JP3179119B2 - Dielectric porcelain composition - Google Patents
Dielectric porcelain compositionInfo
- Publication number
- JP3179119B2 JP3179119B2 JP01375791A JP1375791A JP3179119B2 JP 3179119 B2 JP3179119 B2 JP 3179119B2 JP 01375791 A JP01375791 A JP 01375791A JP 1375791 A JP1375791 A JP 1375791A JP 3179119 B2 JP3179119 B2 JP 3179119B2
- Authority
- JP
- Japan
- Prior art keywords
- mol
- dielectric
- see
- less
- sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Ceramic Capacitors (AREA)
- Inorganic Insulating Materials (AREA)
Description
【発明の詳細な説明】
【0001】
【産業上の利用分野】本発明は誘電体磁器組成物に係
り、特に静電容量の温度に対する変化率が小さくかつ非
誘電率が高く、誘電体損失が小さい、寿命特性もよい誘
電体磁器組成物に関する。
【0002】
【従来の技術】通信機、電子計算機、テレビ受像機等に
用いるIC回路素子等に広く使用される積層磁器コンデ
ンサの製造方法は大別して、印刷法およびシート法の2
種がある。
【0003】印刷法は誘電体スラリーを所定の形状に印
刷し、乾燥後その上に電極ペーストを印刷し乾燥する。
この上に再び誘電体スラリーを印刷するという方法を繰
返すことにより積層するものである。
【0004】シート法は誘電体シートを作成し、その上
に電極ペーストを印刷しこれを複数枚積み重ねて熱圧着
して積層化し、この積層体を自然雰囲気中で焼成し焼結
体を作り、これに内部電極と導通する外部引出し電極を
焼付けるものである。
【0005】この場合、コンデンサの内部電極となる電
極ペーストと誘電体を同時に焼成するため、内部電極の
材料としては誘電体が焼結する温度内で電極が形成でき
ること、自然雰囲気中で加熱しても酸化したり、誘電体
と反応しないことが必要である。
【0006】これらの条件を満すものとして従来、白金
やパラジウムなどの貴金属が主に使用されていた。しか
し、これらの貴金属は非常に安定であるが、高価であ
り、積層磁器コンデンサのコストアップの最大の原因に
なっていた。
【0007】そのため、安価なニッケル等の卑金属を内
部電極として使用する試みがなされている。しかしニッ
ケルは酸化性雰囲気中で加熱すると酸化し、誘電体と反
応して電極形成が不可能となる。それ故、中性あるいは
還元性雰囲気中で焼成すると、今度は誘電体材料が還元
され、比抵抗が非常に低いものとなってしまい、コンデ
ンサ用誘電体材料として使用できないという欠点があ
る。
【0008】このような欠点を改善するため、従来、誘
電体磁器組成物として、BaTiO3 、CaTiO3 、
CaZrO3 、MnO、SiO2 等を含有する種々の誘
電体磁器組成物が提案されている(例えば特開昭61−
155255号公報、特開昭62−2408号公報参
照)。
【0009】
【発明が解決しようとする課題】ところがこれらの誘電
体磁器組成物はその温度特性が大きかったりして必ずし
も満足のいくものではない。
【0010】従って本発明の目的は、ニッケル等の卑金
属を内部電極として使用した積層磁器コンデンサを形成
出来るように、中性あるいは還元性雰囲気中で焼成して
も、温度特性がよく、比誘電率が高く誘電体損失の小さ
い、寿命特性もよい誘電体磁器組成物を提供するもので
ある。
【0011】
【課題を解決するための手段】前記の目的を達成するた
め、本発明では
BaTiO3 94.65モル%〜98.50 モル%
CaZrO3 0.50モル%〜2.32モル%
CaTiO3 0.50モル%〜3.03モル%
MnO 0.50モル%〜2.00モル%
Y2 O3 0.05モル%〜0.25モル%
(Baα,Ca(1−α))SiO3 (ただし0.43≦α
≦0.62)1
〜10.00 モル%
の範囲にある組成の誘電体磁器組成物を提供するもので
ある。
【0012】
【作用】本発明の如き組成の誘電体磁器組成物は還元性
雰囲気中で焼成しても十分高い比抵抗を有し、静電容量
の温度に対する変化率が小さくかつ比誘電率が高く誘電
体損失の小さい、寿命特性もよいものが得られる。
【0013】これにより特にニッケルを内部電極に有す
る積層磁器コンデンサを形成するのに有用な誘電体磁器
組成物を得ることができる。
【0014】
【実施例】本発明の一実施例を図1を用いて説明する。
【0015】図1は本発明の製造工程説明図であり、図
1(a)は誘電体磁器組成物の材料製造工程説明図、図
1(b)は本発明の誘電体磁器組成物を用いた積層磁器
コンデンサの形成工程説明図である
【0016】出発原料として市販のBaCO3 、TiO
2 を用い混合、仮焼し、BaTiO3 を合成し、CaC
O3 、ZrO2 を用いてCaZrO3 を、CaCO3 、
TiO2 を用いCaTiO3 を、CaCO3 、BaCO
3 、SiO2 を用いて(Baα,Ca1−α)SiO3
をそれぞれ合成し、微粉砕する。BaTiO3 、CaZ
rO3 、CaTiO2 、(BaαCa1−α)SiO3
の合成微粉末とMnCO3 、Y2 O3 をそれぞれ最終的
焼成後の組成が表1〜表3に示す如くになるように秤量
し調合する(図1(a)の1参照)。また上記BaTi
O3 、CaTiO3 、CaZrO3 は、液相法で合成し
たものを使用しても何ら問題は無い。
【0017】次にこれらの微粉末を分散剤とともに湿式
混合・粉砕し、脱水・乾燥する(図1(a)の2,3参
照)。
【0018】この脱水・乾燥した組成物を、粉末に解砕
する(図1(a)の4参照)。
【0019】このようにして得られた微粉末を分散剤等
とともに混合して、原料スラリーを調製する。次にこの
原料スラリーに可塑剤とともに有機バインダーを加え、
充分に混合しエナメル化する(図1(b)の1参照)。
【0020】エナメル化した原料をドクターブレード法
でフィルム状にシート成形し、誘電体シートを得る(図
1(b)の2参照)。
【0021】得られた誘電体シートに内部電極材料であ
るニッケルペーストを印刷し、(図1(b)の3参
照)、これを複数枚積み重ねて熱圧着し、積層体を形成
する(図1(b)の4参照)。
【0022】形成した積層体をカッターで切断し、例え
ば4×2ミリメートルの大きさにする(図1(b)の5
参照)。
【0023】次にこの試料を250℃〜400℃で15
時間安定にして脱バインダーする(図1(b)の6参
照)。
【0024】その後、酸素分圧7×10-9〜9×10
-13 atm.に制御し、焼成温度1200℃〜1300
℃、安定時間2時間で焼成する(図1(b)の7参
照)。
【0025】このようにして得られた焼成体をさらに中
性雰囲気中で700℃〜1100℃、安定時間9時間で
再酸化を行う(図1(b)の8参照)。
【0026】最後に形成した焼成体の上下両面にインジ
ウム−ガリウム合金から成る端子電極を塗布、形成し、
積層コンデンサ形の測定試料を完成する(図1(b)の
9参照)。
【0027】この測定試料を周波数1KHz 、室温20
℃の条件で測定し、表1〜表3に示す如き測定結果を得
た(図1(b)の10参照)。
【0028】なお、寿命試験条件は印加電圧200V、
測定温度200℃での評価結果である。また絶縁抵抗は
測定電圧50V、室温20℃、30秒後の値である。
【0029】このようにして得られた測定結果を表1〜
表3に示す。
【0030】なお表1の試料No. 12,13と表2の試
料No. 14,15,16および表3の試料No. 1,2,
3,5,6が本発明の実施例であり、試料No. の前に*
印を付した試料は本発明の範囲外である。
【0031】
【表1】【0032】
【表2】【0033】
【表3】
【0034】なお、表1、表2、表3の組成を酸化物換
算した値をそれぞれ表4、表5、表6に示す。
【0035】
【表4】【0036】
【表5】
【0037】
【表6】【0038】表1〜表3から明らかな如く、本発明によ
る組成物は比誘電率が2000以上と高く、−25℃か
ら85℃における静電容量の変化率が±15%以内と小
さな値を示し、誘電体損失も3.3 以下と小さく、平均寿
命も50時間と大きな値を示す。
【0039】次に本発明の誘電体磁器組成物の組成範囲
の限定理由について説明する。
【0040】BaTiO3 が94.65 モル%未満である
と、比誘電率が極端に低くなったり、静電容量変化率が
15%をこえる高い値を示す(例えば表1の試料No.
3,5参照)。
【0041】またBaTiO3 が98.50 モル%より多く
なると、比誘電率が低くなる(例えば表1の試料No. 1
参照)。
【0042】CaZrO3 が0.50モル%未満であると、
比誘電率が低くなる(例えば表1の試料No. 1参照)。
【0043】CaZrO3 が2.32モル%より多くなる
と、静電容量変化率が±15%以上の高い値を示す(例
えば表1の試料No. 4,5参照)。
【0044】CaTiO3 が0.50モル%未満であると、
比誘電率が低くなったり静電容量変化率が±15%以上
の高い値を示す(例えば表1の試料No. 1,2,4参
照)。
【0045】CaTiO3 が3.03モル%より多くなる
と、比誘電率が極端に低くなる(例えば表1の試料No.
3参照)。
【0046】MnOが0.50モル%未満であると、誘電体
損失が極めて高くなるとともに絶縁抵抗も1×1010以
下と低下し、平均寿命も5時間以下と極端に少ない(例
えば表1の試料No. 6,7参照)。
【0047】MnOが2.00モル%より多くなると、絶縁
抵抗が1×1010以下と低くなり、実用的誘電体特性が
得られない(例えば表1の試料No. 11参照)。
【0048】即ち、MnOが0.50モル%〜2.00モル%の
範囲では絶縁対抗が大きく温度特性も良好である。
【0049】Y2 O3 が0.05モル%未満であると、平均
寿命が5時間以下と極めて短かく実用に適さない(例え
ば表1の試料No. 8,9参照)。
【0050】Y2 O3 が0.25モル%より多くなると、誘
電体損失が2ケタの値と極端に多くなり、絶縁抵抗も1
×1010以下と低く、平均寿命も5時間以下と極端に短
かく実用的誘電体特性が得られない(例えば表1の試料
No. 6,10参照)。
【0051】次に{Baα,Ca(1−α)}SiO3
を添加することにより温度特性が大幅に改善されるが、
1.00モル%未満であると誘電体損失が大きくなったり
(No.6,7,10)、絶縁抵抗も小さくなる(No.
8,11)。10.00 モル%より多くなると、比誘電率が
2000以下と極めて低くなる(例えば表2の試料No.
17参照。ただしこの例ではα=0.58である)。
【0052】さらに{Baα,Ca(1−α)}SiO
3 の含有量が10.00 モル%以下でも、αが0.43未満であ
ったり、0.62より多いと、焼結困難となり、組成物自体
を製造することができない(例えば表3の試料No. 4,
7参照)。
【0053】コンデンサ材料として実用化する場合、特
開昭62−2408号公報に記載されるような電気特性
以外に寿命(信頼性)が問題となる。特に本発明のよう
な耐還元性材料では、雰囲気中で焼成された場合に、誘
電体が還元を受け、寿命が短かくなるのが一般的であ
る。本発明は、その点に着目し、Y2 O3 の添加を行な
ったものであり、Y2 O3 が0.05mol %よりも少ないと
平均寿命が5時間以下となり、実用上問題となる点を大
きく改善することができる。
【0054】
【発明の効果】本発明の組成の誘電体磁器組成物は、比
誘電率が高く、誘電体損失も少なく、静電容量の温度に
対する変化率が小さく安定しており、寿命特性も良い信
頼性の高い誘電体磁器組成物を得ることができる。
【0055】このような誘電体磁器組成物は、特にニッ
ケルを内部電極に有する積層磁器コンデンサ用としてす
ぐれた特長を有している。Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition, and more particularly, to a small change rate of capacitance with respect to temperature, a high non-dielectric constant, and a low dielectric loss. The present invention relates to a dielectric ceramic composition having a small life property . 2. Description of the Related Art A method for manufacturing a laminated ceramic capacitor widely used for an IC circuit element or the like used for a communication device, an electronic computer, a television receiver or the like is roughly classified into a printing method and a sheet method.
There are seeds. In the printing method, a dielectric slurry is printed in a predetermined shape, and after drying, an electrode paste is printed thereon and dried.
On this, a method of printing a dielectric slurry again is repeated to laminate. [0004] In the sheet method, a dielectric sheet is prepared, an electrode paste is printed thereon, a plurality of these layers are stacked, thermally pressed and laminated, and the laminated body is fired in a natural atmosphere to form a sintered body. An external lead-out electrode which is electrically connected to the internal electrode is burned on this. In this case, since the electrode paste and the dielectric which are to be the internal electrodes of the capacitor are fired simultaneously, the material of the internal electrodes is that the electrodes can be formed within the temperature at which the dielectric sinters. Must not oxidize or react with the dielectric. Conventionally, noble metals such as platinum and palladium have been mainly used to satisfy these conditions. However, these precious metals are very stable, but expensive, and have been the biggest cause of the increase in the cost of the laminated ceramic capacitor. For this reason, attempts have been made to use inexpensive base metals such as nickel as internal electrodes. However, nickel is oxidized when heated in an oxidizing atmosphere and reacts with a dielectric to make electrode formation impossible. Therefore, when firing in a neutral or reducing atmosphere, the dielectric material is reduced this time, resulting in a very low specific resistance, and cannot be used as a dielectric material for capacitors. In order to improve such disadvantages, BaTiO 3 , CaTiO 3 , and the like have conventionally been used as dielectric ceramic compositions.
Various dielectric porcelain compositions containing CaZrO 3 , MnO, SiO 2 and the like have been proposed (for example, Japanese Patent Application Laid-Open No. SHO 61-61).
155255, JP-A-62-2408). However, these dielectric ceramic compositions are not always satisfactory because of their large temperature characteristics. Accordingly, an object of the present invention is to provide a laminated ceramic capacitor using a base metal such as nickel as an internal electrode, so that it has good temperature characteristics and good relative dielectric constant even when fired in a neutral or reducing atmosphere. An object of the present invention is to provide a dielectric porcelain composition having a high dielectric loss, a high dielectric loss, and a good life characteristic . [0011] SUMMARY OF] To achieve the above object, the present invention BaTiO 3 94.65 mol% to 98.50 mol% CaZrO 3 0.50 mole% ~2.32 mol% CaTiO 3 0.50 mole% ~3.03 mol% MnO 0.50 mol% to 2.00 mol% Y 2 O 3 0.05 mol% to 0.25 mol% (Baα, Ca (1-α)) SiO 3 (where 0.43 ≦ α
≦ 0.62) The present invention provides a dielectric ceramic composition having a composition in the range of 1 to 10.00 mol%. The dielectric porcelain composition of the present invention has a sufficiently high specific resistance even when fired in a reducing atmosphere, has a small rate of change in capacitance with respect to temperature, and has a low relative dielectric constant. A material having high dielectric loss and good life characteristics can be obtained. Thus, a dielectric ceramic composition particularly useful for forming a laminated ceramic capacitor having nickel as an internal electrode can be obtained. An embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory view of a manufacturing process of the present invention. FIG. 1 (a) is an explanatory view of a material manufacturing process of a dielectric porcelain composition, and FIG. FIG. 4 is an explanatory view of a forming process of a laminated ceramic capacitor which has been used. As starting materials, commercially available BaCO 3 and TiO 2 are used.
2 and calcined to synthesize BaTiO 3 , CaC
O 3, the CaZrO 3 with ZrO 2, CaCO 3,
Using TiO 2 , CaTiO 3 , CaCO 3 , BaCO 3
3. (Baα, Ca1-α) SiO 3 using SiO 2
Are respectively synthesized and pulverized. BaTiO 3 , CaZ
rO 3 , CaTiO 2 , (BaαCa1-α) SiO 3
Synthesis composition of fine powder and MnCO 3, Y 2 O 3, respectively after final firing is formulated were weighed so as to as shown in Table 1 to Table 3 (see 1 in Figure 1 (a)). The above BaTi
There is no problem even if O 3 , CaTiO 3 , and CaZrO 3 are synthesized by a liquid phase method. Next, these fine powders are wet-mixed and pulverized together with a dispersant, and dehydrated and dried (see 2, 3 in FIG. 1A). The dehydrated and dried composition is crushed into powder (see 4 in FIG. 1 (a)). The thus obtained fine powder is mixed with a dispersant or the like to prepare a raw material slurry. Next, an organic binder is added to this raw material slurry together with a plasticizer,
Mix well and enamel (see 1 in FIG. 1 (b)). The enameled raw material is formed into a sheet by a doctor blade method to obtain a dielectric sheet (see 2 in FIG. 1 (b)). A nickel paste as an internal electrode material is printed on the obtained dielectric sheet (see 3 in FIG. 1B), and a plurality of these are stacked and thermocompressed to form a laminate (FIG. 1). (See 4 of (b)). The formed laminate is cut with a cutter to a size of, for example, 4 × 2 millimeters (5 in FIG. 1B).
reference). Next, this sample was heated at 250 ° C. to 400 ° C. for 15 minutes.
After destabilizing for a time, the binder is removed (see 6 in FIG. 1B). Thereafter, the oxygen partial pressure is from 7 × 10 -9 to 9 × 10
-13 atm. And the firing temperature is 1200 ° C. to 1300
Firing is performed at a temperature of 2 ° C. for 2 hours (see 7 in FIG. 1B). The fired body thus obtained is further reoxidized in a neutral atmosphere at a temperature of 700 ° C. to 1100 ° C. for a stabilization time of 9 hours (see 8 in FIG. 1B). A terminal electrode made of an indium-gallium alloy is applied and formed on both upper and lower surfaces of the finally formed body.
A multilayer capacitor type measurement sample is completed (see 9 in FIG. 1B). This test sample was subjected to a frequency of 1 KHz and a room temperature of 20
The measurement was performed under the condition of ° C., and the measurement results as shown in Tables 1 to 3 were obtained (see 10 in FIG. 1B). The life test conditions were an applied voltage of 200 V,
It is an evaluation result at a measurement temperature of 200 ° C. The insulation resistance is a value after a measurement voltage of 50 V, a room temperature of 20 ° C. and 30 seconds. Table 1 shows the measurement results obtained in this manner.
It is shown in Table 3. Sample Nos. 12 and 13 in Table 1 and Sample Nos. 14, 15, and 16 in Table 2 and Sample Nos. 1, 2, and 2 in Table 3
3, 5, and 6 are examples of the present invention, and * before the sample No.
Samples marked are outside the scope of the present invention. [Table 1] [Table 2] [Table 3] Tables 4, 5 and 6 show the oxide-converted values of the compositions shown in Tables 1, 2 and 3, respectively. [Table 4] [Table 5] [Table 6] As is clear from Tables 1 to 3, the composition according to the present invention has a high relative dielectric constant of 2000 or more and a small change in the capacitance from -25 ° C. to 85 ° C. within ± 15%. The dielectric loss is as small as 3.3 or less, and the average life is as large as 50 hours. Next, the reasons for limiting the composition range of the dielectric ceramic composition of the present invention will be described. When the content of BaTiO 3 is less than 94.65 mol%, the relative dielectric constant becomes extremely low, and the capacitance change rate shows a high value exceeding 15% (for example, sample No. 1 in Table 1).
See 3,5 ). When the content of BaTiO 3 exceeds 98.50 mol%, the relative dielectric constant decreases (for example, sample No. 1 in Table 1).
reference). When CaZrO 3 is less than 0.50 mol%,
The relative dielectric constant becomes lower (for example, see Sample No. 1 in Table 1). When the content of CaZrO 3 exceeds 2.32 mol%, the rate of change in capacitance shows a high value of ± 15% or more (see, for example, sample Nos. 4 and 5 in Table 1). When the content of CaTiO 3 is less than 0.50 mol%,
The relative dielectric constant is low and the capacitance change rate is a high value of ± 15% or more (for example, see Sample Nos. 1, 2 , and 4 in Table 1). When the content of CaTiO 3 exceeds 3.03 mol%, the relative dielectric constant becomes extremely low (for example, sample No. 1 in Table 1).
3 ). When the MnO content is less than 0.50 mol%, the dielectric loss is extremely high, the insulation resistance is reduced to 1 × 10 10 or less, and the average life is extremely small, 5 hours or less (for example, sample No. 1 in Table 1). 6, 7 ). When the content of MnO is more than 2.00 mol%, the insulation resistance becomes as low as 1 × 10 10 or less, and practical dielectric properties cannot be obtained (for example, see Sample No. 11 in Table 1). That is, when MnO is in the range of 0.50 mol% to 2.00 mol%, the insulation resistance is large and the temperature characteristics are good. If the content of Y 2 O 3 is less than 0.05 mol%, the average life is extremely short at 5 hours or less, which is not suitable for practical use (for example, see Samples Nos. 8 and 9 in Table 1). When the content of Y 2 O 3 is more than 0.25 mol%, the dielectric loss becomes extremely large, ie, a value of two digits, and the insulation resistance becomes one.
× 10 10 or less, and the average life is extremely short, such as 5 hours or less, so that practical dielectric properties cannot be obtained (for example, the sample shown in Table 1).
No. 6, 10 ). Next, {Baα, Ca (1-α)} SiO 3
The temperature characteristics are greatly improved by adding
If it is less than 1.00 mol%, the dielectric loss may increase.
(Nos. 6, 7, 10), the insulation resistance also decreases (No.
8, 11). If it exceeds 10.00 mol%, the relative dielectric constant becomes extremely low at 2000 or less (for example, sample No.
17 references. However, in this example, α = 0.58). Further, {Baα, Ca (1-α)} SiO
Even if the content of 3 is 10.00 mol% or less, if α is less than 0.43 or more than 0.62, sintering becomes difficult and the composition itself cannot be produced (for example, sample No. 4 in Table 3).
7). When put to practical use as a capacitor material, there is a problem in terms of life (reliability) in addition to the electrical characteristics described in JP-A-62-2408. In particular, in the case of the reduction-resistant material as in the present invention, when fired in an atmosphere, the dielectric generally undergoes reduction and the life is generally shortened. The present invention focuses on this point, which was subjected to the addition of Y 2 O 3, and Y 2 O 3 is less than 0.05 mol% mean life becomes 5 hours or less, a point to be a practical problem It can be greatly improved. The dielectric porcelain composition of the present invention has a high relative dielectric constant, a small dielectric loss, a small change rate of capacitance with respect to temperature, and a stable life characteristic. A highly reliable dielectric ceramic composition can be obtained. Such a dielectric porcelain composition has excellent characteristics particularly for a laminated porcelain capacitor having nickel as an internal electrode.
【図面の簡単な説明】
【図1】本発明の誘電体磁器組成物の製造工程説明図で
ある。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a production process of a dielectric ceramic composition of the present invention.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 相馬 出 東京都中央区日本橋一丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 昭62−278163(JP,A) 特開 平2−83256(JP,A) 特開 昭63−221505(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 303 C04B 35/46 H01G 4/12 358 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor: Soma Ide, 1-13-1 Nihombashi, Chuo-ku, Tokyo Inside TDK Corporation (56) References JP-A-62-278163 (JP, A) JP-A-2 -83256 (JP, A) JP-A-63-221505 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 3/12 303 C04B 35/46 H01G 4/12 358
Claims (1)
≦0.62)1 〜10.00 モル% の範囲にあることを特徴とする誘電体磁器組成物。(57) All Claims composition BaTiO 3 94.65 mol% to 98.50 mol% CaZrO 3 0.50 mole% ~2.32 mol% CaTiO 3 0.50 mole% ~3.03 mol% MnO 0.50 mol% to 2.00 mol% Y 2 O 3 0.05 mol% to 0.25 mol% {Baα, Ca (1-α)} SiO 3 (where 0.43 ≦ α
≦ 0.62) A dielectric porcelain composition characterized by being in the range of 1 to 10.00 mol%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01375791A JP3179119B2 (en) | 1991-01-11 | 1991-01-11 | Dielectric porcelain composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP01375791A JP3179119B2 (en) | 1991-01-11 | 1991-01-11 | Dielectric porcelain composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04242006A JPH04242006A (en) | 1992-08-28 |
JP3179119B2 true JP3179119B2 (en) | 2001-06-25 |
Family
ID=11842124
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP01375791A Expired - Lifetime JP3179119B2 (en) | 1991-01-11 | 1991-01-11 | Dielectric porcelain composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3179119B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE60129533T2 (en) * | 2000-12-25 | 2007-11-22 | Tdk Corp. | DIELECTRIC PORCELAIN COMPOSITION AND ELECTRONIC PARTS |
-
1991
- 1991-01-11 JP JP01375791A patent/JP3179119B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH04242006A (en) | 1992-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4115493A (en) | Method for making a monolithic ceramic capacitor employing a non-reducing dielectric ceramic composition | |
JP3346293B2 (en) | Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JPH1012479A (en) | Laminated ceramics capacitor | |
JPS61250905A (en) | Dielectric ceramic composition and manufacture thereof | |
JP2710639B2 (en) | Dielectric porcelain composition | |
JP3945033B2 (en) | Manufacturing method of multilayer ceramic capacitor | |
JP3179119B2 (en) | Dielectric porcelain composition | |
JP3179121B2 (en) | Dielectric porcelain composition | |
JP2003277136A (en) | Dielectric ceramic composition and multilayer ceramic electronic parts | |
JP2952062B2 (en) | Non-reducing dielectric porcelain composition | |
JPS6136170A (en) | Dielectric ceramic composition and manufacture | |
JP3620314B2 (en) | Dielectric ceramic composition and multilayer ceramic capacitor using the same | |
JP2789110B2 (en) | High dielectric constant porcelain composition | |
JPH11340075A (en) | Dielectric cermic composition | |
JPH05174626A (en) | Reduction-resistant dielectric porcelain composition | |
JPH0828127B2 (en) | Dielectric ceramic composition for temperature compensation | |
JP3350326B2 (en) | Multilayer capacitors | |
JP3134430B2 (en) | Non-reducing dielectric ceramic composition | |
JP3064518B2 (en) | Dielectric porcelain composition | |
JPH0453042B2 (en) | ||
JPH04264305A (en) | Dielectric ceramic composition | |
KR940004142B1 (en) | Ceramic condenser | |
JPH02270313A (en) | Dielectric porcelain composition, laminated ceramic capacitor using the composition and manufacture thereof | |
JP3361531B2 (en) | Dielectric ceramic composition for Ni internal electrode | |
JP3656860B2 (en) | Non-reducing dielectric ceramic composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20010327 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080413 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090413 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090413 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100413 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110413 Year of fee payment: 10 |