JP3191290B2 - Semiconductor device manufacturing method and plasma CVD apparatus used in semiconductor device manufacturing method - Google Patents

Semiconductor device manufacturing method and plasma CVD apparatus used in semiconductor device manufacturing method

Info

Publication number
JP3191290B2
JP3191290B2 JP00206099A JP206099A JP3191290B2 JP 3191290 B2 JP3191290 B2 JP 3191290B2 JP 00206099 A JP00206099 A JP 00206099A JP 206099 A JP206099 A JP 206099A JP 3191290 B2 JP3191290 B2 JP 3191290B2
Authority
JP
Japan
Prior art keywords
film
semiconductor device
plasma
contact hole
plasma cvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00206099A
Other languages
Japanese (ja)
Other versions
JP2000200761A (en
Inventor
哲也 田桑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=11518808&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3191290(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP00206099A priority Critical patent/JP3191290B2/en
Priority to KR10-2000-0000123A priority patent/KR100400111B1/en
Priority to US09/478,687 priority patent/US6589873B2/en
Publication of JP2000200761A publication Critical patent/JP2000200761A/en
Application granted granted Critical
Publication of JP3191290B2 publication Critical patent/JP3191290B2/en
Priority to US10/460,453 priority patent/US20030205194A1/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76853Barrier, adhesion or liner layers characterized by particular after-treatment steps
    • H01L21/76855After-treatment introducing at least one additional element into the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3244Gas supply means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、素子と配線間とを電気的に接続するための
コンタクトの形成方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly to a method for forming a contact for electrically connecting an element and a wiring.

【0002】[0002]

【従来の技術】従来、MOSFET等の素子に電気的接
続をとるには、半導体基板上にMOSFETを形成した
後、その上に層間絶縁膜を形成し、層間絶縁膜にコンタ
クトホールを開口して、MOSFETのソース電極、ド
レイン電極、ゲート電極を露出させ、開口に導電材を埋
め込んでコンタクトを形成し、その上に配線を形成して
他の素子や外部の電気端子との接続を行っていた。
2. Description of the Related Art Conventionally, in order to make an electrical connection to an element such as a MOSFET, a MOSFET is formed on a semiconductor substrate, an interlayer insulating film is formed thereon, and a contact hole is opened in the interlayer insulating film. , The source electrode, the drain electrode, and the gate electrode of the MOSFET were exposed, a conductive material was buried in the opening to form a contact, and a wiring was formed thereon to connect to other elements and external electric terminals. .

【0003】図8および図9は、その工程の1例であ
り、図8はMOSFET構造のチャネルに平行に切断し
た断面図で、図9は図8でチャネル長方向に垂直な平面
で切断した断面図である。
FIGS. 8 and 9 show an example of the process. FIG. 8 is a cross-sectional view taken in parallel to the channel of the MOSFET structure. FIG. 9 is a cross-sectional view taken in a plane perpendicular to the channel length direction in FIG. It is sectional drawing.

【0004】まず図8(a)、図9(a)に示すよう
に、p型シリコン基板301上に素子分離用酸化シリコ
ン膜302で区画された素子領域に、ゲート酸化膜30
3と、多結晶シリコン膜305とタングステンシリサイ
ド膜306からなるポリサイド構造のゲート電極304
と、ゲート電極の側壁に設けられたサイドウォール30
8と、ソース・ドレイン領域307を備えたMOSFE
T素子を形成する。
First, as shown in FIGS. 8A and 9A, a gate oxide film 30 is formed on a p-type silicon substrate 301 in an element region partitioned by an element isolation silicon oxide film 302.
3, a gate electrode 304 having a polycide structure composed of a polycrystalline silicon film 305 and a tungsten silicide film 306.
And a sidewall 30 provided on a sidewall of the gate electrode
8 having a source / drain region 307
A T element is formed.

【0005】図8(b)、図9(b)に示すように、層
間絶縁膜としてBPSG膜309を形成した後、ソース
・ドレイン領域307とゲート電極304に接続するコ
ンタクトホール311を形成する。図9(b)で示した
断面からわかるように、ゲート電極に対してはチャネル
の真上ではなく引き出された部分の上に、コンタクトホ
ールが形成される。
[0005] As shown in FIGS. 8B and 9B, after a BPSG film 309 is formed as an interlayer insulating film, a contact hole 311 connected to the source / drain region 307 and the gate electrode 304 is formed. As can be seen from the cross section shown in FIG. 9B, a contact hole is formed not on the channel but directly on the drawn portion of the gate electrode.

【0006】次に図8(c)、図9(c)に示すよう
に、BPSG膜の表面(コンタクトホールの側壁を含
む。)、コンタクトホール内に露出しているソースドレ
イン領域およびゲート電極の表面に、チタン膜312を
形成する。このとき、ソースドレイン領域およびゲート
電極の表面では、シリコンとチタンの反応によりチタン
シリサイド膜313が形成され、コンタクトプラグとの
接触抵抗の低減が図られる。
Next, as shown in FIGS. 8C and 9C, the surface of the BPSG film (including the side wall of the contact hole), the source / drain regions exposed in the contact hole and the gate electrode are exposed. A titanium film 312 is formed on the surface. At this time, a titanium silicide film 313 is formed on the surface of the source / drain region and the surface of the gate electrode by a reaction between silicon and titanium, so that the contact resistance with the contact plug is reduced.

【0007】さらに図8(d)、図9(d)に示すよう
に、少なくともコンタクトホールを埋め込むように全面
に窒化チタン膜314を熱CVD法により形成する。こ
の窒化チタン膜をエッチバックしてコンタクトホール3
11内にのみ窒化チタン膜を残してプラグを形成する。
その後、アルミニウム合金膜を形成し所定のパターンに
エッチングして図8(e)、図9(e)に示す上配線3
15を形成する。MOSFETのソースドレイン領域お
よびゲート電極は、上配線315によって他の素子また
は外部に接続される。
Further, as shown in FIGS. 8D and 9D, a titanium nitride film 314 is formed on the entire surface by thermal CVD so as to fill at least the contact hole. This titanium nitride film is etched back to form a contact hole 3.
A plug is formed while leaving the titanium nitride film only in 11.
Thereafter, an aluminum alloy film is formed and etched into a predetermined pattern to form an upper wiring 3 shown in FIGS. 8 (e) and 9 (e).
15 are formed. The source / drain region and the gate electrode of the MOSFET are connected to another element or the outside by the upper wiring 315.

【0008】このような工程による半導体装置の製造方
法において、図8(c)、図9(c)に示したチタン膜
の形成は、プラズマCVD法で行われる。これは、例え
ばスパッタリング法ではコンタクトホールの底と壁面の
両方の表面に均一に成膜するのは困難であり、また原料
ガスにTiCl4とH2を用いた場合に、熱CVD法では
基板温度1000℃以上の高温が必要になるのに対し、
プラズマCVD法を用いると基板温度600℃程度で済
むからである。
In the method of manufacturing a semiconductor device according to such a process, the titanium film shown in FIGS. 8C and 9C is formed by a plasma CVD method. This is because, for example, it is difficult to form a uniform film on both the bottom surface and the wall surface of the contact hole by the sputtering method, and when TiCl 4 and H 2 are used as the source gas, the substrate temperature is reduced by the thermal CVD method. While a high temperature of 1000 ° C or more is required,
This is because a substrate temperature of about 600 ° C. is sufficient if the plasma CVD method is used.

【0009】従来のプラズマCVD法では、まずArと
2ガスを装置内に導入し、RFパワーを入れてプラズ
マを発生させ、プラズマがある程度安定した後(例えば
1〜5秒後)にTiCl4ガスを流し始めて、チタン膜
の形成を行っていた。
In the conventional plasma CVD method, first, Ar and H 2 gas are introduced into an apparatus, RF power is applied to generate plasma, and after the plasma is stabilized to some extent (for example, after 1 to 5 seconds), TiCl 4 is used. The gas was started to flow to form the titanium film.

【0010】しかし、図10に示すように、ArとH2
によりプラズマを発生させたとき、BPSG膜309の
ような層間絶縁膜上に電荷が蓄積し、これがゲート電極
304とシリコン基板301の間で大きな電位差を生
じ、ゲート酸化膜303を絶縁破壊する問題があった。
特に、近年の微細化に伴い、ゲート酸化膜の層厚は薄く
なり、またゲート電極のアンテナ比(ゲート電極の全面
積/チャネル領域上のゲート電極の面積)が大きくなっ
てくるとなおさらゲート酸化膜の破壊が起きやすくなっ
てきている。例えば、ゲート酸化膜が150Åでは、プ
ラズマCVDによる絶縁破壊はさほど問題ではないが、
100Å程度になると問題が極めて顕著に現れるように
なる。また、コンタクトホールのアスペクト比(コンタ
クトホールの深さ/径)が大きくなると、図10に示す
ようにシェーディング効果と呼ばれる電荷のかたよりが
一層大きくなり、さらにゲート酸化膜の絶縁破壊が問題
になりやすくなる。
[0010] However, as shown in FIG. 10, Ar and H 2
When a plasma is generated, charges accumulate on an interlayer insulating film such as the BPSG film 309, which causes a large potential difference between the gate electrode 304 and the silicon substrate 301, causing a problem of dielectric breakdown of the gate oxide film 303. there were.
In particular, with the recent miniaturization, the thickness of the gate oxide film becomes thinner, and the gate oxide becomes even more severe when the antenna ratio of the gate electrode (the total area of the gate electrode / the area of the gate electrode on the channel region) increases. Destruction of the film is becoming more likely. For example, when the gate oxide film is 150 °, dielectric breakdown by plasma CVD is not so problematic,
When the angle is about 100 °, the problem becomes extremely noticeable. When the aspect ratio of the contact hole (depth / diameter of the contact hole) increases, as shown in FIG. 10, the charge called the shading effect becomes larger, and the dielectric breakdown of the gate oxide film tends to become a problem. Become.

【0011】[0011]

【発明が解決しようとする課題】本発明は、このような
問題点に鑑みてなされたものであり、素子が高密度・高
集積化された場合であっても、プラズマCVD法により
コンタクトホール内に金属膜を形成する際にゲート絶縁
膜に対するダメージのない半導体装置の製造方法、およ
びそれに用いられるプラズマCVD装置を提供すること
を目的とする。
SUMMARY OF THE INVENTION The present invention has been made in view of such a problem, and even when elements are integrated at a high density and high integration, the inside of a contact hole is formed by a plasma CVD method. It is an object of the present invention to provide a method of manufacturing a semiconductor device in which a gate insulating film is not damaged when a metal film is formed, and a plasma CVD apparatus used for the method.

【0012】[0012]

【課題を解決するための手段】本発明は、半導体基板上
に形成された所定の素子を覆う層間絶縁膜を貫通して、
前記素子の電極に達するコンタクトホール内に、プラズ
マCVD法により金属膜を形成する工程を含む半導体装
置の製造方法において、前記の金属膜を形成する工程
が、プラズマCVD装置の成膜チャンバー内に、水素と
アルゴンを含むガスを導入した後、プラズマを発生させ
るより前に、前記成膜チャンバー内にハロゲン化金属ガ
スを導入して前記コンタクトホール内に金属膜を形成す
る工程であることを特徴とする半導体装置の製造方法に
関する。
SUMMARY OF THE INVENTION According to the present invention, there is provided a semiconductor device, comprising:
In a method for manufacturing a semiconductor device including a step of forming a metal film by a plasma CVD method in a contact hole reaching an electrode of the element, the step of forming the metal film includes: After introducing a gas containing hydrogen and argon, a plasma is generated
Before Ruyori, a method of manufacturing a semiconductor device, wherein the film formation by introducing metal halide gas into the chamber is a step of forming a metal film in the contact hole.

【0013】このように本発明ではハロゲン化金属を成
膜チャンバーに導入するタイミングをプラズマ発生より
前にすることにより素子電極に電荷が蓄積しないので、
素子電極が薄い絶縁膜に接していたとしても、その絶縁
膜を絶縁破壊させることが無く、素子の特性を劣化させ
ることがない。この理由について、本発明者は、プラズ
マが発生する際にハロゲン化金属ガスが系内に存在して
いると、プラズマ発生と同時に直ちに金属膜が絶縁膜上
に形成されると推定している。そのため、プラズマによ
って生じる電荷が直ちに逃散しまた中和され、電荷の蓄
積が生じない。
As described above, according to the present invention, since the timing at which the metal halide is introduced into the film forming chamber is set before the generation of plasma, no electric charge is accumulated in the device electrode.
Even if the device electrode is in contact with a thin insulating film, the insulating film does not break down and does not deteriorate the characteristics of the device. For this reason, the present inventors presume that if a metal halide gas is present in the system when plasma is generated, a metal film is formed on the insulating film immediately upon generation of the plasma. As a result, the charge generated by the plasma escapes immediately and is neutralized, so that no charge is accumulated.

【0014】また、RFパワーをONにした直後のプラ
ズマの不安定さは実際の成膜には全く問題が無かった。
The instability of the plasma immediately after the RF power was turned on had no problem in actual film formation.

【0015】また、本発明はこのような半導体装置の製
造方法に用いられるプラズマCVD装置であって、前記
ハロゲン化金属ガスの導入時期がプラズマを発生させる
RFパワーのON時より前になるような遅延機構を有し
ていることを特徴とするプラズマCVD装置に関する。
Further, the present invention is as a plasma CVD apparatus used in the method of manufacturing such a semiconductor device, comprising prior to the time of ON of the RF power introduction timing of the metal halide gas to generate a plasma a plasma CVD apparatus characterized by having a delay mechanism.

【0016】[0016]

【発明の実施の形態】本発明で、前記のハロゲン化金属
ガスの導入時期は、上記のようにプラズマ発生と同時で
あっても実際上の製造においては全く問題のない素子が
得られるが、RFパワー等のマージンを考慮すると、プ
ラズマ発生より前の方が好ましく、例えば1秒以上前に
設定すればよい。このようなハロゲン化金属ガスの導入
時期はプラズマ発生より前であれば、必要以上に前から
導入してもことさら効果はなく、また一般にTiCl4
のようなハロゲン化金属ガスは腐食性が高いので、高温
に維持されている基板や基板を保持するサセプターとの
接触時間を長くしない方が好ましい。従って、ハロゲン
化金属ガスの導入時期は、装置の耐久性を考慮するとR
Fパワーを入れてプラズマを点火する時期より通常は例
えば15秒前以内、好ましくは5秒前以内に設定する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, although the metal halide gas is introduced at the same time as the plasma generation as described above, an element having no problem in actual production can be obtained. In consideration of the margin of the RF power and the like, it is preferable to set it before the generation of the plasma, for example, it may be set at least one second before. If these periods the introduction of metal halide gas is earlier than the plasma generation, rather deliberately effect be introduced before unnecessarily, also generally TiCl 4
Since the metal halide gas is highly corrosive, it is preferable not to lengthen the contact time with the substrate maintained at a high temperature or the susceptor holding the substrate. Therefore, the timing of introducing the metal halide gas is determined by considering the durability of the apparatus.
The timing is usually set, for example, within 15 seconds before, and preferably within 5 seconds before the timing of igniting the plasma by applying the F power.

【0017】ハロゲン化金属ガスの導入時期とプラズマ
の点火(RFパワーON)はオペレーターが手動で行う
こともできるが、本発明のプラズマCVD装置を用いる
と、ハロゲン化金属ガスの導入時から所定の時間経過後
(同時を含まない)に自動的にRFパワーが入るように
できるので、時間設定によりプラズマが発生していない
状態で必要に以上にハロゲン化金属ガスが存在すること
がなくなる。この装置に用いられる同期・遅延回路は特
に制限はなく、例えばハロゲン化金属ガスの導入切り替
えバルブと連動してRFパワーのスイッチが入るように
すればよい。このCVD装置は特に大量生産のときに好
適に用いられる。
The timing of introducing the metal halide gas and the ignition of the plasma (RF power ON) can be manually performed by an operator. However, when the plasma CVD apparatus of the present invention is used, a predetermined time is set from the time of introduction of the metal halide gas. Since the RF power can be automatically turned on after the lapse of time ( not including at the same time), the unnecessary metal halide gas does not exist more than necessary in the state where plasma is not generated by setting the time. The synchronization / delay circuit used in this apparatus is not particularly limited, and for example, an RF power switch may be turned on in conjunction with a metal halide gas introduction switching valve. This CVD apparatus is suitably used particularly in mass production.

【0018】また本発明によって成膜する金属膜は、高
融点金属膜が好ましく、特にチタン膜、タングステン膜
またはタンタル膜が好ましい。またハロゲン化金属ガス
としては、これらの金属のハロゲン化物が用いられる
が、特に塩化物およびヨウ化物が好ましい。チタン金属
膜を成膜するときは、TiCl4およびTiI4が好まし
い。
The metal film formed according to the present invention is preferably a high melting point metal film, particularly preferably a titanium film, a tungsten film or a tantalum film. As the metal halide gas, halides of these metals are used, and chlorides and iodides are particularly preferable. When forming a titanium metal film, TiCl 4 and TiI 4 are preferable.

【0019】本発明は、電極に接して薄い絶縁膜が設け
られるような素子に用いることが好ましく、このような
素子としてMOSFETを挙げることができる。この場
合、特にゲート電極に達するコンタクトホールに金属膜
を形成する工程に適用するときに効果が大きい。そし
て、本発明の効果が明確に現れるためには、ゲート絶縁
膜の厚さは150Å未満であり、120Å以下が好まし
く、100Å以下がさらに好ましい。また、ゲート電極
のアンテナ比は、100以上であることが好ましい。
The present invention is preferably used for an element in which a thin insulating film is provided in contact with an electrode, and such an element includes a MOSFET. In this case, the effect is particularly large when applied to a step of forming a metal film in a contact hole reaching a gate electrode. In order to clearly show the effect of the present invention, the thickness of the gate insulating film is less than 150 °, preferably 120 ° or less, more preferably 100 ° or less. Further, the antenna ratio of the gate electrode is preferably 100 or more.

【0020】そして、アスペクト比が、6以上であるコ
ンタクトホールに適用するときに特に効果が大きい。
The effect is particularly large when applied to a contact hole having an aspect ratio of 6 or more.

【0021】[0021]

【実施例】以下に本発明の例をチャネル長方向に垂直な
平面で切断した断面図である図1を参照して説明する。
この説明ではハロゲン化金属ガスとしてTiCl4を用
いてチタン膜を形成する場合を説明するが、これに限定
されるものではない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG. 1 which is a cross-sectional view taken along a plane perpendicular to the channel length direction.
In this description, a case where a titanium film is formed using TiCl 4 as a metal halide gas will be described, but the present invention is not limited to this.

【0022】まず図1(a)に示すように、半導体基板
としてp型シリコン基板101上に素子分離用酸化シリ
コン膜102で区画された素子領域に、ゲート絶縁膜で
あるゲート酸化膜103と、多結晶シリコン膜105と
タングステンシリサイド膜106からなるポリサイド構
造のゲート電極104と、ゲート電極の側壁に設けられ
たサイドウォール(図示なし)と、ソース・ドレイン領
域を備えたMOSFET素子を形成した。尚、チャネル
に平行に切断した断面図は従来の技術で示した図8
(a)と同様の構造である。ここでゲート酸化膜の厚さ
は50Åとし、アンテナ比が50〜10000の異なる
の各種のMOSFET構造を形成した。
First, as shown in FIG. 1A, a gate oxide film 103 as a gate insulating film is formed in a device region partitioned by a device isolation silicon oxide film 102 on a p-type silicon substrate 101 as a semiconductor substrate. A MOSFET element including a gate electrode 104 having a polycide structure composed of a polycrystalline silicon film 105 and a tungsten silicide film 106, sidewalls (not shown) provided on side walls of the gate electrode, and source / drain regions was formed. The sectional view cut in parallel to the channel is shown in FIG.
The structure is similar to that of FIG. Here, the thickness of the gate oxide film was set to 50 °, and various MOSFET structures having different antenna ratios of 50 to 10,000 were formed.

【0023】次に、図1(b)に示すように、層間絶縁
膜としてBPSG膜109を形成した後、ソース・ドレ
イン領域(図示していない)とゲート電極104に接続
するためのコンタクトホール111を形成した。このと
きのコンタクトホールのアスペクト比は、本発明の効果
が明確に現れるように、およそ8とした。
Next, as shown in FIG. 1B, after a BPSG film 109 is formed as an interlayer insulating film, a contact hole 111 for connecting a source / drain region (not shown) and the gate electrode 104 is formed. Was formed. At this time, the aspect ratio of the contact hole was set to about 8 so that the effect of the present invention was clearly exhibited.

【0024】次に図1(c)に示すように、BPSG膜
の表面(コンタクトホールの側壁を含む。)、コンタク
トホール内に露出しているソースドレイン領域およびゲ
ート電極の表面に、チタン膜112をプラズマCVD法
により次のように形成した。
Next, as shown in FIG. 1C, a titanium film 112 is formed on the surface of the BPSG film (including the side wall of the contact hole), the source / drain region exposed in the contact hole, and the surface of the gate electrode. Was formed by the plasma CVD method as follows.

【0025】図2は、本発明のプラズマCVD法におけ
るタイミングを示したものである。まず、プラズマCV
D装置のチャンバー内に水素ガスを1500sccmと
アルゴンガスを500sccm導入し、チャンバー内の
全圧を5torrにした後、TiCl4ガスを3.5s
ccm(1.5sccm以上が好ましい。)導入してR
FパワーをON(RFパワー250W、RFパワーは5
00W以下が好ましい。)にしてプラズマを発生させ
た。本発明では、このときのTiCl4ガスの導入は、
RFパワーをONにしてプラズマ発生させるのと同時か
それより前に行う。つまり本発明ではプラズマが発生し
た時点でTiCl4がCVD装置のチャンバー内に導入
されており、プラズマが発生すると同時にチタン金属膜
の成膜が開始される。尚、比較のために、チャンバー内
に水素ガスとアルゴンガスを導入した後、RFパワーを
ONにしてプラズマ発生させてからTiCl4を導入し
た実験も行った。
FIG. 2 shows the timing in the plasma CVD method of the present invention. First, plasma CV
After introducing 1500 sccm of hydrogen gas and 500 sccm of argon gas into the chamber of the D apparatus, and adjusting the total pressure in the chamber to 5 torr, TiCl 4 gas was supplied for 3.5 s.
ccm (preferably 1.5 sccm or more).
F power ON (RF power 250W, RF power 5
00W or less is preferable. ) To generate plasma. In the present invention, the introduction of the TiCl 4 gas at this time is as follows:
This is performed at the same time as or before the plasma is generated by turning on the RF power. That is, in the present invention, TiCl 4 is introduced into the chamber of the CVD apparatus when the plasma is generated, and the formation of the titanium metal film is started simultaneously with the generation of the plasma. For comparison, an experiment was also conducted in which hydrogen gas and argon gas were introduced into the chamber, RF power was turned on, plasma was generated, and then TiCl 4 was introduced.

【0026】そして、チタン膜を層間絶縁膜の上での厚
さが100Åになるまで形成した。ソースドレイン領域
およびゲート電極の表面ではシリコンとチタンの反応に
よりチタンシリサイド膜113が形成され、コンタクト
プラグとの接触抵抗の低減が図られる。
Then, a titanium film was formed until the thickness on the interlayer insulating film became 100 °. A titanium silicide film 113 is formed on the surfaces of the source / drain region and the gate electrode by a reaction between silicon and titanium, thereby reducing contact resistance with a contact plug.

【0027】次に図1(d)に示すように、少なくとも
コンタクトホールを埋め込むように全面に窒化チタン膜
114を熱CVD法により形成した。この窒化チタン膜
をエッチバックしてコンタクトホール111内にのみ窒
化チタン膜を残してプラグを形成し、その後、アルミニ
ウム合金膜を形成し所定のパターンにエッチングして図
1(e)に示す上配線115を形成した。MOSFET
のソースドレイン領域およびゲート電極は、上配線11
5によって他の素子または外部に接続される。
Next, as shown in FIG. 1D, a titanium nitride film 114 was formed by thermal CVD on the entire surface so as to fill at least the contact hole. This titanium nitride film is etched back to form a plug while leaving the titanium nitride film only in the contact hole 111. Thereafter, an aluminum alloy film is formed and etched into a predetermined pattern to form an upper wiring shown in FIG. 115 was formed. MOSFET
The source / drain region and the gate electrode of
5 connects to other elements or to the outside.

【0028】このような製造方法で、TiCl4の導入
タイミングを変えて製造したMOSFETの特性を図3
〜図7に示す。上述のように、ゲート酸化膜の厚さは5
0Åである。この初期耐圧試験は、多数のMOSFET
についてゲート電極とシリコン基板との間に5Vの電圧
を印加して、そのとき流れるリーク電流を求めることに
よって行った。グラフの横軸はリーク電流、縦軸は累積
度数である。チタン膜成膜の際にプラズマによるダメー
ジを受けている場合ほど、リーク電流の大きいFET素
子の出現割合が増える。
The characteristics of the MOSFET manufactured by changing the introduction timing of TiCl 4 by such a manufacturing method are shown in FIG.
7 to FIG. As described above, the thickness of the gate oxide film is 5
0 °. This initial withstand voltage test was performed for many MOSFETs.
The test was performed by applying a voltage of 5 V between the gate electrode and the silicon substrate and determining a leak current flowing at that time. The horizontal axis of the graph is the leak current, and the vertical axis is the cumulative frequency. As the titanium film is damaged by plasma during film formation, the appearance ratio of the FET element having a large leak current increases.

【0029】グラフからわかるように、プラズマ点火1
5秒前(図3)、プラズマ点火5秒前(図4)にTiC
4を導入した場合は、アンテナ比50〜10000の
すべてにおいてリーク電流が10-10A未満であった。
プラズマ点火と同時にTiCl4を導入した場合(図
5)は、アンテナ比10000の場合に特性が劣化した
素子の存在が見られるが、通常に用いられるアンテナ比
では問題のない範囲である。これに対して、プラズマ点
火5秒後(図6)、プラズマ点火15秒後(図7)にT
iCl4を導入した場合は、アンテナ比50の場合であ
っても劣化した素子が多数存在している。
As can be seen from the graph, the plasma ignition 1
Five seconds before (FIG. 3) and five seconds before plasma ignition (FIG. 4), TiC
If the introduction of l 4, the leakage current in all of the antenna ratio 50 to 10,000 was less than 10 -10 A.
When TiCl 4 is introduced at the same time as the plasma ignition (FIG. 5), the presence of an element whose characteristics have deteriorated is seen when the antenna ratio is 10000, but this is within a range where there is no problem with the antenna ratio normally used. On the other hand, 5 seconds after the plasma ignition (FIG. 6) and 15 seconds after the plasma ignition (FIG. 7), T
When iCl 4 is introduced, there are many deteriorated elements even when the antenna ratio is 50.

【0030】以上の結果より、本発明のようにプラズマ
発生と同時またはそれより前にTiCl4をCVDチャ
ンバーに導入することによりゲート酸化膜の破壊が無
く、特性の優れたMOSFETが得られることがわか
る。
From the above results, it can be seen that by introducing TiCl 4 into the CVD chamber at the same time as or before the plasma generation as in the present invention, a MOSFET having excellent characteristics without destruction of the gate oxide film can be obtained. Understand.

【0031】[0031]

【発明の効果】本発明によれば、素子が高密度・高集積
化された場合であっても、プラズマCVD法によりコン
タクトホール内に金属膜を形成する際にゲート絶縁膜に
対するダメージのない半導体装置の製造方法、およびそ
れに用いられるプラズマCVD装置を提供することがで
きる。
According to the present invention, even when the elements are integrated at a high density and high integration, a semiconductor which does not damage the gate insulating film when forming the metal film in the contact hole by the plasma CVD method. An apparatus manufacturing method and a plasma CVD apparatus used therein can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の半導体装置の製造方法を示す工程断面
図である。
FIG. 1 is a process sectional view illustrating a method for manufacturing a semiconductor device of the present invention.

【図2】本発明の製造方法において、ガス導入時期およ
びRFパワーONのタイミングを示す図である。
FIG. 2 is a diagram showing gas introduction timing and RF power ON timing in the manufacturing method of the present invention.

【図3】プラズマ点火15秒前にTiCl4を導入した
実施例で製造したMOSFETのリーク電流特性を示す
グラフである。
FIG. 3 is a graph showing leakage current characteristics of a MOSFET manufactured in an example in which TiCl 4 was introduced 15 seconds before plasma ignition.

【図4】プラズマ点火5秒前にTiCl4を導入した実
施例で製造したMOSFETのリーク電流特性を示すグ
ラフである。
FIG. 4 is a graph showing leakage current characteristics of a MOSFET manufactured in an example in which TiCl 4 was introduced 5 seconds before plasma ignition.

【図5】プラズマ点火と同時にTiCl4を導入した
例で製造したMOSFETのリーク電流特性を示すグ
ラフである。
[Figure 5] At the same time participants introduced the TiCl 4 and the plasma ignition
5 is a graph showing the leakage current characteristics of the MOSFET manufactured in the example.

【図6】プラズマ点火5秒後にTiCl4を導入した比
較例で製造したMOSFETのリーク電流特性を示すグ
ラフである。
FIG. 6 is a graph showing leakage current characteristics of a MOSFET manufactured in a comparative example in which TiCl 4 was introduced 5 seconds after plasma ignition.

【図7】プラズマ点火15秒後にTiCl4を導入した
比較例で製造したMOSFETのリーク電流特性を示す
グラフである。
FIG. 7 is a graph showing leakage current characteristics of a MOSFET manufactured in a comparative example in which TiCl 4 was introduced 15 seconds after plasma ignition.

【図8】従来の半導体装置の製造方法を示す工程断面図
である。
FIG. 8 is a process sectional view showing a conventional method for manufacturing a semiconductor device.

【図9】従来の半導体装置の製造方法を示す工程断面図
である。
FIG. 9 is a process sectional view illustrating a conventional method for manufacturing a semiconductor device.

【図10】従来の半導体装置の製造方法において、電荷
の蓄積を示す図である。
FIG. 10 is a diagram showing charge accumulation in a conventional semiconductor device manufacturing method.

【符号の説明】[Explanation of symbols]

101 p型シリコン基板 102 素子分離用酸化シリコン膜 103 ゲート酸化膜 105 多結晶シリコン膜 106 タングステンシリサイド膜 104 ゲート電極 108 サイドウォール 109 BPSG膜 111 コンタクトホール 112 チタン膜 113 チタンシリサイド膜 114 窒化チタン膜 115 上配線 Reference Signs List 101 p-type silicon substrate 102 element isolation silicon oxide film 103 gate oxide film 105 polycrystalline silicon film 106 tungsten silicide film 104 gate electrode 108 sidewall 109 BPSG film 111 contact hole 112 titanium film 113 titanium silicide film 114 titanium nitride film 115 wiring

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI H01L 29/78 (58)調査した分野(Int.Cl.7,DB名) H01L 21/28 - 21/288 H01L 21/44 - 21/445 H01L 29/40 - 29/43 H01L 29/47 H01L 29/872 H01L 21/3205 H01L 21/3213 H01L 21/768 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 identification code FI H01L 29/78 (58) Investigated field (Int.Cl. 7 , DB name) H01L 21/28-21/288 H01L 21/44 -21/445 H01L 29/40-29/43 H01L 29/47 H01L 29/872 H01L 21/3205 H01L 21/3213 H01L 21/768

Claims (8)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体基板上に形成された所定の素子を
覆う層間絶縁膜を貫通して、前記素子の電極に達するコ
ンタクトホール内に、プラズマCVD法により金属膜を
形成する工程を含む半導体装置の製造方法において、 前記の金属膜を形成する工程が、プラズマCVD装置の
成膜チャンバー内に、水素とアルゴンを含むガスを導入
した後、プラズマを発生させるより前に、前記成膜チャ
ンバー内にハロゲン化金属ガスを導入して前記コンタク
トホール内に金属膜を形成する工程であることを特徴と
する半導体装置の製造方法。
A semiconductor device including a step of forming a metal film by a plasma CVD method in a contact hole reaching an electrode of an element by penetrating an interlayer insulating film covering a predetermined element formed on a semiconductor substrate. In the manufacturing method described above, the step of forming the metal film includes the steps of: introducing a gas containing hydrogen and argon into a film forming chamber of a plasma CVD apparatus; Forming a metal film in the contact hole by introducing a metal halide gas.
【請求項2】 前記金属膜は、高融点金属膜であること
を特徴とする請求項1記載の半導体装置の製造方法。
2. The method according to claim 1, wherein the metal film is a high melting point metal film.
【請求項3】 前記ハロゲン化金属は、金属の塩化物ま
たはヨウ化物であることを特徴とする請求項1または2
記載の半導体装置の製造方法。
3. The metal halide according to claim 1, wherein the metal halide is a metal chloride or iodide.
The manufacturing method of the semiconductor device described in the above.
【請求項4】 前記素子は、MOSFETを含み、前記
コンタクトホールはこのMOSFETのゲート電極に電
気的接続をとるためのものである請求項1〜3のいずれ
かに記載の半導体装置の製造方法。
4. The method according to claim 1, wherein the element includes a MOSFET, and the contact hole is for making an electrical connection to a gate electrode of the MOSFET.
【請求項5】 前記MOSFETのゲート絶縁膜の厚さ
は、100Å以下であることを特徴とする請求項4記載
の半導体装置の製造方法。
5. The method according to claim 4, wherein the thickness of the gate insulating film of the MOSFET is 100 ° or less.
【請求項6】 前記ゲート電極のアンテナ比(全面積/
チャネル領域面積)は、100以上であること特徴とす
る請求項4記載の半導体装置の製造方法。
6. The antenna ratio of the gate electrode (total area /
5. The method according to claim 4, wherein the area of the channel region is 100 or more.
【請求項7】 前記コンタクトホールのアスペクト比
は、6以上であることを特徴とする請求項4記載の半導
体装置の製造方法。
7. The method according to claim 4, wherein an aspect ratio of the contact hole is 6 or more.
【請求項8】 請求項1の半導体装置の製造方法に用い
られるプラズマCVD装置であって、前記ハロゲン化金
属ガスの導入時期がプラズマを発生させるRFパワーの
ON時より前になるような遅延機構を有していることを
特徴とするプラズマCVD装置。
8. A plasma CVD apparatus used in the method of manufacturing a semiconductor device according to claim 1, wherein the introduction timing of the metal halide gas is earlier than the ON time of RF power for generating plasma. A plasma CVD apparatus comprising:
JP00206099A 1999-01-07 1999-01-07 Semiconductor device manufacturing method and plasma CVD apparatus used in semiconductor device manufacturing method Expired - Fee Related JP3191290B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP00206099A JP3191290B2 (en) 1999-01-07 1999-01-07 Semiconductor device manufacturing method and plasma CVD apparatus used in semiconductor device manufacturing method
KR10-2000-0000123A KR100400111B1 (en) 1999-01-07 2000-01-04 A process for manufacturing a semiconductor device
US09/478,687 US6589873B2 (en) 1999-01-07 2000-01-06 Process for manufacturing a semiconductor device
US10/460,453 US20030205194A1 (en) 1999-01-07 2003-06-11 Process for manufacturing a semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00206099A JP3191290B2 (en) 1999-01-07 1999-01-07 Semiconductor device manufacturing method and plasma CVD apparatus used in semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2000200761A JP2000200761A (en) 2000-07-18
JP3191290B2 true JP3191290B2 (en) 2001-07-23

Family

ID=11518808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00206099A Expired - Fee Related JP3191290B2 (en) 1999-01-07 1999-01-07 Semiconductor device manufacturing method and plasma CVD apparatus used in semiconductor device manufacturing method

Country Status (3)

Country Link
US (2) US6589873B2 (en)
JP (1) JP3191290B2 (en)
KR (1) KR100400111B1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7247252B2 (en) * 2002-06-20 2007-07-24 Taiwan Semiconductor Manufacturing Co., Ltd. Method of avoiding plasma arcing during RIE etching
JP2004152929A (en) * 2002-10-30 2004-05-27 Nec Electronics Corp Semiconductor device and its manufacturing device
JP3989415B2 (en) * 2003-07-22 2007-10-10 本田技研工業株式会社 Working machine
KR100714269B1 (en) * 2004-10-14 2007-05-02 삼성전자주식회사 Method for forming metal layer used the manufacturing semiconductor device
JP2007211326A (en) * 2006-02-13 2007-08-23 Nec Electronics Corp Film deposition apparatus and film deposition method
JP2010111888A (en) * 2008-11-04 2010-05-20 Tokyo Electron Ltd METHOD FOR DEPOSITING Ti FILM, FILM DEPOSITION SYSTEM AND STORAGE MEDIUM
JP5229019B2 (en) * 2009-03-11 2013-07-03 株式会社リコー Image forming apparatus

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4766006A (en) * 1986-05-15 1988-08-23 Varian Associates, Inc. Low pressure chemical vapor deposition of metal silicide
US5177589A (en) * 1990-01-29 1993-01-05 Hitachi, Ltd. Refractory metal thin film having a particular step coverage factor and ratio of surface roughness
KR0184279B1 (en) * 1990-01-29 1999-04-15 미다 가쓰시게 Metal or metal silicide film making method
DE69216747T2 (en) * 1991-10-07 1997-07-31 Sumitomo Metal Ind Process for forming a thin film
JPH088212A (en) * 1994-06-22 1996-01-12 Sony Corp Plasma cvd method
JPH08176823A (en) * 1994-12-26 1996-07-09 Sony Corp Formation of thin film of high melting point metal
JPH09205070A (en) 1996-01-25 1997-08-05 Sony Corp Plasma cvd system and semiconductor device having metal film formed thereby
US5807788A (en) * 1996-11-20 1998-09-15 International Business Machines Corporation Method for selective deposition of refractory metal and device formed thereby
DE69815163T2 (en) 1997-01-24 2004-05-06 Applied Materials, Inc., Santa Clara Method and device for depositing titanium layers
JP3624628B2 (en) * 1997-05-20 2005-03-02 東京エレクトロン株式会社 Film forming method and film forming apparatus
JPH1116858A (en) 1997-06-21 1999-01-22 Tokyo Electron Ltd Method of cleaning and processing film forming device
JP3189771B2 (en) * 1997-11-26 2001-07-16 日本電気株式会社 Method for manufacturing semiconductor device
JP3381774B2 (en) * 1997-12-24 2003-03-04 東京エレクトロン株式会社 Method of forming CVD-Ti film

Also Published As

Publication number Publication date
US6589873B2 (en) 2003-07-08
US20020081858A1 (en) 2002-06-27
KR20000053378A (en) 2000-08-25
US20030205194A1 (en) 2003-11-06
KR100400111B1 (en) 2003-10-01
JP2000200761A (en) 2000-07-18

Similar Documents

Publication Publication Date Title
US6287964B1 (en) Method for forming a metallization layer of a semiconductor device
US6140223A (en) Methods of forming contacts for integrated circuits using chemical vapor deposition and physical vapor deposition
JPS63205951A (en) Stable low resistance contact
US20050233577A1 (en) High aspect ratio contact structure with reduced silicon consumption
US6187676B1 (en) Integrated circuit insulated electrode forming methods using metal silicon nitride layers, and insulated electrodes so formed
US5801096A (en) Self-aligned tungsen etch back process to minimize seams in tungsten plugs
US6096646A (en) Method for forming metal line of semiconductor device
JP3191290B2 (en) Semiconductor device manufacturing method and plasma CVD apparatus used in semiconductor device manufacturing method
US6337274B1 (en) Methods of forming buried bit line memory circuitry
US6048792A (en) Method for manufacturing an interconnection structure in a semiconductor device
US5700726A (en) Multi-layered tungsten depositions for contact hole filling
KR19980070785A (en) Semiconductor device and manufacturing method thereof
JP3514423B2 (en) Method of forming TiSi2 layer
US6245631B1 (en) Method of forming buried bit line memory circuitry and semiconductor processing method of forming a conductive line
US6190994B1 (en) Method for forming a tungsten upper electrode of a capacitor
JP3109687B2 (en) Method for manufacturing conductive layer connection structure of semiconductor device
US6180484B1 (en) Chemical plasma treatment for rounding tungsten surface spires
JP2000208436A (en) Semiconductor device and its manufacture
JPH06232074A (en) Semiconductor device and its manufacture
JPH07201779A (en) Electrode wiring and its formation
JP2003023075A (en) Manufacturing method for semiconductor device
JPH0817927A (en) Manufacture of semiconductor device
JPH10199970A (en) Manufacture of semiconductor elements
JPH09148571A (en) Manufacture of semiconductor device
JPH04225550A (en) Formation of metal plug

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees