunlight collecting chamber 20 or the housing foundation space 14-2, while the radiator 32 is installed in the housing foundation. Install in space 14-2. The air flow A1 discharged from the heat exchanger 31 is returned to the heat exchanger 31 after passing through the sunlight heat collecting chamber 20, and the exhaust heat A2 discharged from the radiator 32 is stored in the concrete foundation 14 of the housing foundation. .. [Selection diagram] Fig. 3

Description

本考案は、戸建住宅、とくに寒冷地の戸建住宅における化石燃料の消費量を抑える技術に関する。   The present invention relates to a technique for reducing the consumption of fossil fuel in a detached house, particularly a detached house in a cold region.

寒冷地における戸建住宅では、厳寒期には室内に配した各種の灯油ストーブ等の暖房装置を稼働させることによって室内温度を快適に保つ。また、北海道の道東地域等では厳冬期に限らず、春先や夏期でも暖房装置を必要とする場合がある。   In a detached house in a cold region, the indoor temperature is kept comfortable by operating heating devices such as various kerosene stoves arranged indoors in severe cold seasons. Further, in the Hokkaido eastern region and the like, a heating device may be required not only in the severe winter period but also in early spring and summer.

このような寒冷地域の戸建住宅では、灯油ストーブ等の暖房装置を稼働させた場合には室内温度は快適に保たれる一方、燃料代(灯油経費)が嵩むため経済的負担が重くなるという問題がある。   In a detached house in such a cold area, when a heating device such as a kerosene stove is operated, the room temperature is kept comfortable, but the fuel cost (kerosene expense) increases, so the economic burden increases. There's a problem.

このため、従来から、とくに冬期の暖房効率を高める提案がなされている。例えば、戸建住宅の外壁を二重構造として、温かい室内空気を循環させる等である(特許文献1)。   For this reason, conventionally, the proposal which raises the heating efficiency especially in winter has been made. For example, the indoor wall of a detached house is made into a double structure, and warm indoor air is circulated (patent document 1).

戸建住宅の外壁を二重構造として、内部空間に温かい室内空気を循環させれば、暖房効率は確実に向上する。また、二重構造の外壁空間を流動させた空気を床下に送り込んで、床下空間(住宅の基礎空間)を常時暖めておけば、暖房効率はさらに向上する(特許文献1)。   If the outer wall of a detached house has a double structure and warm indoor air is circulated in the internal space, the heating efficiency is reliably improved. Moreover, if the air which flowed the outer wall space of the double structure is sent under the floor and the underfloor space (the basic space of the house) is always warmed, the heating efficiency is further improved (Patent Document 1).

同様の外壁構造は、特許文献2にも開示されている。この特許文献2には、外壁を流動させる空気流を、天井裏空間および小屋裏空間にも送り込むことが開示されている。天井裏空間や小屋裏空間を暖めることによって、居室の温度低下を極力防ぎ、暖房効率を高めるためである。   A similar outer wall structure is also disclosed in Patent Document 2. This Patent Document 2 discloses that an air flow that causes an outer wall to flow is also sent to a ceiling space and a shed space. This is to warm the ceiling space and the attic space to prevent the temperature of the living room from being lowered as much as possible and to increase the heating efficiency.

特開2014−051874号JP 2014-051874 A 特開2004−060959号JP-A-2004-060959

問題は、外壁を二重構造にした上で空気流を循環させるには、建築コストが嵩むだけでなく、工期も延びる点である。戸建住宅の外壁構造が複雑になるだけでなく、例えば、室内空気の流れを確保するための開口設置や、開口設置に伴う防塵設備の設置など派生的な建築課題も生ずるからである。   The problem is that in order to circulate the air flow with the outer wall having a double structure, not only the construction cost is increased, but also the construction period is extended. This is because not only the outer wall structure of a detached house becomes complicated, but also derivative construction problems such as the installation of openings for securing the flow of indoor air and the installation of dustproof equipment accompanying the installation of openings arise.

また、室内の暖房空気を二重の外壁空間に流動させたり、床下、天井裏、小屋裏に送り込むことは技術的には決して難しいことではないが、居室空間と外壁、床下、天井裏、小屋裏等を空間的に連通させるのは、衛生的な視点からも好ましいものではない。   In addition, it is not technically difficult to flow indoor heating air into the double outer wall space or send it to the floor, ceiling, or shed, but it is technically difficult, but the living room space and the outer wall, under the floor, ceiling, hut Spatial communication between the back and the like is not preferable from a hygienic viewpoint.

さらに、二重構造の外壁は、新築家屋では設計段階から計画すれば可能であるけれども、既設住宅への速やかな適用は困難であり、リフォームするにしても大規模な工事が必要となる。   Furthermore, although it is possible to construct a double-structured outer wall from the design stage in a new house, it is difficult to quickly apply it to existing houses, and large-scale construction is required even if renovation is performed.

また、従来の提案は、ストーブ等の暖房装置を用いることを前提としている。しかしながら、春先〜夏期〜秋期の低温時にも暖房装置を稼働させると、年間を通しての化石燃料代の総額が大きくなるという寒冷地特有の問題がある。   Moreover, the conventional proposal presupposes using heating apparatuses, such as a stove. However, there is a problem peculiar to the cold region that if the heating device is operated even at low temperatures in early spring, summer, and autumn, the total amount of fossil fuel costs increases throughout the year.

そこで、本考案の目的は、外壁の二重構造をとらず、かつ衛生的に、寒冷地における戸建住宅の暖房効率を向上させて化石燃料の節減を可能とする点にある。   Therefore, an object of the present invention is to make it possible to save fossil fuel by improving the heating efficiency of a detached house in a cold region without sanitizing the double structure of the outer wall.

前記目的を達成するため、本考案に係る戸建住宅の補助暖房システムは、戸建住宅の外壁の外側に透明板材を用いた陽光集熱室を設けるとともに、当該戸建住宅にヒートポンプ装置(空気熱ヒートポンプ)を設けるものであって、陽光集熱室は、前記外壁のうち太陽光を受ける方向にある外壁の外側に設け、ヒートポンプ装置は、熱交換機を、陽光集熱室または住宅基礎空間に設置する一方、放熱機を、住宅基礎空間に設置してなり、熱交換機から送出される空気流を、陽光集熱室を経由させた上で熱交換機に還流させるとともに、放熱機から排出された放熱空気を住宅基礎のコンクリートに蓄熱し、陽光集熱室を介して循環させる前記空気流は、ダクトを介して熱交換機の吸気部近傍へ送り込む(請求項1)。   In order to achieve the above object, an auxiliary heating system for a detached house according to the present invention is provided with a sunlight collecting chamber using a transparent plate on the outside of the outer wall of the detached house, and a heat pump device (air) in the detached house. A solar heat collecting chamber is provided outside the outer wall in the direction of receiving sunlight among the outer walls, and the heat pump device is provided with a heat exchanger in the sunlight collecting chamber or the housing basic space. On the other hand, the radiator was installed in the housing basic space, and the air flow sent from the heat exchanger was returned to the heat exchanger after passing through the sunlight collecting chamber, and was discharged from the radiator The air flow that stores the heat radiation air in the concrete of the house foundation and circulates it through the positive heat collecting chamber is sent to the vicinity of the intake portion of the heat exchanger via the duct (Claim 1).

本考案に係る戸建住宅の補助暖房システムは、室内の暖房空気を流動させるのではなく、居室以外の適宜箇所(陽光集熱室または住宅基礎空間)に設置したヒートポンプ装置の排出空気を利用して、外壁の外側に設けた陽光集熱室内の空気を循環流動させる。陽光集熱室内の空気は、太陽に照らされているとき(晴天日照時)は温度上昇する。高い温度の陽光集熱室の空気を流動させ、ヒートポンプ装置の熱交換機に還流/循環することによって、住宅基礎空間に設置した放熱機は速やかに温度上昇するので、熱交換機を稼働させる僅かな電気によって大きな熱エネルギーを獲得し、床下を暖めることが出来る。   The auxiliary heating system for a detached house according to the present invention does not flow indoor heating air, but uses exhaust air from a heat pump device installed in an appropriate place (a solar heat collecting room or a housing basic space) other than the living room. Then, the air in the sunlight collecting chamber provided outside the outer wall is circulated and flowed. The temperature of the air in the sunlight collecting room rises when it is illuminated by the sun (during sunny daylight). Since the air in the high temperature sunlight collecting chamber flows and circulates / circulates to the heat exchanger of the heat pump device, the radiator installed in the housing basic space quickly rises in temperature, so a little electricity to operate the heat exchanger Can gain a large amount of heat energy and warm the floor.

このようにすれば、春先〜夏期〜秋期の日中〜夕暮時には居室内の暖房装置を稼働させなくても居室を快適温度に保つことが可能となるし、厳冬期も暖房装置の稼働パワーを低下させても居室を快適温度に保つことが可能となるので、年間を通しての化石燃料の消費量を大幅に削減することが出来る。   In this way, it is possible to keep the room at a comfortable temperature without operating the room heating device during the daytime to sunset in the early spring, summer, and autumn seasons. Even if it is lowered, it becomes possible to keep the room at a comfortable temperature, so that the consumption of fossil fuel throughout the year can be greatly reduced.

また、太陽光によって暖められた蓄熱空気の循環であり、居室とは空間的に切り離した条件での空気流動であるから、居室内空気の衛生に悪影響を与えることもない。さらに、本考案に係る補助暖房システムは、ヒートポンプ装置の放熱機を住宅基礎空間に設置し、放熱空気を住宅基礎空間に蓄熱するので、床下の蓄熱エネルギーも相俟って利用し、化石燃料の消費量削減を効率化させることが出来る。   Moreover, since it is the circulation of the heat storage air heated by sunlight, and it is an air flow on the conditions spatially separated from the living room, it does not adversely affect the hygiene of the indoor air. Furthermore, since the auxiliary heating system according to the present invention installs the heat pump device radiator in the housing basic space and stores the radiated air in the housing basic space, it also uses the heat storage energy under the floor and uses fossil fuel. Consumption reduction can be made efficient.

陽光集熱室は、アルミニウム製の縦材と横材を用いたフレーム手段に、無色透明のガラス板材を装着して構成する場合がある(請求項2)。   The sunlight collecting chamber may be configured by mounting a colorless and transparent glass plate material on frame means using vertical and horizontal members made of aluminum (claim 2).

陽光集熱室を無色透明ガラス板材を用いて構成することにより、当該陽光集熱室は、太陽熱を蓄積でき、日中から日没後しばらくの間は比較的高い温度を維持する。この場合、アルミニウム製の縦材/横材を用いたフレームに、無色透明のガラス板材を装着して陽光集熱室を作れば、増加分の建築コストを比較的安価に抑えることが出来る。また太陽光の蓄熱効果は最大となる。   By constructing the sunlight collecting chamber using a colorless and transparent glass plate, the sunlight collecting chamber can accumulate solar heat and maintain a relatively high temperature for a while after sunset from the daytime. In this case, the construction cost for the increase can be suppressed relatively inexpensively by forming a positive heat collecting chamber by attaching a colorless and transparent glass plate material to a frame using vertical / horizontal members made of aluminum. In addition, the heat storage effect of sunlight is maximized.

無色透明のガラス板材を用いるので、太陽光が直接差し込む外壁には金属製の外壁材を用いることが望ましい。熱伝導率の良い外壁材(例えばアルミニウム化粧材等)によって太陽光の熱エネルギーを利用して、陽光集熱室内の空気温度を効率的に高めることが出来る。   Since a colorless and transparent glass plate material is used, it is desirable to use a metal outer wall material for the outer wall into which sunlight is directly inserted. The outer wall material (for example, aluminum decorative material) with good thermal conductivity can be used to efficiently increase the air temperature in the sunlight collecting chamber by utilizing the thermal energy of sunlight.

ヒートポンプ装置の放熱機は、コンクリート成形した住宅基礎空間に均等間隔をもって複数個配置する一方、一階床下をスラブコンクリートによって成形し、前記放熱機を介して住宅基礎空間に放熱された熱を、住宅基礎のコンクリートと一階床下のスラブコンクリートに蓄熱する場合がある(請求項3)。   A plurality of heat radiators of the heat pump device are arranged at equal intervals in the concrete molded housing foundation space, while the floor under the first floor is molded with slab concrete, and the heat radiated to the housing foundation space through the radiator is In some cases, heat is stored in the concrete of the foundation and the slab concrete under the first floor (Claim 3).

ひとつのヒートポンプ装置に用いる放熱機の個数は最小限一個でも良い。しかしながら、住宅基礎空間(住宅の床下)を均等に暖める場合は、複数の放熱機を均等間隔で配した方が、温度のばらつきが少なくなり住宅内空間の暖房を快適に保つ上では有利となる。   The number of radiators used in one heat pump device may be at least one. However, when uniformly warming the housing basic space (under the floor of the house), it is more advantageous to arrange a plurality of radiators at even intervals in order to reduce the temperature variation and to keep the heating of the interior space comfortable. .

放熱機から放出される熱エネルギーを、住宅基礎のコンクリートと一階床下のスラブコンクリートに蓄熱する構成とすれば、例えば、冬が始まる前から蓄熱を開始することによって、晩秋〜初冬〜厳冬期〜晩冬には床下からの暖かい熱エネルギーを得ることが出来る。このため、暖房装置の稼働パワーを従来より低下させても居室温度を快適に保つことが可能となり、化石燃料を確実に節減できるようになる。   If the heat energy released from the radiator is stored in the concrete of the foundation of the house and the slab concrete under the first floor, for example, by starting the heat storage before the start of winter, late autumn-early winter-severe winter- In late winter, you can get warm heat energy from under the floor. For this reason, even if the operating power of the heating device is lowered than before, the room temperature can be kept comfortable, and fossil fuel can be reliably saved.

本考案に係る戸建住宅の補助暖房システムによれば、外壁が二重構造ではなくても、寒冷地における戸建住宅の暖房効率を衛生的に向上させ、化石燃料の節減を可能とすることが出来るようになる。   According to the auxiliary heating system for a detached house according to the present invention, even if the outer wall is not a double structure, the heating efficiency of the detached house in a cold region can be improved hygienically and fossil fuel can be saved. Will be able to.

実施形態に係る戸建住宅の補助暖房システムの一例を示す図である。It is a figure which shows an example of the auxiliary heating system of the detached house which concerns on embodiment. 図1に示した陽光集熱室を異なる角度から例示した図である。It is the figure which illustrated the sunlight heat collecting chamber shown in FIG. 1 from a different angle. 図1に示した補助暖房システムの熱の流れを例示した図である。It is the figure which illustrated the flow of the heat of the auxiliary heating system shown in FIG. 他の実施形態に係る補助暖房システムを例示する図である。It is a figure which illustrates the auxiliary heating system which concerns on other embodiment. 実施形態に係る仕切板の具体例を示す図である。It is a figure which shows the specific example of the partition plate which concerns on embodiment. 実施形態に係る仕切板の他の例を示す図である。It is a figure which shows the other example of the partition plate which concerns on embodiment. 図6のT−T線の断面相当図である。It is a cross-sectional equivalent view of the TT line of FIG.

図1は、本考案に係る戸建住宅の補助暖房システムの一実施形態を例示するものである。   FIG. 1 illustrates an embodiment of an auxiliary heating system for a detached house according to the present invention.

この補助暖房装置は、戸建住宅10の外壁11の外側に透明板材を用いた陽光集熱室20を設けるとともに、この戸建住宅10に、熱交換機31と放熱機32とを備えるヒートポンプ装置を設ける。14は、戸建住宅10のコンクリート基礎、14−2は、基礎空間(基礎の内側の空間;床下空間)である。27は仕切板、38はダクトである。また、符号Qは、熱交換機31と放熱機32とを連絡する熱媒の循環経路(管材)、Rは一階床のスラブコンクリートである。ダクト38は、十分な空気の流動性を確保するため、断面積が大きな専用のダクトを設けることが望ましい。   The auxiliary heating device is provided with a sunlight collecting chamber 20 using a transparent plate material on the outside of the outer wall 11 of the detached house 10, and a heat pump device provided with a heat exchanger 31 and a radiator 32 in the detached house 10. Provide. 14 is a concrete foundation of the detached house 10, and 14-2 is a foundation space (a space inside the foundation; an underfloor space). 27 is a partition plate and 38 is a duct. Moreover, the code | symbol Q is the circulation path (pipe material) of the heat medium which connects the heat exchanger 31 and the heat radiator 32, R is the slab concrete of a 1st floor. The duct 38 is desirably provided with a dedicated duct having a large cross-sectional area in order to ensure sufficient air fluidity.

陽光集熱室20は、例えば平面矩形を呈する外壁11のうち、太陽光を受ける向きの外壁11の外側に設ける。すべての外壁11面に設ける必要はない。この実施形態では、ふたつの外壁11に陽光集熱室20(20−1、20−2)を設ける場合を示してある。   The positive heat collecting chamber 20 is provided on the outer side of the outer wall 11 that receives sunlight, for example, of the outer wall 11 having a planar rectangle. It is not necessary to provide all the outer walls 11. In this embodiment, the case where the sunlight collecting chamber 20 (20-1, 20-2) is provided in the two outer walls 11 is shown.

陽光集熱室20は、できるだけ太陽光によって空気を暖める構造とすることが望ましいので、例えば、無色透明のガラス板材を用いて構築する。ガラス板材は、適宜素材の縦材(図示せず)と横材(図示せず)とを組み合わせた枠体に装填する。   The solar heat collecting chamber 20 is preferably constructed to warm the air with sunlight as much as possible, and is constructed using, for example, a colorless and transparent glass plate material. The glass plate material is appropriately loaded into a frame that is a combination of a vertical material (not shown) and a horizontal material (not shown).

枠体に用いる縦材と横材は、例えば、アルミニウム製のガラス装着用の公知の各種枠材を使用することが出来る。構造的に無理がない範囲で無色透明のガラス板材の面積比率は出来るだけ大きくとり、陽光集熱室20内により多くの陽光を受けて内部空気の温度を高めるようにしておく。構造的には、例えば、寒冷地住宅の玄関の外側に設ける風除室と略同様で構わない。但し、除風室に設けられる開閉扉は必ずしも設ける必要はない。   As the vertical member and the horizontal member used for the frame, for example, various well-known frame members for mounting glass made of aluminum can be used. The area ratio of the colorless and transparent glass plate material is set to be as large as possible within a range that is not unreasonable in structure, and the internal air temperature is raised by receiving more sunlight in the sunlight collecting chamber 20. Structurally, for example, it may be substantially the same as a windbreak room provided outside the entrance of a cold district house. However, the open / close door provided in the air removal chamber is not necessarily provided.

陽光集熱室20は、図2に示すように、外壁11と略平行なガラス面Gを備える。ガラス面Gと外壁11表面との離隔寸法は、空気流が自由に流動できる程度の寸法、例えば40〜50cm程度に設定すればよい。符号Pで示す部分が空気流が流れるスペースである。また、14−3は、陽光集熱室20の縦材を立設するための跳ね出し基礎である。跳ね出し基礎14−3は、ガラス面Gと外壁11表面との離隔寸法の設定量に応じて突出寸法を適宜設計する。   As shown in FIG. 2, the solar heat collecting chamber 20 includes a glass surface G substantially parallel to the outer wall 11. The distance between the glass surface G and the surface of the outer wall 11 may be set to a size that allows the air flow to freely flow, for example, about 40 to 50 cm. A portion indicated by a symbol P is a space through which an air flow flows. Reference numeral 14-3 denotes a spring foundation for erecting the vertical member of the sunlight collecting chamber 20. The protruding foundation 14-3 is appropriately designed to have a protruding dimension according to the set amount of the separation dimension between the glass surface G and the outer wall 11 surface.

なお、陽光集熱室20に窓Wが位置する場合は、窓Wを出窓構造とし、開閉面W1を、例えば、ガラス面Gと略面一とすることが望ましい。開閉面W1が外気に開放できるようにするためである。   In addition, when the window W is located in the sunlight collecting chamber 20, it is desirable that the window W has a bay window structure and the opening / closing surface W1 is substantially flush with the glass surface G, for example. This is because the opening / closing surface W1 can be opened to the outside air.

図1に戻り、仕切板27は、例えば空気流の下流側に開放部Fを備え、窓Wの下方を通した空気流A1(図3参照)が、窓Wの上方へ流れて熱交換機31方向へ戻るようにしておくことが望ましい。仕切板27は、樹脂板、金属板、木製板等、適宜の素材を用いる。仕切板27には、空気流A1を適宜箇所において上方へ逃がす小孔(図示せず)を設けても良い。なお、仕切板27は窓Wの下側に限らず、上側位置に配しても構わない。   Returning to FIG. 1, the partition plate 27 includes, for example, an opening F on the downstream side of the air flow, and the air flow A <b> 1 (see FIG. 3) passing below the window W flows above the window W and flows into the heat exchanger 31. It is desirable to return in the direction. The partition plate 27 is made of an appropriate material such as a resin plate, a metal plate, or a wooden plate. The partition plate 27 may be provided with a small hole (not shown) for allowing the air flow A1 to escape upward at an appropriate location. The partition plate 27 is not limited to the lower side of the window W, and may be arranged at the upper position.

ヒートポンプ装置の熱交換機31は、陽光集熱室20または住宅(10)の基礎空間14−2のいずれか一方に設置する。この実施形態では、二つある陽光集熱室20の一方(20−1)に熱交換機31を設置する場合を例示した。この熱交換機31の駆動電源は、ソーラーパネル(太陽光発電装置;図示せず)を介して供給することが望ましい。北海道の道東エリアのように年間を通して安定した日照時間が得られる地域では、ソーラーパネルによってヒートポンプ装置(31)を駆動するに十分な電力をまかなうことが出来るからである。ソーラーパネルは、例えば屋根等の適宜箇所に配する。   The heat exchanger 31 of the heat pump device is installed in either the sunlight collecting chamber 20 or the basic space 14-2 of the house (10). In this embodiment, the case where the heat exchanger 31 is installed in one (20-1) of the two sunlight heat collection chambers 20 was illustrated. The drive power for the heat exchanger 31 is preferably supplied via a solar panel (solar power generation device; not shown). This is because the solar panel can provide sufficient power to drive the heat pump device (31) in an area where stable sunshine hours are obtained throughout the year, such as Hokkaido's Eastern Hokkaido area. The solar panel is arranged at an appropriate place such as a roof.

放熱機32は、基礎空間14−2に設置する。好ましくは、コンクリート成形した住宅の基礎空間14−2に均等間隔をもって複数個配置する。放熱機32から排出される排熱を、基礎空間14−2に均等に排出させてコンクリート基礎14(ベタ基礎)およびスラブコンクリートRに均等に蓄熱できるようにするためである。   The radiator 32 is installed in the basic space 14-2. Preferably, a plurality of them are arranged at equal intervals in the foundation space 14-2 of a concrete-molded house. This is because the exhaust heat discharged from the radiator 32 is evenly discharged into the foundation space 14-2 so that the concrete foundation 14 (solid foundation) and the slab concrete R can store heat evenly.

熱交換機31と放熱機32は、循環経路Qを介して連絡できるので、熱交換機31は、戸建住宅10の適宜位置に配することが出来るが、本考案に係る熱交換機31は、取り込む空気温度がより高いことが望まれる。このため、熱交換機31は屋外に露出させた状態で配置せず、陽光集熱室20の内側または基礎空間14−2のいずれか一方に設置した上で、熱交換機31へ送り込む空気は、陽光集熱室20を循環させた上でダクト38を介して直接吸気部に供給する。なお、ダクト38の空気取入口は、陽光集熱室20のできるだけ上方位置に開口させることが望ましい。より暖かい空気を取り込むためである。   Since the heat exchanger 31 and the radiator 32 can communicate with each other via the circulation path Q, the heat exchanger 31 can be arranged at an appropriate position of the detached house 10, but the heat exchanger 31 according to the present invention takes in the air to be taken in A higher temperature is desired. For this reason, the heat exchanger 31 is not arranged in the state of being exposed to the outdoors, but is installed in either the inside of the sunlight collecting chamber 20 or the basic space 14-2, and the air fed into the heat exchanger 31 The heat collection chamber 20 is circulated and then supplied directly to the intake portion via the duct 38. Note that the air intake port of the duct 38 is preferably opened as high as possible in the sunlight heat collecting chamber 20. This is for taking in warmer air.

図3は、熱交換機31から排出される空気流A1と、放熱機32から排出される排熱A2とを示すものである。放熱機32から排出される排熱A2は、コンクリート基礎14およびスラブコンクリートRに蓄熱され、一階の居室を床下から常時暖める。春先〜夏期〜秋期でも暖房が必要となる地域では、陽光集熱室20に暖かい空気があることと、床下から受ける蓄熱暖房効果によって、居室を快適温度に保つことが出来る。このため、従来のように、冬期以外の季節におけるストーブ稼働の必要がなくなって、化石燃料の消費を大幅に削減できる。   FIG. 3 shows the air flow A <b> 1 exhausted from the heat exchanger 31 and the exhaust heat A <b> 2 exhausted from the radiator 32. The exhaust heat A2 discharged from the radiator 32 is stored in the concrete foundation 14 and the slab concrete R, and the room on the first floor is always warmed from under the floor. In an area where heating is necessary even in early spring, summer, and autumn, the room can be kept at a comfortable temperature due to the presence of warm air in the sunlight collecting room 20 and the heat storage heating effect received from under the floor. This eliminates the need for stove operation in seasons other than winter, as in the prior art, and can greatly reduce fossil fuel consumption.

陽光集熱室20の一方(20−1)に配した熱交換機31から排出される空気流A1は、適宜の通気手段D、例えば、ふたつの陽光集熱室20を空間的に連絡する開口または通気ダクトを介して他方の陽光集熱室20(20−2)に送り込む。このとき、最初に空気流A1を送り込む部位は、仕切板27の下方の空間とし、窓Wの下方領域を下流に通してから、下流側の開放部Fから仕切板27の上方へ流動させ、窓Wの下方領域を上流側の方向に流動させる。陽光集熱室20(20−2)の空気温度は上の方が高いので、下方から空気流A1を送り込んで、高い温度の空気を熱交換機31へ還流させるためである。空気流A1は、適宜の通気手段Dを介して陽光集熱室20(20−1)に還流させ、ダクト38を介して熱交換機31の吸気部(背面または側面)の近傍に送り込む。熱交換機31の吸気部と送気部(前面ファン側)は仕切板等を用いて隔離することが望ましい。ダクト38を介して吸気部に送り込む暖かい空気が、送気部から送り出される空気と混じり合わないようにするためである。これにより、熱交換機31の吸気部に、陽光集熱室20を通過させた暖かい空気を確実に送り込むことが可能となる。   The air flow A1 discharged from the heat exchanger 31 disposed in one (20-1) of the sunlight collecting chamber 20 is an appropriate ventilation means D, for example, an opening that spatially communicates the two sunlight collecting chambers 20 or It feeds into the other sunlight collecting chamber 20 (20-2) through the ventilation duct. At this time, the part into which the air flow A1 is first fed is a space below the partition plate 27, and flows through the lower region of the window W downstream, and then flows upward from the downstream opening F to the partition plate 27. The lower region of the window W is caused to flow in the upstream direction. This is because the air temperature in the sunlight collecting chamber 20 (20-2) is higher at the top, so that the air flow A <b> 1 is sent from below and the high temperature air is refluxed to the heat exchanger 31. The air flow A1 is recirculated to the positive heat collecting chamber 20 (20-1) via an appropriate ventilation means D, and sent to the vicinity of the intake portion (back surface or side surface) of the heat exchanger 31 via the duct 38. It is desirable to isolate the intake section and the air supply section (front fan side) of the heat exchanger 31 using a partition plate or the like. This is to prevent the warm air sent to the intake section through the duct 38 from being mixed with the air sent from the air supply section. This makes it possible to reliably send warm air that has passed through the solar heat collecting chamber 20 into the intake portion of the heat exchanger 31.

一方、熱交換機31の熱媒は、パイプ等の適宜の循環経路Qを介して放熱機32に送られる。熱媒の熱エネルギーは、複数の放熱機32を介して排熱A2として放出され、基礎空間14−2のコンクリート(コンクリート基礎14、一階床下のスラブコンクリートR)に蓄熱される。すでに述べたとおり、熱交換機31の吸気は、陽光集熱室20を通過させた暖かい空気である。このため、放熱機32の温度は確実に高まる。実験によれば、陽光集熱室20を通過させた暖かい空気を熱交換機31の吸気部近傍に送り込み、熱交換機31の吸気部と送気部とを仕切板等によって隔絶した場合、放熱機32の温度は40〜55℃となった。熱交換機31を駆動する僅かな電力によって、効果的に床下を暖めることが可能となる。   On the other hand, the heat medium of the heat exchanger 31 is sent to the radiator 32 via an appropriate circulation path Q such as a pipe. The heat energy of the heat medium is released as exhaust heat A2 through the plurality of radiators 32, and is stored in the concrete of the foundation space 14-2 (concrete foundation 14, slab concrete R under the first floor). As already described, the intake air of the heat exchanger 31 is warm air that has passed through the solar heat collecting chamber 20. For this reason, the temperature of the radiator 32 is reliably increased. According to the experiment, when the warm air that has passed through the sunlight collecting chamber 20 is sent to the vicinity of the intake portion of the heat exchanger 31 and the intake portion and the air supply portion of the heat exchanger 31 are separated by a partition plate or the like, the radiator 32 The temperature was 40-55 ° C. With a small amount of electric power that drives the heat exchanger 31, the underfloor can be effectively warmed.

従って、かかる構成によれば、太陽光を利用して陽光集熱室20(20−1、20−2)の内部空気を暖め、自然エネルギー(陽光)によって暖めた空気を熱交換機31から排出される空気流A1によって流動させ、熱交換機31へ循環させることで、放熱機32の温度を高く維持できる。このように、住宅基礎空間を僅かな電力によって、高い温度に保つことができるので、厳冬期においても居室内空気温度を比較的高く維持でき、居室内のストーブを稼働させる化石燃料の使用量を大幅に低減させることが出来る。秋口や春先のように、外気温が氷点下ではないが肌寒いという季節には、居室内のストーブを稼働させなくても快適温度を得ることが出来る。熱交換機31をソーラーパネル装置によって駆動すれば、化石燃料を必要とせずに全電源を賄うことが出来る。   Therefore, according to this configuration, sunlight is used to warm the internal air of the sunlight collecting chamber 20 (20-1, 20-2), and the air heated by natural energy (sunshine) is discharged from the heat exchanger 31. The temperature of the radiator 32 can be maintained high by causing the air flow A1 to flow and circulating to the heat exchanger 31. In this way, the housing basic space can be kept at a high temperature with a small amount of electric power, so that the air temperature in the room can be kept relatively high even in the severe winter season, and the amount of fossil fuel used to operate the stove in the room can be reduced. It can be greatly reduced. A comfortable temperature can be obtained without operating the stove in the living room in the season when the outside temperature is not below freezing but it is chilly, such as early autumn and early spring. If the heat exchanger 31 is driven by a solar panel device, the entire power supply can be provided without the need for fossil fuel.

コンクリート造りではない戸建住宅10の場合、寒冷地では暖房装置をオフして外出すると厳冬期には居室内温度が著しく低下し、帰宅後に暖房装置を稼働させても室内空気が快適温度まで上昇するのに時間がかかる問題があったが、外壁11の外側や床下からの熱を受けて極端な温度低下を防止できるため、厳冬期でも暖房装置をオンすれば速やかに室内温度を上昇させることが出来るようになる。   In the case of a detached house 10 that is not made of concrete, if the heater is turned off and the user goes out in a cold region, the room temperature drops significantly in the severe winter season, and the room air rises to a comfortable temperature even if the heater is turned on after returning home. Although there was a problem that it takes time to do so, it can prevent an extreme temperature drop by receiving heat from the outside of the outer wall 11 or under the floor, so that the room temperature can be quickly raised if the heating device is turned on even in the severe winter season. Will be able to.

厳冬期であっても一階居室の温度が低下しにくくなっているので、暖房装置の稼働パワーを低下させても室内温度の快適性を維持できるようになる。このため、化石燃料を用いる暖房装置に要する燃料使用量を減らし、冬期の経済負担を大幅に軽減させることが可能となる。   Even in the severe winter season, the temperature of the first-floor room is less likely to decrease, so that the comfort of the room temperature can be maintained even if the operating power of the heating device is reduced. For this reason, it becomes possible to reduce the amount of fuel used for the heating apparatus using fossil fuel, and to greatly reduce the economic burden in winter.

陽光集熱室20は、太陽熱を利用して暖かい温度を維持する旨説明したが、太陽光の利用ができない夜間においても、外壁11は外気に直接晒されないので、厳冬期の夜間の温度低下を防止する効果がある。なお、日照時間帯以外の時間帯(夜間)はヒートポンプ装置を駆動させないことが望ましい。陽光を有効利用できず、基礎空間の蓄熱が出来ないからである。   Although the solar heat collecting chamber 20 has been described to maintain a warm temperature using solar heat, the outer wall 11 is not directly exposed to the outside air even at night when sunlight cannot be used. There is an effect to prevent. In addition, it is desirable not to drive the heat pump device during a time zone (nighttime) other than the sunshine time zone. This is because sunlight cannot be used effectively and heat cannot be stored in the foundation space.

外壁11を二重構造とする従来の外壁暖房構造とは異なり、外壁11の外側に陽光集熱室20を設ける構成であるから、居室内空気は、空気流A1とは混合しない。従って、空気を流動させることによる衛生的な問題を惹起することもない。   Unlike the conventional outer wall heating structure in which the outer wall 11 has a double structure, since the solar heat collecting chamber 20 is provided outside the outer wall 11, the indoor air does not mix with the air flow A1. Accordingly, there is no hygienic problem caused by flowing air.

本考案に係る補助暖房システムは、以上説明した構成に限定されない。例えば、前記説明では熱交換機31を配する陽光集熱室20(20−1)と、窓Wがある外壁11の外側に設けた陽光集熱室20(20−2)とを切り離して設け、両者の間を空気流A1が循環する旨説明したが、図4に示すように、太陽光を受ける方角の適宜箇所に他の陽光集熱室20(20−3)を増設しても良い。増設する陽光集熱室20(20−3)は、できるだけ高い場所に設ける。暖かい空気は上へ移動するからである。   The auxiliary heating system according to the present invention is not limited to the configuration described above. For example, in the above description, the positive heat collection chamber 20 (20-1) in which the heat exchanger 31 is arranged and the positive heat collection chamber 20 (20-2) provided outside the outer wall 11 with the window W are provided separately. Although it has been described that the air flow A1 circulates between the two, as shown in FIG. 4, another sunlight collecting chamber 20 (20-3) may be additionally provided at an appropriate location in the direction of receiving sunlight. The additional solar heat collecting chamber 20 (20-3) is provided as high as possible. This is because warm air moves up.

温水供給用のヒートポンプ装置を併用する場合も、当該ヒートポンプ装置の熱交換機(図示せず)を陽光集熱室20(20−1)に設置し、放熱機(図示せず)を基礎空間14−2に設置することが出来る。この場合、熱交換機と放熱機は、コンクリート壁等の隔壁を介して隔離することが望ましい。熱交換機と放熱機との熱エネルギーの混合を防止するためである。   Even when a heat pump device for supplying hot water is used in combination, a heat exchanger (not shown) of the heat pump device is installed in the sunlight collecting chamber 20 (20-1), and a radiator (not shown) is installed in the basic space 14-. 2 can be installed. In this case, it is desirable to isolate the heat exchanger and the heat sink through a partition wall such as a concrete wall. This is to prevent mixing of heat energy between the heat exchanger and the radiator.

熱交換機31を配する陽光集熱室20(20−1)は、太陽光の利用と外気温を効率的に利用するため、好ましくは、南西の方角に向けて設置すると良い。陽光を受けても、午前中のように外気温が低いと陽光集熱室20(20−1)の内部温度が上昇しにくいので、外気温が上昇する午後の時間帯に陽光を受ける南西方向に向かって陽光集熱室20(20−1)を設けることで、陽光集熱室20(20−1)の内部空気を暖める効果を高めることが出来るからである。   The solar heat collecting chamber 20 (20-1) in which the heat exchanger 31 is arranged is preferably installed toward the southwest direction in order to efficiently use sunlight and the outside air temperature. Even if it receives sunlight, if the outside air temperature is low as in the morning, the internal temperature of the sunlight collecting chamber 20 (20-1) is difficult to rise, so the southwest direction that receives sunlight in the afternoon time zone when the outside air temperature rises It is because the effect which warms the internal air of the sunlight collecting chamber 20 (20-1) can be heightened by providing the sunlight collecting chamber 20 (20-1) toward.

図5に示すように、本考案に係るヒートポンプ装置の熱交換機31を地上階に配設する場合は、仕切板50、51を設けることが望ましい。仕切板50は、熱交換機31の送気の温度低下を防ぐためのもので、熱交換機31の送気を周囲の空気と混じらないように陽光集熱室20(20−2)へ案内する機能を営む。この仕切板50は、例えば、熱交換機31の上面と略同じ高さで床面と平行に配設する。仕切板50に代えて、十分な空気流量を保証できるダクトを用いてもよい。   As shown in FIG. 5, when the heat exchanger 31 of the heat pump device according to the present invention is disposed on the ground floor, it is desirable to provide partition plates 50 and 51. The partition plate 50 is for preventing the temperature drop of the air supply of the heat exchanger 31, and has a function of guiding the air supply of the heat exchanger 31 to the sunlight collecting chamber 20 (20-2) so as not to be mixed with the surrounding air. Run. For example, the partition plate 50 is disposed in parallel with the floor surface at substantially the same height as the upper surface of the heat exchanger 31. Instead of the partition plate 50, a duct that can guarantee a sufficient air flow rate may be used.

仕切板51は、ダクト38を介して熱交換機31の吸気部に戻す循環空気を、熱交換機31の送気と混合させないようにするためのもので、吸気口が設置される熱交換機31の背面・側面と、送気口である前面とを仕切って隔絶する。このようにすれば、熱交換機31の送気は周囲の空気と混じって温度を下げることがないまま循環を繰り返すので、熱エネルギーのロスがない。   The partition plate 51 is for preventing the circulating air that is returned to the intake portion of the heat exchanger 31 through the duct 38 from being mixed with the air supply of the heat exchanger 31, and the rear surface of the heat exchanger 31 in which the intake port is installed. -Separate the side from the front, which is the air supply port. In this way, the air supplied from the heat exchanger 31 is repeatedly circulated without mixing with the surrounding air and lowering the temperature, so there is no loss of heat energy.

本考案に係るヒートポンプ装置の熱交換機31を床下に配設する場合は、図6、図7に示すように、基礎空間14−2のダクト38側に熱交換機31を置き、一階床のスラブコンクリートRに前記仕切板(50)の機能をもたせる。この場合も、ダクト38を介して熱交換機31の吸気部に戻す循環空気を、熱交換機31の送気と混合させないようにする仕切板51を配する。図6において、符号54は布基礎である。図6に示すように、熱交換機31と放熱機32とは、布基礎54と仕切板51とを用いて隔絶し、熱の混合を避ける。   When the heat exchanger 31 of the heat pump device according to the present invention is arranged under the floor, as shown in FIGS. 6 and 7, the heat exchanger 31 is placed on the duct 38 side of the basic space 14-2, and the first floor slab is placed. The function of the partition plate (50) is given to the concrete R. Also in this case, a partition plate 51 is provided so that the circulating air returned to the intake portion of the heat exchanger 31 through the duct 38 is not mixed with the air supplied from the heat exchanger 31. In FIG. 6, reference numeral 54 denotes a fabric foundation. As shown in FIG. 6, the heat exchanger 31 and the radiator 32 are isolated using a cloth foundation 54 and a partition plate 51 to avoid heat mixing.

熱交換機31を床下(基礎空間14−2)に配設する場合は、例えば、一階床のスラブコンクリートRの逆サイドの端部開口から、跳ね出し基礎14−3の上にある陽光集熱室20(20−2)に送気(A1)を送り込む(図7参照)。   In the case where the heat exchanger 31 is arranged under the floor (foundation space 14-2), for example, from the end opening on the opposite side of the slab concrete R on the first floor, the positive heat collection on the jumping foundation 14-3 Air supply (A1) is sent into the chamber 20 (20-2) (see FIG. 7).

また、陽光集熱室20(20−2)を通る空気流A1は、より好ましくは、内屋根55の上に設けた陽光集熱室20(20−4)を通過させ、ダクト38を介して熱交換機31の吸気部に戻す。陽光集熱室20(20−4)は、例えば、内屋根55の上に適宜の傾斜角度をもたせたガラス板Gを配して構築する。傾斜角度を大きくすれば、内部容積を拡大することが出来、太陽光によって暖める空気の量を増大させることが出来る。   Further, the air flow A1 passing through the sunlight collecting chamber 20 (20-2) is more preferably allowed to pass through the sunlight collecting chamber 20 (20-4) provided on the inner roof 55 through the duct 38. Return to the intake section of the heat exchanger 31. The sunlight collecting chamber 20 (20-4) is constructed by arranging, for example, a glass plate G having an appropriate inclination angle on the inner roof 55. If the inclination angle is increased, the internal volume can be increased, and the amount of air warmed by sunlight can be increased.

10 戸建住宅
11 外壁
14 コンクリート基礎
14−2 基礎空間(基礎の内側の空間;床下空間)
14−3 跳ね出し基礎
20、20−1、20−2、20−3、20−4 陽光集熱室
27、50、51 仕切板
31 熱交換機
32 放熱機
38 ダクト
54 布基礎
55 内屋根
A1 空気流
A2 排熱
D 通気手段
F (仕切板の)開放部
G ガラス面
P 空気流が流れるスペース
Q 熱媒の循環経路
R スラブコンクリート
W 窓
W1 (窓の)開閉面
10 Detached Houses 11 Outer Wall 14 Concrete Foundation 14-2 Foundation Space (Space inside the foundation; space under the floor)
14-3 Bounce foundation 20, 20-1, 20-2, 20-3, 20-4 Sunlight collection chamber 27, 50, 51 Partition plate 31 Heat exchanger 32 Heat radiator 38 Duct 54 Cloth foundation 55 Inner roof A1 Air Flow A2 Waste heat D Ventilation means F Open part of G (partition plate) G Glass surface P Space where air flow flows Q Heating medium circulation path R Slab concrete W Window W1 (Window) opening / closing surface

Claims (3)

戸建住宅の外壁の外側に透明板材を用いた陽光集熱室を設けるとともに、
当該戸建住宅にヒートポンプ装置を設けるものであって、
前記陽光集熱室は、
前記外壁のうち、太陽光を受ける方向にある外壁の外側に設け、
前記ヒートポンプ装置は、
熱交換機を、前記陽光集熱室または住宅基礎空間に設置する一方、
放熱機を、住宅基礎空間に設置してなり、
前記熱交換機から排出される空気流を、前記陽光集熱室を経由させた上で当該熱交換機に還流させるとともに、
前記放熱機から排出された放熱を住宅基礎のコンクリートに蓄熱するものであり、
陽光集熱室を介して循環させる前記空気流は、ダクトを介して前記熱交換機の吸気部近傍へ送り込むことを特徴とする戸建住宅の補助暖房システム。
In addition to providing a sunlight collecting room using transparent plates on the outside of the outer wall of the detached house,
A heat pump device is provided in the detached house,
The sunlight collecting chamber is
Of the outer walls, provided outside the outer wall in the direction of receiving sunlight,
The heat pump device is
While installing a heat exchanger in the sunlight collecting room or housing basic space,
A radiator is installed in the housing basic space.
The air flow discharged from the heat exchanger is refluxed to the heat exchanger after passing through the positive heat collecting chamber,
The heat dissipation discharged from the radiator is stored in the concrete of the house foundation,
The auxiliary heating system for a detached house, characterized in that the air flow circulated through a sunlight collecting chamber is sent to the vicinity of an intake portion of the heat exchanger through a duct.
陽光集熱室は、アルミニウム製の縦材と横材を用いたフレーム手段に、無色透明のガラス板材を装着して構成することを特徴とする請求項1記載の戸建住宅の補助暖房システム。   2. The auxiliary heating system for a detached house according to claim 1, wherein the sunlight collecting chamber is constructed by mounting a colorless and transparent glass plate on frame means using aluminum vertical members and cross members. ヒートポンプ装置の放熱機は、コンクリート成形した住宅基礎空間に均等間隔をもって複数個配置する一方、
一階床下をスラブコンクリートによって成形し、
前記放熱機を介して住宅基礎空間に放熱された熱を、住宅基礎のコンクリートと一階床下のスラブコンクリートに蓄熱することを特徴とする請求項1または請求項2記載の戸建住宅の補助暖房システム。
While the heat pump radiators are arranged at regular intervals in the concrete foundation space,
The floor under the first floor is molded with slab concrete,
The auxiliary heating of a detached house according to claim 1 or 2, wherein the heat radiated to the housing foundation space through the radiator is stored in concrete of the foundation of the house and slab concrete under the first floor. system.
JP2014003701U 2014-07-11 2014-07-11 Auxiliary heating system for detached houses Active JP3193271U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003701U JP3193271U (en) 2014-07-11 2014-07-11 Auxiliary heating system for detached houses

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014003701U JP3193271U (en) 2014-07-11 2014-07-11 Auxiliary heating system for detached houses

Publications (1)

Publication Number Publication Date
JP3193271U true JP3193271U (en) 2014-09-25

Family

ID=78225742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003701U Active JP3193271U (en) 2014-07-11 2014-07-11 Auxiliary heating system for detached houses

Country Status (1)

Country Link
JP (1) JP3193271U (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108071240A (en) * 2016-11-10 2018-05-25 侯隆飙 The environmental and ecological country house of solar energy passive type

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108071240A (en) * 2016-11-10 2018-05-25 侯隆飙 The environmental and ecological country house of solar energy passive type

Similar Documents

Publication Publication Date Title
JP2002235955A (en) Solar system house
JP2009127921A (en) Cold taking-in system
CN102653964A (en) Multifunctional roof heating and ventilation system and method using solar energy
JP6105939B2 (en) Power management system
KR101383889B1 (en) Stand-alone residential solar power system applied to container house
CN102338415A (en) Self-controlled hot-air solar floor heat storage system
JP2002267227A (en) Air-feed apparatus
CN202559572U (en) Multi-function roof heating ventilation device capable of utilizing solar energy
KR20140104073A (en) The eco-friendly multi-functional heat recovery hvac system
JP4171014B2 (en) Pneumatic collector and pneumatic solar collector ventilation system
JP2016014517A (en) Air conditioning system
US8776467B2 (en) Climate positive building envelope for housing
CN102889005A (en) Pyramid type solar energy and natural energy environmental-friendly building
JP3193271U (en) Auxiliary heating system for detached houses
CN101629747A (en) Intelligent house temperature adjusting system
CN201047119Y (en) Sun house having multifunctional sun wall
US4383521A (en) Foundation-based solar heating system
JP2000241031A (en) Air conditioning unit utilizing solar heat
Nikolic et al. Basic principles of passive solar heating
JP3878610B2 (en) Passive solar system house
JP2006097425A (en) Method of ventilating solar system house
CN202281302U (en) Self-control hot-wind type solar floor heat accumulation system
JP2014015711A (en) Radiant heat heating and cooling system of building utilizing in-wall-body vent layer
CN102561729A (en) Self-heating solar single building
CN204043124U (en) A kind of temperature lifting type solar energy Unpowered ventilation system

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3193271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250