JP3179121B2 - Dielectric porcelain composition - Google Patents

Dielectric porcelain composition

Info

Publication number
JP3179121B2
JP3179121B2 JP01826191A JP1826191A JP3179121B2 JP 3179121 B2 JP3179121 B2 JP 3179121B2 JP 01826191 A JP01826191 A JP 01826191A JP 1826191 A JP1826191 A JP 1826191A JP 3179121 B2 JP3179121 B2 JP 3179121B2
Authority
JP
Japan
Prior art keywords
dielectric
mol
see
composition
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP01826191A
Other languages
Japanese (ja)
Other versions
JPH04237902A (en
Inventor
修 大谷
弥 高原
隆一 田中
出 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP01826191A priority Critical patent/JP3179121B2/en
Publication of JPH04237902A publication Critical patent/JPH04237902A/en
Application granted granted Critical
Publication of JP3179121B2 publication Critical patent/JP3179121B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Ceramic Capacitors (AREA)
  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 【0001】 【産業上の利用分野】本発明は誘電体磁器組成物に係
り、特に静電容量の温度に対する変化率が小さく、かつ
非誘電率が高く、誘電体損失が小さい誘電体磁器組成物
に関する。 【0002】 【従来の技術】通信機、電子計算機、テレビ受像機等に
用いるIC回路素子等に広く使用される積層磁器コンデ
ンサの製造方法は大別して、印刷法およびシート法の2
種がある。 【0003】印刷法は誘電体スラリーを所定の形状に印
刷し、乾燥後その上に電極ペーストを印刷し乾燥する。
この上に再び誘電体スラリーを印刷するという方法を繰
返すことにより積層するものである。 【0004】シート法は誘電体シートを作成し、その上
に電極ペーストを印刷し、これを複数枚積み重ねて熱圧
着して積層化し、この積層体を自然雰囲気中で焼成し、
焼結体を作り、これに内部電極と導通する外部引出し電
極を焼付けるものである。 【0005】この場合、コンデンサの内部電極となる電
極ペーストと誘電体を同時に焼成するため、内部電極の
材料としては誘電体が焼結する温度内で電極が形成でき
ること、自然雰囲気中で加熱しても酸化したり、誘電体
と反応しないことが必須である。 【0006】これらの条件を満すものとして、従来、白
金やパラジウムなどの貴金属が主に使用されていた。し
かし、これらの貴金属は非常に安定であるが、高価であ
り、積層磁器コンデンサのコストアップの最大の原因と
なっていた。 【0007】そのため、安価なニッケル等の卑金属を内
部電極として使用する試みがなされている。しかしニッ
ケルは酸化性雰囲気中で加熱すると酸化し、誘電体と反
応して電極形成が不可能となる。それ故、中性あるいは
還元性雰囲気中で焼成すると、今度は誘電体材料が還元
され、比抵抗が非常に低いものとなってしまい、コンデ
ンサ用誘電体材料として使用出来ないという欠点があ
る。 【0008】このような欠点を改善するため、従来、誘
電体磁器組成物として、BaTiO3 、CaTiO3
BaZrO3 、MnO、SiO2 、MgO等を含有する
種々の誘電体磁器組成物が提案されている(例えば特開
昭61−155255号公報、特開昭63−10386
1号公報参照)。 【0009】 【発明が解決しようとする課題】しかし、これらのもの
は寿命特性が短時間で、バランスの良いものではなかっ
た。 【0010】従って本発明の目的は、寿命特性が長く、
静電容量の温度に対する変化率が小さい、バランスのと
れた特性を有すると共に、ニッケル等の卑金属を内部電
極として使用した積層磁器コンデンサを形成出来るよう
に、中性あるいは還元性雰囲気中で焼成しても、温度特
性が良くかつ誘電体特性の良い誘電体磁器組成物を提供
するものである。 【0011】 【課題を解決するための手段】前記の目的を達成するた
め、本発明では BaTiO3 100モル%に対して MnO 0.10モル%〜2.00モル% Y2 3 0.01モル%〜1.00モル% {Baα,Ca(1−α)}SiO3 (ただし0.43≦α≦0.62) 0.5〜10.00 モル% の範囲にある組成の誘電体磁器組成物を提供するもので
ある。 【0012】 【作用】本発明の如き組成の誘電体磁器組成物は、還元
性雰囲気中で焼成しても十分高い比抵抗を有し、静電容
量の温度に対する変化率が小さくかつ比誘電率が高く、
誘電体損失の小さいものが得られる。 【0013】これにより、特にニッケルを内部電極に有
する積層磁器コンデンサを形成するのに有用な誘電体磁
器組成物を得ることができる。 【0014】 【実施例】本発明の一実施例を図1を用いて説明する。 【0015】図1は本発明の一実施例の製造工程説明図
であり、図1(a)は誘電体磁器組成物の材料製造工程
説明図、図1(b)は本発明の誘電体磁器組成物を用い
た積層磁器コンデンサの形成工程説明図である 【0016】出発原料のうちBaTiO3 としては、液
相法で合成された蓚酸チタニルバリウムを焙焼したもの
を使用した。ただし固相法で作成したBaTiO3 を使
用してもさしつかえない。またCaCO3、BaC
3 、SiO2 を用いて(BaOα,CaO(1−
α))SiO2 を合成し、微粉砕する。BaTiO3
微粉砕し、MnO、Y2 3 、{BaOα,CaO(1
−α)}SiO2 等の粉末をそれぞれ最終的焼成後の組
成が表1〜表3に表す如くになるよう秤量し調合する
(図1(a)の1参照)。 【0017】次にこれらの微粉末を分散剤とともに湿式
混合粉砕し、脱水・乾燥する(図1(a)の2,3参
照)。 【0018】この脱水・乾燥した組成物を、粉末に解砕
する(図1(a)の4参照)。 【0019】このようにして得られた微粉末に分散剤等
とともに混合して、原料スラリーを調製する。次にこの
原料スラリーに可塑剤とともに有機バインダーを加えて
十分に混合しエナメル化する(図1(b)の1参照)。 【0020】エナメル化した原料をドクターブレード法
でフィルム状にシート成形し、誘電体シートを得る(図
1(b)の2参照)。 【0021】得られた誘電体シートに内部電極材料であ
るニッケルペーストを印刷し(図1(b)の3参照)、
これを複数枚積み重ねて熱圧着し、積層体を形成する
(図1(b)の4参照)。 【0022】形成した積層体をカッターで切断し、例え
ば4×2ミリメートルの大きさにする(図1(b)の5
参照)。 【0023】次にこの試料を250℃〜400℃で15
時間安定にして脱バインダーする(図1(b)の6参
照)。 【0024】その後、酸素分圧7×10-9〜9×10
-13 a.t.m. に制御し、焼成温度1200℃〜1300
℃、安定時間2時間で焼成する(図1(b)の7参
照)。 【0025】得られた焼成体をさらに中性雰囲気中で7
00℃〜1100℃で安定時間9時間で再酸化を行う
(図1(b)の8参照)。 【0026】最後に形成した焼結体の上下両面にインジ
ウム−ガリウム合金から成る端子電極を塗布、形成し、
積層コンデンサ形の測定試料を完成する(図1(b)の
9参照)。 【0027】この測定試料を周波数1KHz 、室温20
℃の条件で表1〜表3に示す如き各種の電気特性を測定
する(図1(b)の10参照)。 【0028】なお、寿命試験条件は印加電圧200V、
測定温度200℃での評価結果である。また絶縁抵抗
は、測定電圧50V、室温20℃、30秒後の値であ
る。 【0029】このようにして得られた測定結果を表1〜
表3に示す。 【0030】なお表1〜表3のうち*印を付した試料は
本発明の範囲外のものであり、本発明の実施例のものと
比較のために提供したものである。 【0031】 【表1】 【0032】 【表2】 【0033】 【表3】【0034】なお、表1、表2、表3の組成を酸化物換
算した値をそれぞれ表4、表5、表6に示す。 【0035】 【表4】 【0036】 【表5】 【0037】 【表6】 【0038】表1〜表3から明らかな如く、本発明によ
る組成物は比誘電率が2000以上と高く、−55℃〜
125℃と広い温度範囲における静電容量の変化率が比
較的小さな値を有し、他の誘電体特性も良好で平均寿命
も長い。 【0039】次に本発明の誘電体磁器組成物の組成範囲
の限定理由について説明する。 【0040】BaTiO3 100モル%に対して、Mn
Oの含有料を0.10モル%以上添加することにより温度特
性、絶縁抵抗が良好となるが、無添加であると誘電体組
成物が還元され、絶縁抵抗、寿命特性ともに悪化し、誘
電体として作用しなくなる(例えば表1の試料No. 1参
照)。 【0041】一方、MnOの含有量を2.00モル%より多
くすると、比誘電率が2000以下となり実用的誘電体
特性が得られない(例えば表2の試料No. 25参照)。 【0042】Y2 3 の含有量を0.01モル%〜1.00モル
%とすることにより、寿命特性が良好となるが、無添加
であるとその寿命特性は極端に悪化する(例えば表1の
試料No. 4参照)。 【0043】Y2 3 の含有量が1.00モル%を越える
と、絶縁抵抗は1×1010Ω以下、寿命特性は1時間に
満たず実用的な誘電体特性が得られない(例えば表2の
試料No. 27参照)。 【0044】次に{Baα,Ca(1−α)}SiO3
を0.5 〜10.00 モル%添加することにより、寿命特性に
優れて、温度に対する静電容量変化率が小さいバランス
のとれた特性が得られる(例えば表1の試料No. 17、
表2の試料No. 23)が、0.5 モル%以下の添加では、
寿命特性が極端に悪化する(例えば表1の試料No. 4,
5参照)。 【0045】しかし、{Baα,Ca(1−α)}Si
3 を10.00 モル%より多く添加すると、比誘電率が2
000以下となり、実用的な誘電体特性が得られなくな
る(例えば表2の試料No. 24参照)。 【0046】さらに{Baα,Ca(1−α)}SiO
3 の添加量が10.00 モル%以下であっても、αが0.43未
満であったり、αが0.62より多いと焼結困難となり、実
用化することができない(例えば表3の試料No. 4と6
参照)。 【0047】 【発明の効果】本発明の組成の誘電体磁器組成物は、比
誘電率が比較的高く、誘電体損失も少なく、静電容量の
温度に対する変化率が比較的小さく安定しており、寿命
特性の良い、バランスのとれた、信頼性の高い誘電体磁
器組成物を得ることができる。 【0048】このような誘電体磁器組成物は、特にニッ
ケルを内部電極に有する積層磁器コンデンサ用としてす
ぐれた特長を有している。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dielectric porcelain composition, and more particularly to a dielectric material having a small rate of change in capacitance with respect to temperature, a high non-dielectric constant, and a dielectric loss. Is small for a dielectric porcelain composition. 2. Description of the Related Art A method for manufacturing a laminated ceramic capacitor widely used for an IC circuit element or the like used for a communication device, an electronic computer, a television receiver or the like is roughly classified into a printing method and a sheet method.
There are seeds. In the printing method, a dielectric slurry is printed in a predetermined shape, and after drying, an electrode paste is printed thereon and dried.
On this, a method of printing a dielectric slurry again is repeated to laminate. [0004] In the sheet method, a dielectric sheet is formed, an electrode paste is printed thereon, a plurality of the sheets are stacked and laminated by thermocompression bonding, and the laminate is fired in a natural atmosphere.
A sintered body is made, and an external lead-out electrode which is electrically connected to the internal electrode is baked thereon. In this case, since the electrode paste and the dielectric which are to be the internal electrodes of the capacitor are fired simultaneously, the material of the internal electrodes is that the electrodes can be formed within the temperature at which the dielectric sinters. It is essential that they also do not oxidize or react with the dielectric. Conventionally, precious metals such as platinum and palladium have been mainly used to satisfy these conditions. However, these noble metals are very stable, but expensive, and have been the biggest cause of the increase in the cost of the laminated ceramic capacitor. For this reason, attempts have been made to use inexpensive base metals such as nickel as internal electrodes. However, nickel is oxidized when heated in an oxidizing atmosphere and reacts with a dielectric to make electrode formation impossible. Therefore, when firing in a neutral or reducing atmosphere, the dielectric material is reduced this time, resulting in a very low specific resistance, and cannot be used as a dielectric material for capacitors. In order to improve such disadvantages, BaTiO 3 , CaTiO 3 , and the like have conventionally been used as dielectric ceramic compositions.
BaZrO 3, MnO, SiO 2, various dielectric ceramic composition containing MgO and the like have been proposed (e.g., JP 61-155255, JP-Sho 63-10386
No. 1). However, these materials have short lifespan characteristics and are not well-balanced. Accordingly, an object of the present invention is to provide a long life characteristic,
It is fired in a neutral or reducing atmosphere so that a laminated ceramic capacitor using a base metal such as nickel as an internal electrode can be formed while having a small rate of change in capacitance with respect to temperature and having a base metal such as nickel. The present invention also provides a dielectric ceramic composition having good temperature characteristics and good dielectric characteristics. [0011] To achieve the above object Means for Solving the Problems], MnO 0.10 mol% relative to BaTiO 3 100 mol% in the present invention 2.00 mol% Y 2 O 3 0.01 mole% to 1.00 mole% {Baα, Ca (1-α)} SiO 3 (where 0.43 ≦ α ≦ 0.62) The present invention provides a dielectric ceramic composition having a composition in the range of 0.5 to 10.00 mol%. The dielectric ceramic composition of the present invention has a sufficiently high specific resistance even when fired in a reducing atmosphere, has a small rate of change in capacitance with respect to temperature, and has a low relative dielectric constant. Is high,
The dielectric loss is small. Thus, it is possible to obtain a dielectric ceramic composition particularly useful for forming a laminated ceramic capacitor having nickel as an internal electrode. An embodiment of the present invention will be described with reference to FIG. FIG. 1 is an explanatory view of a manufacturing process according to one embodiment of the present invention. FIG. 1 (a) is an explanatory view of a material manufacturing process of a dielectric ceramic composition, and FIG. 1 (b) is a dielectric ceramic of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a process for forming a laminated ceramic capacitor using a composition. As a starting material, BaTiO 3 obtained by roasting titanyl barium oxalate synthesized by a liquid phase method was used. However, BaTiO 3 prepared by the solid phase method may be used. CaCO 3 , BaC
Using O 3 and SiO 2 , (BaOα, CaO (1-
α)) Synthesize SiO 2 and pulverize it. BaTiO 3 is finely pulverized, and MnO, Y 2 O 3 , {BaOα, CaO (1
-Α)} We weigh and mix powders such as SiO 2 so that the compositions after final firing are as shown in Tables 1 to 3 (see 1 in FIG. 1A). Next, these fine powders are wet-mixed and pulverized together with a dispersant, and dehydrated and dried (see 2, 3 in FIG. 1A). The dehydrated and dried composition is crushed into powder (see 4 in FIG. 1 (a)). The thus obtained fine powder is mixed with a dispersant and the like to prepare a raw material slurry. Next, an organic binder is added to this raw material slurry together with a plasticizer, mixed well, and enameled (see 1 in FIG. 1B). The enameled raw material is formed into a sheet by a doctor blade method to obtain a dielectric sheet (see 2 in FIG. 1 (b)). A nickel paste as an internal electrode material is printed on the obtained dielectric sheet (see 3 in FIG. 1 (b)).
A plurality of these are stacked and thermocompression bonded to form a laminate (see 4 in FIG. 1B). The formed laminate is cut with a cutter to a size of, for example, 4 × 2 millimeters (5 in FIG. 1B).
reference). Next, this sample was heated at 250 ° C. to 400 ° C. for 15 minutes.
After destabilizing for a time, the binder is removed (see 6 in FIG. 1B). Thereafter, the oxygen partial pressure is from 7 × 10 -9 to 9 × 10
-13 a.t.m., firing temperature 1200 ° C-1300
Firing is performed at a temperature of 2 ° C. for 2 hours (see 7 in FIG. 1B). The obtained fired body is further treated in a neutral atmosphere at 7
Reoxidation is performed at 00 ° C. to 1100 ° C. for a stabilization time of 9 hours (see 8 in FIG. 1B). A terminal electrode made of an indium-gallium alloy is applied and formed on both upper and lower surfaces of the finally formed sintered body.
A multilayer capacitor type measurement sample is completed (see 9 in FIG. 1B). This test sample was subjected to a frequency of 1 KHz and a room temperature of 20
Various electrical characteristics as shown in Tables 1 to 3 are measured under the condition of ° C. (see 10 in FIG. 1B). The life test conditions were an applied voltage of 200 V,
It is an evaluation result at a measurement temperature of 200 ° C. The insulation resistance is a value after a measurement voltage of 50 V, a room temperature of 20 ° C. and 30 seconds. Table 1 shows the measurement results obtained in this manner.
It is shown in Table 3. Samples marked with * in Tables 1 to 3 are out of the scope of the present invention, and are provided for comparison with those of Examples of the present invention. [Table 1] [Table 2] [Table 3] Tables 4, 5 and 6 show the oxide-converted values of the compositions shown in Tables 1, 2 and 3, respectively. [Table 4] [Table 5] [Table 6] As is clear from Tables 1 to 3, the composition according to the present invention has a high relative dielectric constant of 2,000 or more,
The rate of change of capacitance in a wide temperature range of 125 ° C. has a relatively small value, other dielectric properties are good, and the average life is long. Next, the reasons for limiting the composition range of the dielectric ceramic composition of the present invention will be described. With respect to 100 mol% of BaTiO 3 , Mn
Addition of O content of 0.10 mol% or more improves the temperature characteristics and insulation resistance. However, if not added, the dielectric composition is reduced, and both the insulation resistance and the life characteristics are deteriorated. (For example, see Sample No. 1 in Table 1). On the other hand, when the content of MnO is more than 2.00 mol%, the relative dielectric constant becomes 2000 or less, and practical dielectric properties cannot be obtained (for example, see Sample No. 25 in Table 2). When the content of Y 2 O 3 is 0.01 mol% to 1.00 mol%, the life characteristics are improved. However, the life characteristics are extremely deteriorated when no Y 2 O 3 is added (for example, the sample shown in Table 1). No. 4). When the content of Y 2 O 3 exceeds 1.00 mol%, the insulation resistance is 1 × 10 10 Ω or less, the life characteristic is less than 1 hour, and practical dielectric characteristics cannot be obtained (for example, see Table 2). Sample No. 27). Next, {Baα, Ca (1-α)} SiO 3
By adding 0.5 to 10.00 mol%, balanced characteristics having excellent life characteristics and a small capacitance change rate with respect to temperature can be obtained (for example, sample No. 17 in Table 1).
Sample No. 23) in Table 2 shows that the addition of 0.5 mol% or less
The life characteristics are extremely deteriorated (for example, sample Nos. 4 and 4 in Table 1).
5). However, {Baα, Ca (1-α)} Si
If more than 10.00 mol% of O 3 is added, the relative dielectric constant becomes 2
000 or less, and practical dielectric properties cannot be obtained (for example, see Sample No. 24 in Table 2). Further, {Baα, Ca (1-α)} SiO
Even if the addition amount of 3 is 10.00 mol% or less, if α is less than 0.43 or if α is more than 0.62, sintering becomes difficult and it cannot be put into practical use (for example, sample Nos. 4 and 6 in Table 3).
reference). The dielectric ceramic composition of the present invention has a relatively high relative dielectric constant, a small dielectric loss, and a relatively small change rate of the capacitance with respect to temperature. Thus, a balanced, highly reliable dielectric ceramic composition having good life characteristics can be obtained. Such a dielectric ceramic composition has excellent characteristics particularly for a laminated ceramic capacitor having nickel as an internal electrode.

【図面の簡単な説明】 【図1】本発明の誘電体磁器組成物の製造工程説明図で
ある。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is an explanatory view of a production process of a dielectric ceramic composition of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 相馬 出 東京都中央区日本橋一丁目13番1号 テ ィーディーケイ株式会社内 (56)参考文献 特開 平2−83256(JP,A) 特開 昭63−221505(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01B 3/12 303 C04B 35/46 H01G 4/12 358 ────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Izumi Soma 1-13-1, Nihombashi, Chuo-ku, Tokyo Inside TDK Corporation (56) References JP-A-2-83256 (JP, A) JP-A-63 −221505 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01B 3/12 303 C04B 35/46 H01G 4/12 358

Claims (1)

(57)【特許請求の範囲】 BaTiO3 を100モル%に対して MnO 0.10モル%〜2.00モル% Y2 3 0.01モル%〜1.00モル% {Baα,Ca(1−α)}SiO3 (ただし0.43≦α≦0.62) 0.5〜10.00 モル% の範囲の組成であることを特徴とする誘電体磁器組成
物。
(57) All Claims BaTiO 3 to MnO 0.10 mol% relative to 100 mol% to 2.00 mol% Y 2 O 3 0.01 mole% to 1.00 mole% {Baα, Ca (1- α)} SiO 3 ( (0.43 ≦ α ≦ 0.62) A dielectric ceramic composition having a composition in the range of 0.5 to 10.00 mol%.
JP01826191A 1991-01-18 1991-01-18 Dielectric porcelain composition Expired - Lifetime JP3179121B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP01826191A JP3179121B2 (en) 1991-01-18 1991-01-18 Dielectric porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP01826191A JP3179121B2 (en) 1991-01-18 1991-01-18 Dielectric porcelain composition

Publications (2)

Publication Number Publication Date
JPH04237902A JPH04237902A (en) 1992-08-26
JP3179121B2 true JP3179121B2 (en) 2001-06-25

Family

ID=11966738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP01826191A Expired - Lifetime JP3179121B2 (en) 1991-01-18 1991-01-18 Dielectric porcelain composition

Country Status (1)

Country Link
JP (1) JP3179121B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4252665B2 (en) 1999-04-08 2009-04-08 アイファイヤー アイピー コーポレイション EL element
CN105236944A (en) * 2015-09-15 2016-01-13 中国建材国际工程集团有限公司 Barium-calcium-silicon series composite nano-ceramic powder and preparation method thereof

Also Published As

Publication number Publication date
JPH04237902A (en) 1992-08-26

Similar Documents

Publication Publication Date Title
JP3346293B2 (en) Non-reducing dielectric ceramic composition and multilayer ceramic capacitor using the same
JPS61250905A (en) Dielectric ceramic composition and manufacture thereof
JP3305626B2 (en) Dielectric porcelain composition and ceramic electronic component using this dielectric porcelain composition
JP3389408B2 (en) Multilayer capacitors
JP2710639B2 (en) Dielectric porcelain composition
JP3638414B2 (en) Dielectric porcelain composition
JPS63103861A (en) Non-reductive dielectric ceramic composition
JP3179121B2 (en) Dielectric porcelain composition
JPH06340472A (en) Ceramic composition, laminated ceramic capacitor provided with varistor function and its production
JP3179119B2 (en) Dielectric porcelain composition
JP2952062B2 (en) Non-reducing dielectric porcelain composition
JPH05174626A (en) Reduction-resistant dielectric porcelain composition
JPS6136170A (en) Dielectric ceramic composition and manufacture
JPH11340075A (en) Dielectric cermic composition
JPH0828127B2 (en) Dielectric ceramic composition for temperature compensation
JP3350326B2 (en) Multilayer capacitors
JP3134430B2 (en) Non-reducing dielectric ceramic composition
JPH04264305A (en) Dielectric ceramic composition
JP3361531B2 (en) Dielectric ceramic composition for Ni internal electrode
JP2952061B2 (en) Non-reducing dielectric porcelain composition
JPH0453042B2 (en)
JP3109171B2 (en) Non-reducing dielectric porcelain composition
JP3158568B2 (en) Non-reducing dielectric ceramic composition
JP3389947B2 (en) Dielectric ceramic composition and thick film capacitor using the same
JP3064571B2 (en) Dielectric porcelain composition

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20010327

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080413

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090413

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100413

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110413

Year of fee payment: 10