JP3624628B2 - Film forming method and film forming apparatus - Google Patents

Film forming method and film forming apparatus Download PDF

Info

Publication number
JP3624628B2
JP3624628B2 JP14585597A JP14585597A JP3624628B2 JP 3624628 B2 JP3624628 B2 JP 3624628B2 JP 14585597 A JP14585597 A JP 14585597A JP 14585597 A JP14585597 A JP 14585597A JP 3624628 B2 JP3624628 B2 JP 3624628B2
Authority
JP
Japan
Prior art keywords
film
metal
thin film
mounting table
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14585597A
Other languages
Japanese (ja)
Other versions
JPH10321558A (en
Inventor
国弘 多田
好弘 手塚
和一 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Electron Ltd
Original Assignee
Tokyo Electron Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electron Ltd filed Critical Tokyo Electron Ltd
Priority to JP14585597A priority Critical patent/JP3624628B2/en
Priority to US09/071,156 priority patent/US5942282A/en
Priority to TW087107232A priority patent/TW399237B/en
Priority to KR1019980017960A priority patent/KR100355321B1/en
Publication of JPH10321558A publication Critical patent/JPH10321558A/en
Application granted granted Critical
Publication of JP3624628B2 publication Critical patent/JP3624628B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45572Cooled nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • C23C16/0281Deposition of sub-layers, e.g. to promote the adhesion of the main coating of metallic sub-layers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/08Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
    • C23C16/14Deposition of only one other metal element
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4404Coatings or surface treatment on the inside of the reaction chamber or on parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4411Cooling of the reaction chamber walls
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/4557Heated nozzles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table
    • H01L21/28556Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic Table by chemical means, e.g. CVD, LPCVD, PECVD, laser CVD

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体ウエハ等の被処理体にチタン膜などの金属含有膜を形成する成膜方法及び成膜装置に関する。
【0002】
【従来の技術】
一般に、半導体集積回路を製造するためには、半導体ウエハ等の基板に対して、成膜とパターンエッチング等を繰り返し行なって、多数の所望の素子を形成するようになっている。
ところで、各素子間を接続する配線、各素子に対する電気的コンタクトを図るコンタクトメタル、或いは基板のSiの吸上げを抑制する対策として用いられるバリヤメタルとしては、電気抵抗が低いことは勿論のこと、耐腐食性に優れた材料を用いなければならない。
このような要請に対応できる材料として、Ti(チタン)、W(タングステン)、Mo(モリブデン)などの高融点金属材料が使用される傾向にあり、中でも電気的及び耐腐食性などの特性等が良好であることから、特に、Ti及びこの窒化膜であるTiN(チタンナイトライド)が多用される傾向にある。
【0003】
Ti膜は、一般的には、原料ガスとしてTiCl (四塩化チタン)ガスと水素ガスを用いてプラズマCVD(Chemical Vapor Deposition)により成膜され、TiN膜は、原料ガスとして同じくTiCl とN ガスを用いてプラズマレスのCVDにより、或いは窒素存在下のプラズマ成膜により成膜される。
【0004】
【発明が解決しようとする課題】
ところで、上記成膜に用いる成膜装置の載置台としては一般に耐熱性や耐腐食性に優れているAlN(窒化アルミ)等のセラミック製の載置台を用いているが、このセラミック製の載置台はかなり高価である。しかも、セラミック自体は導電性が低いために、プラズマCVD処理時にセラミック製の載置台の載置面内、或いは載置台と例えば処理容器側壁との間で電位差が生じ、これがために処理空間に生成されているプラズマが安定的に生ぜず、プラズマ密度に偏りが生ずる場合があった。
【0005】
このため、載置台自体を導電性の良好な金属材料により形成して載置面内やこれと容器側壁との間に電位差が生ずることを抑制して、プラズマを安定化させることも考えられるが、この場合には、載置面上に載置される半導体ウエハ自体が載置台を構成する金属により汚染される、いわゆる重金属汚染が生ずるので、そのまま採用することはできない。
【0006】
また、金属製の載置台の表面に、予めセラミック等よりなるコーティング層を強固に被着させて重金属汚染を防止することも考えられるが、この場合には、金属製の載置台とセラミック製のコーティング層との熱膨張率の相異に起因して、繰り返し成膜によってコーティング層が剥がれたり、或いは割れたりするといった問題があるので採用することはできない。
【0007】
更には、セラミック材の場合には、熱伝導率が低いことから、ウエハに対する加熱効率もあまり良好でないという問題もある。
本発明は、以上のような問題点に着目し、これを有効に解決すべく創案されたものである。本発明の目的は、載置台にプリコート金属含有薄膜を形成することにより、重金属汚染のない成膜方法及び成膜装置を提供することにある。
【0008】
【課題を解決するための手段】
本発明は、上記問題点を解決するために、処理容器内の載置台上に載置された被処理体に対してチタン(Ti)膜、またはチタンナイトライド(TiN)膜よりなる金属含有膜を形成する成膜方法において、前記載置台の表面に前記金属含有膜と同じ金属を含む膜であるチタン薄膜とチタンナイトライド薄膜が順次積層された2層構造よりなるプリコート金属含有薄膜を形成し、その後、前記被処理体を前記載置台上に載置した状態で前記被処理体の表面に前記金属含有膜を形成するようにする。
【0009】
このように、被処理体に対する実際の金属含有膜の成膜に先立って、この金属含有膜に含まれる金属と同じ金属を含む薄膜を載置台の表面にプリコート金属含有薄膜として形成して載置台を覆うようにしたので、被処理体の金属含有膜にプリコート金属含有薄膜中の金属が侵入しても、これらは同種の金属なので、重金属汚染が生ずることはない。
被処理体に形成されるこのような金属含有膜は、例えばチタン(Ti)膜やチタンナイトライド(TiN)膜であり、この時、プリコート金属含有薄膜としては、チタン薄膜またはチタンナイトライド薄膜或いはこれらの2層構造とする。チタンナイトライド薄膜を形成するには、下層のチタン薄膜の上に、チタンナイトライド薄膜を堆積させて積層するようにしてもよいし、或いは下層のチタン薄膜の表面部分を窒化させることにより上層にチタンナイトライド薄膜を形成するようにしてもよい。このように2層構造化することにより、載置台に対するチタン薄膜の密着性を向上させることが可能となる。
【0010】
【発明の実施の形態】
以下に、本発明に係る成膜方法及び成膜装置の一実施例を添付図面に基づいて詳述する。
図1は本発明の成膜装置の一実施例を示す構成図である。本実施例では、成膜装置により金属膜としてTi(チタン)膜を形成する場合を例にとって説明する。
図示するように、この成膜装置2は、円筒体状に成形された処理容器4を有しており、この処理容器4は接地されている。 この処理容器4の底部6には、容器内の雰囲気を排出するための排気口8が設けられており、この排気口8には真空引きポンプ10を介設した排気系12が接続されて、処理容器4内を底部周辺部から均一に真空引きできるようになっている。
【0011】
この処理容器4内には、導電性材料よりなる支柱14を介して金属性、例えばハステロイ(商標)よりなる円板状の載置台16が設けられており、この上に被処理体として例えば半導体ウエハWを載置し得るようになっている。この載置台16は、下部電極を兼用するものであり、支柱14に直接支持される下台16Aと、この上面に接合される上台16Bとよりなり、これらの間に抵抗加熱ヒータ18が挟み込まれている。この下台16Aと上台16Bは、その接合面にて例えば溶着により接合される。この載置台16は、上記したハステロイに限定されず、耐腐食性があって導電性のある金属ならばどのようなものでもよく、例えばステンレス、ニッケル、インコネル(商標)等を用いることができる。
【0012】
処理容器4の天井部には、上部電極と兼用されるシャワーヘッド20が一体的に設けられた天井板22が容器側壁に対して絶縁材24を介して気密に取り付けられている。このシャワーヘッド20は、上記載置台16の上面の略全面を覆うように対向させて設けられており、載置台16との間に処理空間Sを形成している。このシャワーヘッド20は、処理空間Sに各種のガスをシャワー状に導入するものであり、シャワーヘッド20の下面の噴射面26にはガスを噴射するための多数の噴射孔28が形成される。また、このシャワーヘッド20の内部には、多数の拡散孔30を有する拡散板32が設けられてガスを拡散できるようになっている。
そして、このシャワーヘッド20の上部には、ヘッド内にガスを導入するガス導入ポート34が設けられており、このガス導入ポート34にはガスを流す複数、例えば2本の供給通路36、38が接続されている。
【0013】
一方の供給通路36には、複数の分岐管40が接続され、各分岐管40には、成膜用のガスとして、例えばTiCl ガスを貯留するTiCl ガス源42、H ガスを貯留するH ガス源44、プラズマガスとして例えばArガスを貯留するArガス源46、クリーニング時に使用するクリーニングガスとしてClF系ガス、例えばClF ガスを貯留するClF ガス源48がそれぞれ接続されている。また、他方の供給通路38には、成膜用のガスとしてN ガスを貯留するN ガス源50が接続される。そして、各ガスの流量は、それぞれの分岐管40及び供給通路80に介設した流量制御器、例えばマスフローコントローラ52により制御される。ここでは、TiCl ガスとN ガスをシャワーヘッド20まではそれぞれ別経路搬送し、これらをシャワーヘッド内で混合させるようにしたが、これに限定されず、両ガスを混合状態で搬送するようにしてもよいし、或いはシャワーヘッド20内も分離した状態で通過させて、処理空間Sへ噴射した時に混合させるようにしてもよい。この点については、他のガス、例えばTiCl 、H 、Arについても同様である。
【0014】
また、天井板22には、主にTi成膜時のプラズマを形成するために、リード線54を介してマッチング回路56及び例えば13.56MHzのプラズマ用の高周波電源58が接続されている。
また、処理容器4の側壁には、この壁面の温度調節を行なうために、必要に応じて例えば冷却された、或いは加熱された熱媒体を選択的に流すための容器用温調ジャケット60が設けられ、このジャケット60は図示しない温調器に接続される。この容器側壁には、ロードロック室64との間でウエハの搬入・搬出時に気密に開閉可能になされたゲートバルブ62が設けられる。
更に、上記シャワーヘッド20にも、この表面の温度調節を行なうために、必要に応じて例えば冷却された、或いは加熱された熱媒体を選択的に流すためのヘッド用温調ジャケット66が設けられ、このジャケット66は図示しない温調器に接続される。尚、温調用の熱媒体としては例えばチラーを用いることができる。
【0015】
次に、以上のように構成された装置に基づいて行なわれる成膜方法ついて図2も参照して説明する。
本発明方法においては、半導体ウエハWに対して実際に成膜を行なう前に、ウエハ成膜時と略同種のガスを用いて金属製の載置台の表面に成膜を施してプリコート金属含有薄膜を形成して、載置台を覆う。この場合、ウエハには、Ti膜を形成することを目的としていることから、このプリコート金属含有薄膜としてTi金属を含有させた薄膜、例えばTi薄膜やTiN薄膜、或いはこれらの両薄膜を形成することになる。ここでは、上記両薄膜を積層させる場合を例にとって説明する。
【0016】
まず、半導体ウエハWを処理容器4内に導入することなく、これを例えばロードロック室64に待機させておく。この状態では、図2(A)に示すように、金属製の載置台16の表面には何ら膜が形成されておらず、載置台16を構成する金属が剥き出し状態となっている。
このように、載置台16上に何も載置していない状態において、成膜用ガスとしてTiCl ガスと、H ガスを、プラズマ用ガスとしてArガスを、それぞれシャワーヘッド20から所定の流量で処理容器4内に導入し、且つ真空引きポンプ10により処理容器4内を真空引きし、所定の圧力に維持する。
【0017】
これと同時に、高周波電源58より、13.56MHzの高周波を上部電極であるシャワーヘッド20に印加して、シャワーヘッド20と下部電極としての載置台16との間に高周波電界を加える。これにより、Arガスがプラズマ化されて、TiCl ガスとH ガスとの還元反応を推進し、図2(B)に示すように載置台16の表面全体にこれを覆うようにTi薄膜68が形成されることになる。このTi薄膜68は、例えば200〜300Å程度の厚みとなるように設定する。このTi薄膜68は、後述するプリコート金属含有薄膜72の第1層目の薄膜となる。
【0018】
載置台16の温度は、この載置台16に埋め込んだ抵抗加熱ヒータ18により所定の温度に加熱される。
また、プラズマにより加熱される傾向にある処理容器4の側壁及びシャワーヘッド20は、それぞれに設けた容器用温調ジャケット60及びヘッド用温調ジャケット66にそれぞれ冷媒を流し、これを所定の温度まで冷却する。
この時のプロセス条件は、載置台温度が、例えば700℃程度、容器側壁が130℃程度、シャワーヘッド20が130℃程度であり、プロセス圧力は1Torr程度、高周波電力が700W程度である。
また、ガス流量は、例えばTiCl ガスが200〜300sccm、H ガスが1.5〜2リットル/min、Arガスが1リットル/min程度である。
【0019】
このように、プリコート金属含有薄膜72の第1層目の薄膜、すなわちTi薄膜68を形成したならば、処理容器4内を真空引きし、プリコート金属含有薄膜72の第2層目の薄膜の形成に着手する。
まず、成膜用ガスとしてTiCl ガスとN ガスを、それぞれシャワーヘッド20から所定の流量で処理容器4内に導入し、且つ真空引きポンプ10により処理容器4内を所定の圧力に維持する。この場合は、高周波を用いないで、すなわちプラズマレスで、熱CVDにより図2(C)に示すようにTiN薄膜70を覆うように形成する。
【0020】
このTiN薄膜70は例えば200〜300Å程度の厚みとなるように設定する。このTiN薄膜70は、後述するプリコート金属含有薄膜72の第2層目の薄膜となる。この時の、プロセス条件は、載置台温度が例えば700℃程度、容器側壁が130℃程度、シャワーヘッド20が130℃程度であり、プロセス圧力は1Torr程度である。この時のガス流量は、例えばTiCl ガスが10sccm、N ガスが50sccm程度である。
このようにプリコート金属含有薄膜72を、Ti薄膜68とTiN薄膜70との2層構造にすることにより、Ti薄膜68と載置台16の載置面との密着性が大幅に向上してこの剥離を防止することができる。
【0021】
このようにして2層構造の重金属汚染防止用のプリコート金属含有薄膜72の形成が完了したならば、次に、ウエハ表面への実際の成膜操作に移行する。
まず、ウエハWを開かれたゲートバルブ62(図1参照)を介してロードロック室64から処理容器4内に搬入し(図2(C))、これを載置台16上に載置する(図2(E))。
そして、処理容器4内を気密にした状態で成膜処理を開始する。
まず、ここではウエハ表面にTi膜を成膜する。このTi膜の成膜は、例えば先のプリコート金属含有薄膜72のTi薄膜68の成膜時と同じ成膜ガス及びプロセス条件で行なう。すなわち、成膜用ガスとしてTiCl ガスとH ガスを、プラズマ用ガスとしてArガスを、それぞれ所定の流量で処理容器4内に導入し、真空引きにより処理容器4内を所定の圧力に維持する。そして、プラズマにアシストされた還元反応により図2(F)に示すようにウエハ表面に金属含有膜としてTi膜74を所定の厚みだけ成膜する。
【0022】
また、必要ならば、次に、このTi膜74の上に、図2(G)に示すように金属含有膜としてTiN膜76を成膜して、例えばバリヤメタルとしたり、配線構造にしたりする。このTiN膜76の成膜ガス及びプロセス条件も例えば、先のプリコート金属含有薄膜72のTiN薄膜70の成膜時と同じ成膜ガス及びプロセス条件で行なう。すなわち、成膜用ガスとしてTiCl ガスとN ガスを用いてプラズマレスのCVDにより成膜を行なう。
このように、プリコート金属含有薄膜72を一旦形成したならば、一定枚数、例えば20〜25枚程度のウエハの成膜処理を連続的に行なうが、この間、チタン化合物などの反応副生成物が処理容器4内や内部構造物に付着形成されるので、上述したように一定枚数のウエハの成膜処理が完了した時に容器内のクリーニング処理を行なう。
【0023】
このクリーニング処理は、クリーニングガスとしてClF系ガス、例えばClF ガスを処理容器4内に流しつつ載置台16、シャワーヘッド20、容器側壁等を一定の温度に維持し、内部に付着しているチタン塩化物を気化させて除去することにより行なわれる。このクリーニング処理の際、先に載置台16に形成したプリコート金属含有薄膜72も除去されてしまうので、次にウエハ成膜を行なう前には、再度、前述した工程によりプリコート金属含有薄膜72の成膜を行ない、その後、ウエハに対して実際の成膜処理を行なうことになる。
このように、ウエハ成膜前に、金属製の載置台16にウエハ成膜に含まれる金属と同じ金属を含む薄膜をプリコート金属含有薄膜72として形成して載置台表面を覆うようにしたので、載置台16の金属原子が外側に出ることが抑制され、ウエハに対して、載置台16の構成金属に起因する重金属汚染が生ずることを防止することができる。
【0024】
また、ウエハ成膜時に、プリコート金属含有薄膜72中に含まれるTi金属が、ウエハW側に移動しても、ウエハWの成膜中に含まれる金属と同じ金属なので、この点よりも重金属汚染が生ずることもない。
更に、載置台16には、例えばハステロイなどの金属材料を用いているので、導電性が良く、従って、プラズマ成膜時に、載置台16の面内に電位差が生じたり、これと容器側壁との間に電位差が生じたりすることがなくなる。このため、電位差に起因するプラズマ密度の偏りを抑制でき、プラズマ密度を均一化させることができると共に、これを安定した状態で形成維持することができる。
また、載置台16は熱伝導性の良好な金属で形成されているので、これがセラミック材で形成されている場合と比較して、熱伝導効率を向上させることができる。
【0025】
図2に示した工程においては、プリコート金属含有薄膜72を形成する場合に、第1層目のTi薄膜68を形成した後に、第2層目のTiN薄膜70を堆積させて積層するようにしたが、これに限定されず、例えば図3に示すように構成してもよい。すなわち、図3(A)に示すように、載置台16の表面に、先の第1層目のTi薄膜68の形成時と同様な成膜方法を用いて、少し厚目のTi薄膜80を形成する。そして、図3(B)に示すように、処理容器4内にN ガスを流しつつプラズマを立てて、先の少し厚目のTi薄膜80の表面部分を窒化処理する。これにより、図3(C)に示すように、Ti薄膜80の表面部分、或いはもとのTi薄膜80の上半分程度を窒化処理して第2層目のTiN薄膜82を形成し、2層構造のプリコート金属含有薄膜72を形成するようにしてもよい。
【0026】
また、上記プリコート金属含有薄膜72は、2層構造の場合を例にとって説明したが、これに限定されず、例えばプリコート金属含有薄膜72として図4に示すようにTi薄膜68のみの1層構造としてもよいし、或いはTiN薄膜70のみの1層構造としてもよい。いずれにしても、ウエハの成膜中に含まれる金属と同じ金属を含む薄膜で、金属製の載置台16の表面を覆うようにすれば、その構造や金属の種類は問わない。
尚、上記実施例においては、成膜中に含有される金属としてチタンを例にとって説明したが、これに限定されず、他の金属、例えばタングステン、モリブデン、アルミニウム等にも適用できるのは勿論である。
更に、被処理体としては、半導体ウエハに限定されず、ガラス基板、LCD基板等にも適用することができる。
【0027】
【発明の効果】
以上説明したように、本発明の成膜方法及び成膜装置によれば、次のような優れた作用効果を発揮することができる。
置台の表面に、被処理体に形成する金属含有薄膜と同じ金属を含むプリコート金属含有薄膜を付着させて覆うようにしたので、この薄膜に載置台を構成する金属原子が閉じ込められて外側に出ることがなくなり、被処理体に対する重金属汚染を防止することができる。
これにより、重金属汚染を心配することなく導電性の良好な金属材料により載置台を形成できるので、プラズマ分布に悪影響を与える電位差が生ずることを防止でき、プラズマを安定的に且つ均一な分布状態で形成することができる。
また、被処理体にチタン膜やチタンナイトライド膜を形成する際に、プリコート金属含有薄膜として、チタン薄膜とチタンナイトライド薄膜との積層構造を採用することにより、チタン薄膜の載置台に対する密着性を向上させることができ、これが剥がれることを抑制することができる。
【図面の簡単な説明】
【図1】本発明の成膜装置の一実施例を示す構成図である。
【図2】本発明方法を説明するための工程図である。
【図3】本発明方法の変形例を示す工程図である。
【図4】本発明方法の他の変形例を示す工程図である。
【符号の説明】
2 成膜装置
4 処理容器
16 載置台
18 抵抗加熱ヒータ
20 シャワーヘッド
58 高周波電源
68 Ti薄膜
70 TiN薄膜
72 プリコート金属含有薄膜
74 Ti膜(金属含有膜)
76 TiN膜(金属含有膜)
80 Ti薄膜
82 TiN薄膜
W 半導体ウエハ(被処理体)
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a film forming method and a film forming apparatus for forming a metal-containing film such as a titanium film on an object to be processed such as a semiconductor wafer.
[0002]
[Prior art]
In general, in order to manufacture a semiconductor integrated circuit, a large number of desired elements are formed by repeatedly performing film formation and pattern etching on a substrate such as a semiconductor wafer.
By the way, as a wiring connecting each element, a contact metal for making an electrical contact with each element, or a barrier metal used as a countermeasure for suppressing the sucking up of Si of the substrate, the electric resistance is low. A highly corrosive material must be used.
Refractory metal materials such as Ti (titanium), W (tungsten), and Mo (molybdenum) tend to be used as materials that can meet such demands. Among them, there are characteristics such as electrical and corrosion resistance. In particular, Ti and TiN (titanium nitride), which is a nitride film, tend to be frequently used.
[0003]
The Ti film is generally formed by plasma CVD (Chemical Vapor Deposition) using TiCl 4 (titanium tetrachloride) gas and hydrogen gas as source gases, and the TiN film is similarly formed by using TiCl 4 and N as source gases. The film is formed by plasmaless CVD using two gases or by plasma film formation in the presence of nitrogen.
[0004]
[Problems to be solved by the invention]
By the way, as a mounting table for the film forming apparatus used for the film formation, a ceramic mounting table such as AlN (aluminum nitride) which is generally excellent in heat resistance and corrosion resistance is used. Is quite expensive. In addition, since the ceramic itself has low conductivity, a potential difference occurs in the mounting surface of the ceramic mounting table or between the mounting table and, for example, the side wall of the processing vessel during the plasma CVD process, which is generated in the processing space. In some cases, the plasma is not stably generated, and the plasma density is uneven.
[0005]
For this reason, it is conceivable to stabilize the plasma by forming the mounting table itself from a metal material having good conductivity and suppressing the occurrence of a potential difference in the mounting surface or between this and the container side wall. In this case, since the semiconductor wafer itself placed on the placement surface is contaminated by the metal constituting the placement table, so-called heavy metal contamination occurs, it cannot be adopted as it is.
[0006]
It is also conceivable to prevent heavy metal contamination by firmly attaching a coating layer made of ceramic or the like to the surface of the metal mounting table in advance. In this case, the metal mounting table and the ceramic mounting table may be used. Due to the difference in coefficient of thermal expansion with the coating layer, there is a problem that the coating layer is peeled off or cracked due to repeated film formation, and thus cannot be employed.
[0007]
Furthermore, in the case of a ceramic material, since the thermal conductivity is low, there is also a problem that the heating efficiency for the wafer is not so good.
The present invention has been devised to pay attention to the above problems and to effectively solve them. An object of the present invention is to provide a film forming method and a film forming apparatus free from heavy metal contamination by forming a precoat metal-containing thin film on a mounting table.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the present invention provides a metal-containing film made of a titanium (Ti) film or a titanium nitride (TiN) film on an object to be processed placed on a mounting table in a processing container. a film forming method for forming a pre-coat metal-containing thin titanium thin film and the titanium nitride thin film is a film containing the same metal is formed of two-layer structure, which are sequentially laminated with the metal-containing film on the surface of the mounting table Then, the metal-containing film is formed on the surface of the object to be processed in a state where the object to be processed is placed on the mounting table.
[0009]
Thus, prior to the actual metal-containing film formation on the object to be processed, a thin film containing the same metal as the metal contained in the metal-containing film is formed on the surface of the mounting table as a pre-coated metal-containing thin film. Therefore, even if the metal in the precoat metal-containing thin film penetrates into the metal-containing film of the object to be processed, heavy metal contamination does not occur because these are the same kind of metal.
Such a metal-containing film formed on the object to be processed is, for example, a titanium (Ti) film or a titanium nitride (TiN) film. At this time, as the precoat metal-containing thin film, a titanium thin film or a titanium nitride thin film or These two-layer structures are used. In order to form a titanium nitride thin film, the titanium nitride thin film may be deposited and laminated on the lower titanium thin film, or the surface portion of the lower titanium thin film may be nitrided to form an upper layer. A titanium nitride thin film may be formed. By forming the two-layer structure in this way, it becomes possible to improve the adhesion of the titanium thin film to the mounting table.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, an embodiment of a film forming method and a film forming apparatus according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a block diagram showing an embodiment of a film forming apparatus of the present invention. In this embodiment, a case where a Ti (titanium) film is formed as a metal film by a film forming apparatus will be described as an example.
As shown in the figure, the film forming apparatus 2 has a processing container 4 formed in a cylindrical shape, and the processing container 4 is grounded. An exhaust port 8 for exhausting the atmosphere in the container is provided at the bottom 6 of the processing container 4, and an exhaust system 12 having a vacuum pump 10 is connected to the exhaust port 8. The inside of the processing container 4 can be evacuated uniformly from the bottom periphery.
[0011]
In the processing container 4, a disk-like mounting table 16 made of metallic material, for example, Hastelloy (trademark) is provided via a support 14 made of a conductive material. A wafer W can be placed thereon. The mounting table 16 also serves as a lower electrode. The mounting table 16 includes a lower table 16A that is directly supported by the support column 14 and an upper table 16B that is bonded to the upper surface. A resistance heater 18 is sandwiched therebetween. Yes. The lower base 16A and the upper base 16B are joined together by welding, for example, at the joint surface. The mounting table 16 is not limited to Hastelloy described above, and may be any metal as long as it has corrosion resistance and conductivity. For example, stainless steel, nickel, Inconel (trademark), or the like can be used.
[0012]
A ceiling plate 22 integrally provided with a shower head 20 that also serves as an upper electrode is attached to the ceiling portion of the processing vessel 4 in an airtight manner with respect to the side wall of the vessel via an insulating material 24. The shower head 20 is provided so as to face almost the entire upper surface of the mounting table 16, and a processing space S is formed between the shower head 20 and the mounting table 16. The shower head 20 introduces various gases into the processing space S in a shower shape, and a plurality of injection holes 28 for injecting gas are formed on the injection surface 26 on the lower surface of the shower head 20. In addition, a diffusion plate 32 having a large number of diffusion holes 30 is provided inside the shower head 20 so that gas can be diffused.
A gas introduction port 34 for introducing gas into the head is provided at the upper portion of the shower head 20. A plurality of, for example, two supply passages 36 and 38 for flowing gas are provided in the gas introduction port 34. It is connected.
[0013]
A plurality of branch pipes 40 are connected to one supply passage 36, and each branch pipe 40 stores, for example, a TiCl 4 gas source 42 that stores TiCl 4 gas as a film forming gas, and H 2 gas. An H 2 gas source 44, an Ar gas source 46 for storing, for example, Ar gas as a plasma gas, and a ClF 3 gas source 48 for storing a ClF-based gas, for example, ClF 3 gas, are used as cleaning gases for cleaning. The other supply passage 38 is connected to an N 2 gas source 50 that stores N 2 gas as a film forming gas. The flow rate of each gas is controlled by a flow rate controller such as a mass flow controller 52 provided in each branch pipe 40 and the supply passage 80. Here, TiCl 4 gas and N 2 gas are separately conveyed to the shower head 20 and mixed in the shower head, but the present invention is not limited to this, and both gases are conveyed in a mixed state. Alternatively, the inside of the shower head 20 may be separated, and mixed when sprayed into the processing space S. The same applies to other gases such as TiCl 4 , H 2 , and Ar.
[0014]
In addition, a matching circuit 56 and a high frequency power source 58 for plasma of, for example, 13.56 MHz are connected to the ceiling plate 22 through lead wires 54 in order to mainly form plasma during Ti film formation.
Further, in order to adjust the temperature of the wall surface, for example, a temperature control jacket 60 for the container for selectively flowing a cooled or heated heat medium is provided on the side wall of the processing container 4 as necessary. The jacket 60 is connected to a temperature controller (not shown). On the side wall of the container, a gate valve 62 is provided that can be opened and closed in an airtight manner when a wafer is loaded into and unloaded from the load lock chamber 64.
Further, the shower head 20 is also provided with a head temperature control jacket 66 for selectively flowing, for example, a cooled or heated heat medium as necessary in order to adjust the surface temperature. The jacket 66 is connected to a temperature controller (not shown). For example, a chiller can be used as the temperature control heat medium.
[0015]
Next, a film forming method performed based on the apparatus configured as described above will be described with reference to FIG.
In the method of the present invention, before the film is actually formed on the semiconductor wafer W, the pre-coated metal-containing thin film is formed on the surface of the metal mounting table using a gas substantially the same as that used for the wafer film formation. To cover the mounting table. In this case, since the purpose is to form a Ti film on the wafer, a thin film containing Ti metal, for example, a Ti thin film, a TiN thin film, or both of these thin films is formed as the precoat metal-containing thin film. become. Here, a case where both the thin films are laminated will be described as an example.
[0016]
First, without introducing the semiconductor wafer W into the processing container 4, for example, the load is kept in the load lock chamber 64. In this state, as shown in FIG. 2 (A), no film is formed on the surface of the metal mounting table 16, and the metal constituting the mounting table 16 is exposed.
Thus, in a state where nothing is placed on the mounting table 16, TiCl 4 gas and H 2 gas are used as the film forming gas, and Ar gas is used as the plasma gas from the shower head 20 at a predetermined flow rate. And the inside of the processing container 4 is evacuated by the vacuum pump 10 and maintained at a predetermined pressure.
[0017]
At the same time, a high frequency of 13.56 MHz is applied from the high frequency power source 58 to the shower head 20 as the upper electrode, and a high frequency electric field is applied between the shower head 20 and the mounting table 16 as the lower electrode. As a result, the Ar gas is turned into plasma to promote the reduction reaction between the TiCl 4 gas and the H 2 gas, and the Ti thin film 68 is covered over the entire surface of the mounting table 16 as shown in FIG. 2B. Will be formed. The Ti thin film 68 is set to have a thickness of about 200 to 300 mm, for example. The Ti thin film 68 is a first thin film of a precoat metal-containing thin film 72 described later.
[0018]
The temperature of the mounting table 16 is heated to a predetermined temperature by a resistance heater 18 embedded in the mounting table 16.
Further, the side wall of the processing vessel 4 and the shower head 20 that tend to be heated by the plasma flow the refrigerant through the container temperature control jacket 60 and the head temperature control jacket 66 respectively provided to the predetermined temperature. Cooling.
The process conditions at this time are a mounting table temperature of, for example, about 700 ° C., a container side wall of about 130 ° C., a shower head 20 of about 130 ° C., a process pressure of about 1 Torr, and a high-frequency power of about 700 W.
The gas flow rates are, for example, about 200 to 300 sccm for TiCl 4 gas, 1.5 to 2 liter / min for H 2 gas, and about 1 liter / min for Ar gas.
[0019]
In this way, when the first thin film of the precoat metal-containing thin film 72, that is, the Ti thin film 68 is formed, the inside of the processing container 4 is evacuated to form the second thin film of the precoat metal-containing thin film 72. Embark on.
First, TiCl 4 gas and N 2 gas are introduced from the shower head 20 into the processing container 4 at a predetermined flow rate as film forming gases, respectively, and the inside of the processing container 4 is maintained at a predetermined pressure by the vacuum pump 10. . In this case, the TiN thin film 70 is formed by thermal CVD without using a high frequency, that is, without plasma, as shown in FIG. 2C.
[0020]
The TiN thin film 70 is set to have a thickness of about 200 to 300 mm, for example. The TiN thin film 70 is a second thin film of a precoat metal-containing thin film 72 described later. The process conditions at this time are a mounting table temperature of about 700 ° C., a container side wall of about 130 ° C., a shower head 20 of about 130 ° C., and a process pressure of about 1 Torr. The gas flow rate at this time is, for example, about 10 sccm for TiCl 4 gas and about 50 sccm for N 2 gas.
Thus, by making the precoat metal-containing thin film 72 into a two-layer structure of the Ti thin film 68 and the TiN thin film 70, the adhesion between the Ti thin film 68 and the mounting surface of the mounting table 16 is greatly improved, and this peeling is performed. Can be prevented.
[0021]
When the formation of the precoat metal-containing thin film 72 for preventing heavy metal contamination having a two-layer structure is completed in this way, the process proceeds to an actual film forming operation on the wafer surface.
First, the wafer W is loaded into the processing container 4 from the load lock chamber 64 via the opened gate valve 62 (see FIG. 1) (FIG. 2C) and placed on the mounting table 16 (see FIG. 2C). FIG. 2 (E)).
Then, the film forming process is started in a state where the inside of the processing container 4 is airtight.
First, here, a Ti film is formed on the wafer surface. This Ti film is formed, for example, under the same film forming gas and process conditions as those for forming the Ti thin film 68 of the precoat metal-containing thin film 72. That is, TiCl 4 gas and H 2 gas as film forming gases and Ar gas as plasma gases are introduced into the processing container 4 at a predetermined flow rate, respectively, and the processing container 4 is maintained at a predetermined pressure by evacuation. To do. Then, a Ti film 74 having a predetermined thickness is formed on the wafer surface as a metal-containing film by a plasma-assisted reduction reaction as shown in FIG. 2 (F).
[0022]
If necessary, a TiN film 76 is formed as a metal-containing film on the Ti film 74 as shown in FIG. 2G, for example, to form a barrier metal or a wiring structure. The deposition gas and process conditions for the TiN film 76 are also the same as the deposition gas and process conditions used when the TiN thin film 70 of the precoat metal-containing thin film 72 is formed. That is, film formation is performed by plasmaless CVD using TiCl 4 gas and N 2 gas as film formation gases.
As described above, once the precoat metal-containing thin film 72 is formed, a predetermined number of wafers, for example, about 20 to 25 wafers, are continuously formed. During this time, reaction byproducts such as titanium compounds are processed. Since it adheres to the inside of the container 4 and the internal structure, as described above, the cleaning process inside the container is performed when the film forming process for a predetermined number of wafers is completed.
[0023]
In this cleaning process, a ClF-based gas, for example, ClF 3 gas, is flowed into the processing container 4 as a cleaning gas, and the mounting table 16, the shower head 20, the container side wall and the like are maintained at a constant temperature, and titanium adhered to the inside. This is done by evaporating and removing the chloride. During this cleaning process, the precoat metal-containing thin film 72 previously formed on the mounting table 16 is also removed. Therefore, before performing the next wafer film formation, the precoat metal-containing thin film 72 is again formed by the above-described process. A film is formed, and then an actual film forming process is performed on the wafer.
Thus, before the wafer film formation, a thin film containing the same metal as the metal included in the wafer film formation is formed on the metal mounting table 16 as the precoat metal-containing thin film 72 so as to cover the surface of the mounting table. It is possible to suppress the metal atoms of the mounting table 16 from going outside, and it is possible to prevent heavy metal contamination due to the constituent metal of the mounting table 16 from occurring on the wafer.
[0024]
In addition, even when the Ti metal contained in the precoat metal-containing thin film 72 is moved to the wafer W side during the film formation of the wafer, it is the same metal as that contained in the film formation of the wafer W. Does not occur.
Further, since the mounting table 16 is made of a metal material such as Hastelloy, for example, it has good conductivity. Therefore, a potential difference is generated in the surface of the mounting table 16 during plasma film formation. There is no potential difference between them. For this reason, it is possible to suppress the deviation of the plasma density due to the potential difference, to make the plasma density uniform, and to maintain the formation in a stable state.
Moreover, since the mounting table 16 is made of a metal having good thermal conductivity, the heat conduction efficiency can be improved as compared with the case where it is made of a ceramic material.
[0025]
In the step shown in FIG. 2, when the precoat metal-containing thin film 72 is formed, the second TiN thin film 70 is deposited and laminated after the first Ti thin film 68 is formed. However, the present invention is not limited to this, and may be configured as shown in FIG. 3, for example. That is, as shown in FIG. 3A, a slightly thick Ti thin film 80 is formed on the surface of the mounting table 16 by using the same film forming method as that for forming the first thin Ti film 68 of the first layer. Form. Then, as shown in FIG. 3B, plasma is generated while N 2 gas is allowed to flow into the processing container 4, and the surface portion of the slightly thick Ti thin film 80 is nitrided. As a result, as shown in FIG. 3C, the surface portion of the Ti thin film 80 or the upper half of the original Ti thin film 80 is nitrided to form a second TiN thin film 82. A precoat metal-containing thin film 72 having a structure may be formed.
[0026]
Further, the precoat metal-containing thin film 72 has been described by taking the case of a two-layer structure as an example. However, the present invention is not limited to this. For example, as the precoat metal-containing thin film 72, as shown in FIG. Or it is good also as a 1 layer structure of only the TiN thin film 70. In any case, as long as the surface of the metal mounting table 16 is covered with a thin film containing the same metal as that contained during film formation of the wafer, the structure and the type of metal are not limited.
In the above embodiment, titanium has been described as an example of the metal contained in the film formation. However, the present invention is not limited to this and can be applied to other metals such as tungsten, molybdenum, and aluminum. is there.
Furthermore, the object to be processed is not limited to a semiconductor wafer, and can be applied to a glass substrate, an LCD substrate, and the like.
[0027]
【The invention's effect】
As described above, according to the film forming method and film forming apparatus of the present invention, the following excellent effects can be exhibited.
Since the precoat metal-containing thin film containing the same metal as the metal-containing thin film to be processed is attached to the surface of the mounting table and covered, the metal atoms constituting the mounting table are confined to this thin film on the outside. It can be prevented from coming out and heavy metal contamination to the object to be treated can be prevented.
As a result, the mounting table can be formed of a metal material having good conductivity without worrying about heavy metal contamination, so that it is possible to prevent potential differences that adversely affect the plasma distribution, and the plasma can be stably and uniformly distributed. Can be formed.
In addition, when a titanium film or a titanium nitride film is formed on an object to be processed, the adhesion of the titanium thin film to the mounting table is achieved by adopting a laminated structure of a titanium thin film and a titanium nitride thin film as the precoat metal-containing thin film. Can be improved, and it can be prevented from peeling off.
[Brief description of the drawings]
FIG. 1 is a configuration diagram showing an embodiment of a film forming apparatus of the present invention.
FIG. 2 is a process diagram for explaining the method of the present invention.
FIG. 3 is a process diagram showing a modification of the method of the present invention.
FIG. 4 is a process diagram showing another modification of the method of the present invention.
[Explanation of symbols]
2 Film-forming apparatus 4 Processing container 16 Mounting stand 18 Resistance heater 20 Shower head 58 High frequency power supply 68 Ti thin film 70 TiN thin film 72 Precoat metal containing thin film 74 Ti film (metal containing film)
76 TiN film (metal-containing film)
80 Ti thin film 82 TiN thin film W Semiconductor wafer (object to be processed)

Claims (6)

処理容器内の載置台上に載置された被処理体に対してチタン(Ti)膜、またはチタンナイトライド(TiN)膜よりなる金属含有膜を形成する成膜方法において、前記載置台の表面に前記金属含有膜と同じ金属を含む膜であるチタン薄膜とチタンナイトライド薄膜が順次積層された2層構造よりなるプリコート金属含有薄膜を形成し、その後、前記被処理体を前記載置台上に載置した状態で前記被処理体の表面に前記金属含有膜を形成するようにしたことを特徴とする成膜方法。In the film forming method for forming a metal-containing film made of a titanium (Ti) film or a titanium nitride (TiN) film on an object to be processed mounted on a mounting table in a processing container, the surface of the mounting table the metal-containing film precoating metal-containing thin titanium thin film and the titanium nitride thin film is a film containing the same metal is formed of two-layer structure, which are sequentially stacked and is formed, then, the stage before describing the object to be processed in A film forming method, wherein the metal-containing film is formed on a surface of the object to be processed while being placed on the surface. 前記載置台は金属製であることを特徴とする請求項1記載の成膜方法。The film forming method according to claim 1, wherein the mounting table is made of metal. 前記チタンナイトライド薄膜は、前記チタン薄膜の表面部分を窒化処理することにより形成されることを特徴とする請求項1または2記載の成膜方法。3. The film forming method according to claim 1, wherein the titanium nitride thin film is formed by nitriding a surface portion of the titanium thin film. 前記チタンナイトライド薄膜は、前記チタン薄膜を形成し、この上に前記チタンナイトライド薄膜を積層させることによって形成されることを特徴とする請求項1または2記載の成膜方法。3. The film forming method according to claim 1, wherein the titanium nitride thin film is formed by forming the titanium thin film and laminating the titanium nitride thin film thereon. 処理容器内の載置台上に載置された被処理体に対してチタン(Ti)膜、またはチタンナイトライド(TiN)膜よりなる金属含有膜を形成する成膜装置において、前記載置台の表面には、前記金属含有膜に含まれる金属と同じ金属を含む膜であるチタン薄膜とチタンナイトライド薄膜が順次積層された2層構造よりなるプリコート金属含有薄膜が形成されることを特徴とする成膜装置。In a film forming apparatus for forming a metal-containing film made of a titanium (Ti) film or a titanium nitride (TiN) film on an object to be processed placed on a mounting table in a processing container, the surface of the mounting table the, the feature that the precoating metal-containing thin film made of two-layer structure in which a titanium thin film and the titanium nitride thin film is a film containing the same metal as the metal-containing film are sequentially laminated is formed A film forming apparatus. 前記載置台は金属製であることを特徴とする請求項5記載の成膜装置。6. The film forming apparatus according to claim 5, wherein the mounting table is made of metal.
JP14585597A 1997-05-20 1997-05-20 Film forming method and film forming apparatus Expired - Fee Related JP3624628B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP14585597A JP3624628B2 (en) 1997-05-20 1997-05-20 Film forming method and film forming apparatus
US09/071,156 US5942282A (en) 1997-05-20 1998-05-04 Method for depositing a titanium film
TW087107232A TW399237B (en) 1997-05-20 1998-05-11 Film forming method and apparatus
KR1019980017960A KR100355321B1 (en) 1997-05-20 1998-05-19 Film forming method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14585597A JP3624628B2 (en) 1997-05-20 1997-05-20 Film forming method and film forming apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004300879A Division JP2005068559A (en) 2004-10-15 2004-10-15 Method and apparatus for film formation

Publications (2)

Publication Number Publication Date
JPH10321558A JPH10321558A (en) 1998-12-04
JP3624628B2 true JP3624628B2 (en) 2005-03-02

Family

ID=15394651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14585597A Expired - Fee Related JP3624628B2 (en) 1997-05-20 1997-05-20 Film forming method and film forming apparatus

Country Status (4)

Country Link
US (1) US5942282A (en)
JP (1) JP3624628B2 (en)
KR (1) KR100355321B1 (en)
TW (1) TW399237B (en)

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177023B1 (en) * 1997-07-11 2001-01-23 Applied Komatsu Technology, Inc. Method and apparatus for electrostatically maintaining substrate flatness
JP3381774B2 (en) * 1997-12-24 2003-03-04 東京エレクトロン株式会社 Method of forming CVD-Ti film
JP3191290B2 (en) * 1999-01-07 2001-07-23 日本電気株式会社 Semiconductor device manufacturing method and plasma CVD apparatus used in semiconductor device manufacturing method
US6451181B1 (en) * 1999-03-02 2002-09-17 Motorola, Inc. Method of forming a semiconductor device barrier layer
KR100709801B1 (en) * 1999-11-17 2007-04-23 동경 엘렉트론 주식회사 Precoat film forming method, idling method of film forming device, loading table structure, film forming device and film forming method
JP4547744B2 (en) * 1999-11-17 2010-09-22 東京エレクトロン株式会社 Precoat film forming method, film forming apparatus idling method, mounting table structure, and film forming apparatus
US20030235652A1 (en) * 1999-11-17 2003-12-25 Satoshi Wakabayashi Precoat film forming method
FR2801814B1 (en) * 1999-12-06 2002-04-19 Cebal METHOD FOR DEPOSITING A COATING ON THE INTERNAL SURFACE OF AEROSOL DISPENSING UNITS
JP4505915B2 (en) * 2000-01-13 2010-07-21 東京エレクトロン株式会社 Deposition method
JP3549188B2 (en) * 2000-03-27 2004-08-04 日本エー・エス・エム株式会社 Method for forming thin film on semiconductor substrate
US6827987B2 (en) 2001-07-27 2004-12-07 Applied Materials, Inc. Method of reducing an electrostatic charge on a substrate during a PECVD process
JP3886424B2 (en) * 2001-08-28 2007-02-28 鹿児島日本電気株式会社 Substrate processing apparatus and method
US6720259B2 (en) * 2001-10-02 2004-04-13 Genus, Inc. Passivation method for improved uniformity and repeatability for atomic layer deposition and chemical vapor deposition
JP4325301B2 (en) * 2003-01-31 2009-09-02 東京エレクトロン株式会社 Mounting table, processing apparatus, and processing method
CN101298667A (en) * 2003-01-31 2008-11-05 东京毅力科创株式会社 Film forming method
JP4543611B2 (en) * 2003-03-06 2010-09-15 東京エレクトロン株式会社 Precoat layer forming method and film forming method
JP2005064284A (en) * 2003-08-14 2005-03-10 Asm Japan Kk Semiconductor substrate holding device
KR100568256B1 (en) * 2003-12-11 2006-04-07 삼성전자주식회사 Method for cleaning fabrication apparatus of semiconductor device
KR20060123381A (en) * 2003-12-22 2006-12-01 쎄코 툴스 에이비 Carrier body and method for coating cutting tools
JP2006351814A (en) * 2005-06-15 2006-12-28 Tokyo Electron Ltd Cleaning method, computer program and film depositing device
JP4823628B2 (en) * 2005-09-26 2011-11-24 東京エレクトロン株式会社 Substrate processing method and recording medium
US20070234955A1 (en) * 2006-03-29 2007-10-11 Tokyo Electron Limited Method and apparatus for reducing carbon monoxide poisoning at the peripheral edge of a substrate in a thin film deposition system
JP2008010579A (en) * 2006-06-28 2008-01-17 Renesas Technology Corp Semiconductor device manufacturing apparatus
JP6280721B2 (en) * 2013-01-22 2018-02-14 東京エレクトロン株式会社 Method of forming TiN film and storage medium
US9873940B2 (en) 2013-12-31 2018-01-23 Lam Research Corporation Coating system and method for coating interior fluid wetted surfaces of a component of a semiconductor substrate processing apparatus
US10388820B2 (en) * 2015-02-03 2019-08-20 Lg Electronics Inc. Metal organic chemical vapor deposition apparatus for solar cell
US11289355B2 (en) 2017-06-02 2022-03-29 Lam Research Corporation Electrostatic chuck for use in semiconductor processing
JP6964515B2 (en) * 2017-12-27 2021-11-10 東京エレクトロン株式会社 How to clean the susceptor
JP6917315B2 (en) 2018-01-15 2021-08-11 東京エレクトロン株式会社 Precoating method and film forming method
KR20240050466A (en) 2018-01-31 2024-04-18 램 리써치 코포레이션 Electrostatic chuck (esc) pedestal voltage isolation
US11086233B2 (en) * 2018-03-20 2021-08-10 Lam Research Corporation Protective coating for electrostatic chucks

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3709066A1 (en) * 1986-03-31 1987-10-01 Toshiba Kawasaki Kk METHOD FOR PRODUCING A THIN METAL FILM BY CHEMICAL EVAPORATION
JPS6389672A (en) * 1986-10-02 1988-04-20 Anelva Corp Plasma cvd device
JP2890493B2 (en) * 1989-07-10 1999-05-17 ソニー株式会社 Plasma processing apparatus and plasma processing method
JPH06163427A (en) * 1992-11-25 1994-06-10 Sony Corp Plasma treatment device
JPH06216222A (en) * 1993-01-18 1994-08-05 Hitachi Ltd Jig for holding semiconductor wafer
US5482749A (en) * 1993-06-28 1996-01-09 Applied Materials, Inc. Pretreatment process for treating aluminum-bearing surfaces of deposition chamber prior to deposition of tungsten silicide coating on substrate therein
JPH07273053A (en) * 1994-03-31 1995-10-20 Tokyo Electron Ltd Treatment device and coating of aluminum-based member

Also Published As

Publication number Publication date
US5942282A (en) 1999-08-24
KR100355321B1 (en) 2002-11-18
KR19980087180A (en) 1998-12-05
JPH10321558A (en) 1998-12-04
TW399237B (en) 2000-07-21

Similar Documents

Publication Publication Date Title
JP3624628B2 (en) Film forming method and film forming apparatus
KR101012812B1 (en) Article for use in a semiconductor processing chamber and method of fabricating the same
US7422636B2 (en) Plasma enhanced atomic layer deposition system having reduced contamination
US5954887A (en) Cleaning processing method of a film forming apparatus
KR100892789B1 (en) Susceptor device for semiconductor processing, film forming apparatus, and film forming method
JP5439771B2 (en) Deposition equipment
US5827408A (en) Method and apparatus for improving the conformality of sputter deposited films
JPH0830273B2 (en) Thin film forming method and apparatus
JPH10106974A (en) Method for forming continuously titanium film and titanium nitride film
KR101139165B1 (en) Ti FILM FORMING METHOD AND STORAGE MEDIUM
JP3381774B2 (en) Method of forming CVD-Ti film
JP2001144033A (en) Forming method for precoat film, idling method for film forming device, mounting base structure and film forming device
JP2009057638A (en) Processing method
JP3635875B2 (en) Film forming method and film laminated structure
JP2005068559A (en) Method and apparatus for film formation
JP4782761B2 (en) Deposition equipment
JP3070567B2 (en) Vertical reduced pressure vapor phase growth apparatus and vapor phase growth method using the same
KR102549555B1 (en) Part for Process Chamber and Protective Layer Processing Machine
JP2002064067A (en) Conditioned chamber for improving chemical vapor deposition
US20230323531A1 (en) Coating interior surfaces of complex bodies by atomic layer deposition
JPH10321555A (en) Plasma film deposition device and cleaning method therefor
KR20220067696A (en) Gas supplier and deposition equipment having the same
JP4543611B2 (en) Precoat layer forming method and film forming method

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040519

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20041109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20041122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101210

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131210

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees