JP3172413U - 力覚センサ - Google Patents
力覚センサ Download PDFInfo
- Publication number
- JP3172413U JP3172413U JP2011005859U JP2011005859U JP3172413U JP 3172413 U JP3172413 U JP 3172413U JP 2011005859 U JP2011005859 U JP 2011005859U JP 2011005859 U JP2011005859 U JP 2011005859U JP 3172413 U JP3172413 U JP 3172413U
- Authority
- JP
- Japan
- Prior art keywords
- axis
- electrode
- group
- electrodes
- diaphragm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 claims abstract description 143
- 210000000188 Diaphragm Anatomy 0.000 claims abstract description 106
- 238000001514 detection method Methods 0.000 claims description 59
- 230000014509 gene expression Effects 0.000 claims description 52
- 230000004048 modification Effects 0.000 description 7
- 238000006011 modification reaction Methods 0.000 description 7
- 230000035945 sensitivity Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000006073 displacement reaction Methods 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 230000000875 corresponding Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000002093 peripheral Effects 0.000 description 1
- 230000003068 static Effects 0.000 description 1
- 230000001131 transforming Effects 0.000 description 1
Images
Abstract
【課題】単純な構造で、三次元の各軸に関する力やモーメントを正確に検出する力覚センサを提供する。
【解決手段】上方基板100の下方に下方基板200を配置し、両基板を4本の柱状部材Ta〜Tc等で接続する。各柱状部材Ta〜Tc等の下端には、ダイアフラム210,220等が設けられる。支持基板300上の、ダイアフラム210の対向部分には、奥行き方向に3枚の電極A2等が配置され、ダイアフラム220の対向部分には、奥行き方向に3枚の電極B2等が配置される。同様に、柱状部材Tc等の下方のダイアフラムの対向部分には、それぞれ3枚の電極が配置される。支持基板300上の合計12枚の電極と、対向するダイアフラムとによって、合計12組の容量素子が構成される。原点Oに作用した力やモーメントの各軸成分は、ダイアフラムの変形に起因した12組の容量素子の静電容量値の変化に基づいて検出される。
【選択図】図3
【解決手段】上方基板100の下方に下方基板200を配置し、両基板を4本の柱状部材Ta〜Tc等で接続する。各柱状部材Ta〜Tc等の下端には、ダイアフラム210,220等が設けられる。支持基板300上の、ダイアフラム210の対向部分には、奥行き方向に3枚の電極A2等が配置され、ダイアフラム220の対向部分には、奥行き方向に3枚の電極B2等が配置される。同様に、柱状部材Tc等の下方のダイアフラムの対向部分には、それぞれ3枚の電極が配置される。支持基板300上の合計12枚の電極と、対向するダイアフラムとによって、合計12組の容量素子が構成される。原点Oに作用した力やモーメントの各軸成分は、ダイアフラムの変形に起因した12組の容量素子の静電容量値の変化に基づいて検出される。
【選択図】図3
Description
本考案は、力覚センサに関し、特に、XYZ三次元座標系における所定座標軸方向の力もしくは所定座標軸まわりのモーメントまたはその双方を検出する力覚センサに関する。
ロボットや産業機械の動作制御を行うために、種々のタイプの力覚センサが利用されている。また、電子機器の入力装置のマン・マシンインターフェイスとしても、小型の力覚センサが組み込まれている。このような用途に用いる力覚センサには、小型化およびコストダウンを図るために、できるだけ構造を単純にするとともに、三次元空間内での各座標軸に関する力およびモーメントをそれぞれ独立して検出できるようにすることが要求される。
一般に、力覚センサの検出対象には、所定の座標軸方向を向いた力成分と、所定の座標軸まわりのモーメント成分とがある。三次元空間内にXYZ三次元座標系を定義した場合、検出対象は、各座標軸方向の力成分Fx,Fy,Fzと、各座標軸まわりのモーメント成分Mx,My,Mzとの6つの成分になる。たとえば、下記の特許文献1および2には、互いに平行になるように配置された2枚の基板間に複数の柱状体を渡し、各柱状体から基板に加わる押圧力や各柱状体の傾斜を静電容量素子を利用して個別に測定することにより、上述した6つの成分を独立して検出することができる力覚センサが開示されている。また、特許文献3には、このような力覚センサの静電容量素子の構成をより単純化した構造が開示され、特許文献4には、他軸成分の干渉を排除したより正確な検出を行うための工夫が開示されている。
しかしながら、上述した各特許文献に開示された力覚センサでは、検出精度を向上させるためには静電容量素子の構成が複雑にならざるを得ず、静電容量素子の構成を単純化しようとすると、検出精度が低下せざるを得ない。
そこで本考案は、できるだけ単純な構造をもち、しかも三次元空間内での各座標軸に関する力やモーメントについての正確な検出値を得ることができる力覚センサを提供することを目的とする。
(1) 本考案の第1の態様は、XYZ三次元座標系における所定座標軸方向の力もしくは所定座標軸まわりのモーメントまたはその双方を検出する力覚センサにおいて、
検出対象となる力もしくはモーメントを受けるために座標系の原点位置に配置され、XY平面に沿って広がる上方基板と、
上方基板の下方に所定間隔をあけて配置され、XY平面に平行な平面に沿って広がる下方基板と、
下方基板の下面に接合され、XY平面に平行な平面に沿って広がる支持基板と、
Z軸方向を長手方向とする構造をなし、上端が上方基板に接続され、下端が下方基板に接続され、XY平面への投影像がX軸の正領域に形成される第1の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が上方基板に接続され、下端が下方基板に接続され、XY平面への投影像がX軸の負領域に形成される第2の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が上方基板に接続され、下端が下方基板に接続され、XY平面への投影像がY軸の正領域に形成される第3の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が上方基板に接続され、下端が下方基板に接続され、XY平面への投影像がY軸の負領域に形成される第4の柱状部材と、
を設け、
上方基板の第1の柱状部材に対する接続部分は可撓性を有しており、下方基板の第1の柱状部材に対する接続部分には、可撓性をもった第1のダイアフラムが形成されており、第1の柱状部材の下端は第1のダイアフラムの中心部に接続されており、第1のダイアフラムと支持基板の上面との間には空隙部が形成されており、
上方基板の第2の柱状部材に対する接続部分は可撓性を有しており、下方基板の第2の柱状部材に対する接続部分には、可撓性をもった第2のダイアフラムが形成されており、第2の柱状部材の下端は第2のダイアフラムの中心部に接続されており、第2のダイアフラムと支持基板の上面との間には空隙部が形成されており、
上方基板の第3の柱状部材に対する接続部分は可撓性を有しており、下方基板の第3の柱状部材に対する接続部分には、可撓性をもった第3のダイアフラムが形成されており、第3の柱状部材の下端は第3のダイアフラムの中心部に接続されており、第3のダイアフラムと支持基板の上面との間には空隙部が形成されており、
上方基板の第4の柱状部材に対する接続部分は可撓性を有しており、下方基板の第4の柱状部材に対する接続部分には、可撓性をもった第4のダイアフラムが形成されており、第4の柱状部材の下端は第4のダイアフラムの中心部に接続されており、第4のダイアフラムと支持基板の上面との間には空隙部が形成されており、
支持基板の上面における第1のダイアフラムの対向部分には、Y軸に平行な配置軸に沿って並べられた第1グループ第1電極A1、第1グループ第2電極A2、第1グループ第3電極A3が設けられており、第1グループ第1電極A1は、Y座標値が正となる位置に配置され、第1グループ第2電極A2は、XZ平面と交差する位置に配置され、第1グループ第3電極A3は、Y座標値が負となる位置に配置され、
支持基板の上面における第2のダイアフラムの対向部分には、Y軸に平行な配置軸に沿って並べられた第2グループ第1電極B1、第2グループ第2電極B2、第2グループ第3電極B3が設けられており、第2グループ第1電極B1は、Y座標値が正となる位置に配置され、第2グループ第2電極B2は、XZ平面と交差する位置に配置され、第2グループ第3電極B3は、Y座標値が負となる位置に配置され、
支持基板の上面における第3のダイアフラムの対向部分には、X軸に平行な配置軸に沿って並べられた第3グループ第1電極C1、第3グループ第2電極C2、第3グループ第3電極C3が設けられており、第3グループ第1電極C1は、X座標値が正となる位置に配置され、第3グループ第2電極C2は、YZ平面と交差する位置に配置され、第3グループ第3電極A3は、X座標値が負となる位置に配置され、
支持基板の上面における第4のダイアフラムの対向部分には、X軸に平行な配置軸に沿って並べられた第4グループ第1電極D1、第4グループ第2電極D2、第4グループ第3電極D3が設けられており、第4グループ第1電極D1は、X座標値が正となる位置に配置され、第4グループ第2電極D2は、YZ平面と交差する位置に配置され、第4グループ第3電極D3は、X座標値が負となる位置に配置され、
各ダイアフラムは導電性を有し、各電極とこれに対向する各ダイアフラムの一部分とによって静電容量素子が構成され、これら静電容量素子の静電容量値の変化に基づいて、作用した力もしくはモーメントの検出を行う検出処理部を更に設けるようにしたものである。
検出対象となる力もしくはモーメントを受けるために座標系の原点位置に配置され、XY平面に沿って広がる上方基板と、
上方基板の下方に所定間隔をあけて配置され、XY平面に平行な平面に沿って広がる下方基板と、
下方基板の下面に接合され、XY平面に平行な平面に沿って広がる支持基板と、
Z軸方向を長手方向とする構造をなし、上端が上方基板に接続され、下端が下方基板に接続され、XY平面への投影像がX軸の正領域に形成される第1の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が上方基板に接続され、下端が下方基板に接続され、XY平面への投影像がX軸の負領域に形成される第2の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が上方基板に接続され、下端が下方基板に接続され、XY平面への投影像がY軸の正領域に形成される第3の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が上方基板に接続され、下端が下方基板に接続され、XY平面への投影像がY軸の負領域に形成される第4の柱状部材と、
を設け、
上方基板の第1の柱状部材に対する接続部分は可撓性を有しており、下方基板の第1の柱状部材に対する接続部分には、可撓性をもった第1のダイアフラムが形成されており、第1の柱状部材の下端は第1のダイアフラムの中心部に接続されており、第1のダイアフラムと支持基板の上面との間には空隙部が形成されており、
上方基板の第2の柱状部材に対する接続部分は可撓性を有しており、下方基板の第2の柱状部材に対する接続部分には、可撓性をもった第2のダイアフラムが形成されており、第2の柱状部材の下端は第2のダイアフラムの中心部に接続されており、第2のダイアフラムと支持基板の上面との間には空隙部が形成されており、
上方基板の第3の柱状部材に対する接続部分は可撓性を有しており、下方基板の第3の柱状部材に対する接続部分には、可撓性をもった第3のダイアフラムが形成されており、第3の柱状部材の下端は第3のダイアフラムの中心部に接続されており、第3のダイアフラムと支持基板の上面との間には空隙部が形成されており、
上方基板の第4の柱状部材に対する接続部分は可撓性を有しており、下方基板の第4の柱状部材に対する接続部分には、可撓性をもった第4のダイアフラムが形成されており、第4の柱状部材の下端は第4のダイアフラムの中心部に接続されており、第4のダイアフラムと支持基板の上面との間には空隙部が形成されており、
支持基板の上面における第1のダイアフラムの対向部分には、Y軸に平行な配置軸に沿って並べられた第1グループ第1電極A1、第1グループ第2電極A2、第1グループ第3電極A3が設けられており、第1グループ第1電極A1は、Y座標値が正となる位置に配置され、第1グループ第2電極A2は、XZ平面と交差する位置に配置され、第1グループ第3電極A3は、Y座標値が負となる位置に配置され、
支持基板の上面における第2のダイアフラムの対向部分には、Y軸に平行な配置軸に沿って並べられた第2グループ第1電極B1、第2グループ第2電極B2、第2グループ第3電極B3が設けられており、第2グループ第1電極B1は、Y座標値が正となる位置に配置され、第2グループ第2電極B2は、XZ平面と交差する位置に配置され、第2グループ第3電極B3は、Y座標値が負となる位置に配置され、
支持基板の上面における第3のダイアフラムの対向部分には、X軸に平行な配置軸に沿って並べられた第3グループ第1電極C1、第3グループ第2電極C2、第3グループ第3電極C3が設けられており、第3グループ第1電極C1は、X座標値が正となる位置に配置され、第3グループ第2電極C2は、YZ平面と交差する位置に配置され、第3グループ第3電極A3は、X座標値が負となる位置に配置され、
支持基板の上面における第4のダイアフラムの対向部分には、X軸に平行な配置軸に沿って並べられた第4グループ第1電極D1、第4グループ第2電極D2、第4グループ第3電極D3が設けられており、第4グループ第1電極D1は、X座標値が正となる位置に配置され、第4グループ第2電極D2は、YZ平面と交差する位置に配置され、第4グループ第3電極D3は、X座標値が負となる位置に配置され、
各ダイアフラムは導電性を有し、各電極とこれに対向する各ダイアフラムの一部分とによって静電容量素子が構成され、これら静電容量素子の静電容量値の変化に基づいて、作用した力もしくはモーメントの検出を行う検出処理部を更に設けるようにしたものである。
(2) 本考案の第2の態様は、上述した第1の態様に係る力覚センサにおいて、
少なくとも、第1〜第4の柱状部材、第1〜第4のダイアフラム、および各グループの第1〜第3電極からなる合計12枚の電極によって構成される構造体が、XZ平面に関して面対称をなし、かつ、YZ平面に関して面対称をなすようにしたものである。
少なくとも、第1〜第4の柱状部材、第1〜第4のダイアフラム、および各グループの第1〜第3電極からなる合計12枚の電極によって構成される構造体が、XZ平面に関して面対称をなし、かつ、YZ平面に関して面対称をなすようにしたものである。
(3) 本考案の第3の態様は、上述した第2の態様に係る力覚センサにおいて、
電極A1,A3,B1,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A3,B1,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
少なくとも、MxおよびMzを検出できるようにしたものである。
電極A1,A3,B1,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A3,B1,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
少なくとも、MxおよびMzを検出できるようにしたものである。
(4) 本考案の第4の態様は、上述した第2の態様に係る力覚センサにおいて、
電極A2,B2,C1,C3,D1,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA2,B2,C1,C3,D1,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)なる式、もしくは、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
少なくとも、FxおよびMyを検出できるようにしたものである。
電極A2,B2,C1,C3,D1,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA2,B2,C1,C3,D1,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)なる式、もしくは、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
少なくとも、FxおよびMyを検出できるようにしたものである。
(5) 本考案の第5の態様は、上述した第2の態様に係る力覚センサにおいて、
電極A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸方向の力Fzを、Fz=−(A2+B2+C2+D2)なる式、もしくは、Fz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式(但し、K3は所定の定数)に基づいて検出し、
少なくとも、Mx,MyおよびFzを検出できるようにしたものである。
電極A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸方向の力Fzを、Fz=−(A2+B2+C2+D2)なる式、もしくは、Fz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式(但し、K3は所定の定数)に基づいて検出し、
少なくとも、Mx,MyおよびFzを検出できるようにしたものである。
(6) 本考案の第6の態様は、上述した第2の態様に係る力覚センサにおいて、
電極A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)なる式、もしくは、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸方向の力Fyを、Fy=(A1+B1)−(A3+B3)なる式、もしくは、Fy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式(但し、K2は所定の定数)に基づいて検出し、
Z軸方向の力Fzを、Fz=−(A2+B2+C2+D2)なる式、もしくは、Fz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式(但し、K3は所定の定数)に基づいて検出し、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
Fx,Fy,Fz,Mx,My,Mzの6成分を検出できるようにしたものである。
電極A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)なる式、もしくは、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸方向の力Fyを、Fy=(A1+B1)−(A3+B3)なる式、もしくは、Fy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式(但し、K2は所定の定数)に基づいて検出し、
Z軸方向の力Fzを、Fz=−(A2+B2+C2+D2)なる式、もしくは、Fz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式(但し、K3は所定の定数)に基づいて検出し、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
Fx,Fy,Fz,Mx,My,Mzの6成分を検出できるようにしたものである。
(7) 本考案の第7の態様は、上述した第1の態様に係る力覚センサにおいて、
各ダイアフラムと支持基板上面との間に形成された空隙部が、各ダイアフラムの輪郭より外側の領域にまで広がるようにし、
第1のダイアフラムの輪郭を支持基板上面に投影した投影像とX軸の正領域の投影像との外側交点位置に配置された第1グループ第4電極A4と、第2のダイアフラムの輪郭を支持基板上面に投影した投影像とX軸の負領域の投影像との外側交点位置に配置された第2グループ第4電極B4と、第3のダイアフラムの輪郭を支持基板上面に投影した投影像とY軸の正領域の投影像との外側交点位置に配置された第3グループ第4電極C4と、第4のダイアフラムの輪郭を支持基板上面に投影した投影像とY軸の負領域の投影像との外側交点位置に配置された第4グループ第4電極D4と、を更に設け、
各第4電極に対向する下方基板の下面は、各ダイアフラムの部分を含めて導電性を有し、各第4電極とこれに対向する下方基板の下面の一部分とによって静電容量素子が構成され、
検出処理部が、各第4電極をそれぞれ含む各容量素子の静電容量値の変化も考慮して、作用した力もしくはモーメントの検出を行うようにしたものである。
各ダイアフラムと支持基板上面との間に形成された空隙部が、各ダイアフラムの輪郭より外側の領域にまで広がるようにし、
第1のダイアフラムの輪郭を支持基板上面に投影した投影像とX軸の正領域の投影像との外側交点位置に配置された第1グループ第4電極A4と、第2のダイアフラムの輪郭を支持基板上面に投影した投影像とX軸の負領域の投影像との外側交点位置に配置された第2グループ第4電極B4と、第3のダイアフラムの輪郭を支持基板上面に投影した投影像とY軸の正領域の投影像との外側交点位置に配置された第3グループ第4電極C4と、第4のダイアフラムの輪郭を支持基板上面に投影した投影像とY軸の負領域の投影像との外側交点位置に配置された第4グループ第4電極D4と、を更に設け、
各第4電極に対向する下方基板の下面は、各ダイアフラムの部分を含めて導電性を有し、各第4電極とこれに対向する下方基板の下面の一部分とによって静電容量素子が構成され、
検出処理部が、各第4電極をそれぞれ含む各容量素子の静電容量値の変化も考慮して、作用した力もしくはモーメントの検出を行うようにしたものである。
(8) 本考案の第8の態様は、上述した第7の態様に係る力覚センサにおいて、
少なくとも、第1〜第4の柱状部材、第1〜第4のダイアフラム、および各グループの第1〜第4電極からなる合計16枚の電極によって構成される構造体が、XZ平面に関して面対称をなし、かつ、YZ平面に関して面対称をなすようにしたものである。
少なくとも、第1〜第4の柱状部材、第1〜第4のダイアフラム、および各グループの第1〜第4電極からなる合計16枚の電極によって構成される構造体が、XZ平面に関して面対称をなし、かつ、YZ平面に関して面対称をなすようにしたものである。
(9) 本考案の第9の態様は、上述した第8の態様に係る力覚センサにおいて、
電極A1,A3,B1,B3,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A3,B1,B3,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
少なくとも、MxおよびMzを検出できるようにしたものである。
電極A1,A3,B1,B3,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A3,B1,B3,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
少なくとも、MxおよびMzを検出できるようにしたものである。
(10) 本考案の第10の態様は、上述した第8の態様に係る力覚センサにおいて、
電極A2,A4,B2,B4,C1,C3,D1,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA2,A4,B2,B4,C1,C3,D1,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
少なくとも、FxおよびMyを検出できるようにしたものである。
電極A2,A4,B2,B4,C1,C3,D1,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA2,A4,B2,B4,C1,C3,D1,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
少なくとも、FxおよびMyを検出できるようにしたものである。
(11) 本考案の第11の態様は、上述した第8の態様に係る力覚センサにおいて、
電極A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸方向の力Fzを、Fz=K4(A4+B4+C4+D4)−(A2+B2+C2+D2)なる式(但し、K4は所定の定数)に基づいて検出し、
少なくとも、Mx,MyおよびFzを検出できるようにしたものである。
電極A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸方向の力Fzを、Fz=K4(A4+B4+C4+D4)−(A2+B2+C2+D2)なる式(但し、K4は所定の定数)に基づいて検出し、
少なくとも、Mx,MyおよびFzを検出できるようにしたものである。
(12) 本考案の第12の態様は、上述した第8の態様に係る力覚センサにおいて、
電極A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸方向の力Fyを、Fy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式(但し、K2は所定の定数)に基づいて検出し、
Z軸方向の力Fzを、Fz=K4(A4+B4+C4+D4)−(A2+B2+C2+D2)なる式(但し、K4は所定の定数)に基づいて検出し、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
Fx,Fy,Fz,Mx,My,Mzの6成分を検出できるようにしたものである。
電極A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸方向の力Fyを、Fy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式(但し、K2は所定の定数)に基づいて検出し、
Z軸方向の力Fzを、Fz=K4(A4+B4+C4+D4)−(A2+B2+C2+D2)なる式(但し、K4は所定の定数)に基づいて検出し、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
Fx,Fy,Fz,Mx,My,Mzの6成分を検出できるようにしたものである。
本考案に係る力覚センサによれば、比較的単純な構造により、三次元空間内での各座標軸に関する力やモーメントについての正確な検出値を得ることができるようになる。
以下、本考案を図示する実施形態に基づいて説明する。
<<< §1. 力覚センサの基本構造 >>>
図1は、本考案に係る力覚センサの正面図である。この力覚センサは、XYZ三次元座標系における所定座標軸方向の力もしくは所定座標軸まわりのモーメントまたはその双方を検出する機能をもったセンサであり、その主たる構成要素は、図示のとおり、3枚の基板100,200,300と、4本の柱状部材Ta,Tb,Tc,Tdである(柱状部材Tcは、Tdの奥に位置するため、図には現れていない)。
図1は、本考案に係る力覚センサの正面図である。この力覚センサは、XYZ三次元座標系における所定座標軸方向の力もしくは所定座標軸まわりのモーメントまたはその双方を検出する機能をもったセンサであり、その主たる構成要素は、図示のとおり、3枚の基板100,200,300と、4本の柱状部材Ta,Tb,Tc,Tdである(柱状部材Tcは、Tdの奥に位置するため、図には現れていない)。
上方基板100は、検出対象となる力もしくはモーメントを受けるための基板であり、ここでは、説明の便宜上、この上方基板100の内部の中心位置に原点Oをとり、図の右方向にX軸、図の上方向にZ軸、図の紙面垂直奥方向にY軸をとり、XYZ三次元座標系を定義する。上方基板100は、この座標系の原点Oの位置に配置され、XY平面に沿って広がる基板ということになる。
一方、下方基板200は、上方基板100の下方に所定間隔をあけて配置され、XY平面に平行な平面に沿って広がる基板であり、支持基板300は、下方基板200の下面に接合され、XY平面に平行な平面に沿って広がる基板である。結局、上方基板100、下方基板200、支持基板300は、いずれもXY平面に平行な上面および下面をもった基板ということになる。図2は、この図1に示す力覚センサの上面図である。上方から見ると、上方基板100、下方基板200、支持基板300は、いずれも同じサイズの正方形をなす。
4本の柱状部材Ta,Tb,Tc,Tdは、Z軸方向を長手方向とする構造をなし、上方基板100と下方基板200とを連結する機能を有している。すなわち、各柱状部材Ta,Tb,Tc,Tdは、上端が上方基板100の下面に接続され、下端が下方基板200の上面に接続されている。また、ここに示す実施例の場合、各柱状部材Ta,Tb,Tc,Tdは、いずれも円柱状の部材であり、その軸芯がZ軸に平行になるように配置されている。
図2の上面図に示されているように、4本の柱状部材Ta,Tb,Tc,Tdは、その投影像がX軸もしくはY軸上にくるような位置に配置されている。すなわち、第1の柱状部材TaのXY平面への投影像はX軸の正領域に形成され、第2の柱状部材TbのXY平面への投影像はX軸の負領域に形成され、第3の柱状部材TcのXY平面への投影像はY軸の正領域に形成され、第4の柱状部材TdのXY平面への投影像はY軸の負領域に形成されている。しかも、この実施例の場合、各柱状部材Ta,Tb,Tc,Tdは、原点Oから等距離の位置に配置されている。
図2に示す円は、可撓性接続部110,120,130,140であり、上方基板100において、厚みが小さい円盤状の可撓性をもった部分である。各柱状部材Ta,Tb,Tc,Tdの上端は、いずれもこの可撓性接続部110,120,130,140の下面の中心部分に、固定ねじ111,121,131,141によって接続されている。
図3は、図1に示す力覚センサをXZ平面で切断した断面図であり、第1の柱状部材Taおよび第2の柱状部材Tbの上下両端の接続状態が明瞭に示されている。上述したとおり、可撓性接続部110,120は、上方基板100の一部であり、厚みが小さく可撓性をもっている。第1の柱状部材Taの上端は、可撓性接続部110の下面に固定ねじ111によって固定され、第2の柱状部材Tbの上端は、可撓性接続部120の下面に固定ねじ121によって固定されている。
一方、下方基板200にも、同様に、厚みが小さい円盤状の可撓性をもった部分が形成されている。ここでは、この下方基板200に設けられた厚みの小さい部分をダイアフラムと呼ぶことにする。第1のダイアフラム210は、可撓性接続部110の真下に配置された円盤状の肉薄部であり、第1の柱状部材Taの下端は、この第1のダイアフラム210の中心に接合されている。同様に、第2のダイアフラム220は、可撓性接続部120の真下に配置された円盤状の肉薄部であり、第2の柱状部材Tbの下端は、この第2のダイアフラム220の中心に接合されている。
以上、第1の柱状部材Taおよび第2の柱状部材Tbの上下両端の接続状態を説明したが、第3の柱状部材Tcおよび第4の柱状部材Tdについても全く同様である。別言すれば、この力覚センサをZ軸を中心軸として90°回転させても、全く同じ構造体が得られることになる。
この実施例では、4本の柱状部材Ta,Tb,Tc,Tdを、下方基板200と一体構造の部材として形成している。図4は、この下方基板200の上面図である。図示のとおり、下方基板には、肉薄部分として、4枚のダイアフラム210,220,230,240が形成されており、その中心位置から上方に(図4の場合は、紙面垂直手前方向に)、4本の柱状部材Ta,Tb,Tc,Tdが伸びている。上方基板100は、これら4本の柱状部材Ta,Tb,Tc,Tdの上端に形成されたねじ穴に、固定ねじを締めつけることにより固定される。
支持基板300は、下方基板200の下面(各ダイアフラムを除いた部分)に接合され、各ダイアフラムの下面と支持基板300の上面との間には空隙部が形成される。図3には、第1のダイアフラム210の下方に空隙部S1が形成され、第2のダイアフラム220の下方に空隙部S2が形成された状態が示されている。同様に、第3のダイアフラム230の下方および第4のダイアフラム240の下方にも、それぞれ空隙部が形成されている。
支持基板300の上面における、これら空隙部の位置には、それぞれ電極が設けられている。図3には、空隙部S1内に設けられた電極A2と、空隙部S2内に設けられた電極B2のみが示されているが、実際には、電極A2の奥および手前、電極B2の奥および手前にも同じサイズの電極が配置されている。また、第3のダイアフラム230の下方および第4のダイアフラム240の下方にも、それぞれ3枚ずつの電極が配置されている。
このような電極配置は、図5に明瞭に示されている。図5は、支持基板300の上面図であり、破線の円は、その上方に配置された4組のダイアフラム210,220,230,240の位置を示している。図示のとおり、各ダイアフラムの対向部分には、それぞれ3枚の電極が配置されており、合計で12枚の電極が設けられている。これらの電極は、同一サイズの円形形状をなす。ここでは、第1のダイアフラム210の対向部分に設けられた3枚の電極を第1グループの電極A1〜A3、第2のダイアフラム220の対向部分に設けられた3枚の電極を第2グループの電極B1〜B3、第3のダイアフラム230の対向部分に設けられた3枚の電極を第3グループの電極C1〜C3、第4のダイアフラム240の対向部分に設けられた3枚の電極を第4グループの電極D1〜D3と呼ぶことにする。
ここで、これら12枚の電極の配置は非常に重要である。まず、第1グループの電極は、Y軸に平行な配置軸に沿って並べられた第1グループ第1電極A1、第1グループ第2電極A2、第1グループ第3電極A3によって構成されている。ここで、第1グループ第1電極A1は、Y座標値が正となる位置に配置され、第1グループ第2電極A2は、XZ平面と交差する位置に配置され、第1グループ第3電極A3は、Y座標値が負となる位置に配置されている。
また、第2グループの電極は、Y軸に平行な配置軸に沿って並べられた第2グループ第1電極B1、第2グループ第2電極B2、第2グループ第3電極B3によって構成されている。ここで、第2グループ第1電極B1は、Y座標値が正となる位置に配置され、第2グループ第2電極B2は、XZ平面と交差する位置に配置され、第2グループ第3電極B3は、Y座標値が負となる位置に配置されている。
一方、第3グループの電極は、X軸に平行な配置軸に沿って並べられた第3グループ第1電極C1、第3グループ第2電極C2、第3グループ第3電極C3によって構成されている。ここで、第3グループ第1電極C1は、X座標値が正となる位置に配置され、第3グループ第2電極C2は、YZ平面と交差する位置に配置され、第3グループ第3電極C3は、X座標値が負となる位置に配置されている。
そして、第4グループの電極は、X軸に平行な配置軸に沿って並べられた第4グループ第1電極D1、第4グループ第2電極D2、第4グループ第3電極D3によって構成されている。ここで、第4グループ第1電極D1は、X座標値が正となる位置に配置され、第4グループ第2電極D2は、YZ平面と交差する位置に配置され、第4グループ第3電極D3は、X座標値が負となる位置に配置されている。
以上が、この力覚センサの基本構造である。ここで、図3に示す構造体において、上方基板100および下方基板200は、金属などの導電性材料によって構成されており、各ダイアフラム210,220,230,240は、それぞれ全体が電極として機能する。一方、支持基板300は、個々の電極が互いに絶縁されるように、絶縁材料によって構成されている。結局、各電極とこれに対向する各ダイアフラムの一部分とによって静電容量素子が構成される。本考案に係る力覚センサは、更に、これら静電容量素子の静電容量値の変化に基づいて、作用した力もしくはモーメントの検出を行う検出処理部(図示されていない)を備えている。
<<< §2. 力覚センサの検出動作 >>>
続いて、上述した検出処理部による検出動作を説明する。この力覚センサは、上方基板100に対して加わったX軸方向の力Fx、Y軸方向の力Fy、Z軸方向の力Fz、X軸まわりのモーメントMx、Y軸まわりのモーメントMy、Z軸まわりのモーメントMzの6成分を検出することが可能である。
続いて、上述した検出処理部による検出動作を説明する。この力覚センサは、上方基板100に対して加わったX軸方向の力Fx、Y軸方向の力Fy、Z軸方向の力Fz、X軸まわりのモーメントMx、Y軸まわりのモーメントMy、Z軸まわりのモーメントMzの6成分を検出することが可能である。
まず、X軸方向の力Fxの検出動作を説明する。図6は、この力覚センサの上方基板100に対して、X軸正方向の力+Fxが作用したときの変形態様を示す断面図(XZ平面で切断した断面を示す)である。力+Fxは、上方基板100を図の右方へと平行移動させる力であるため、4本の柱状部材Ta〜Tdは、いずれも右方向に傾斜する。ここで、各ダイアフラム210,220,230,240は、図示のように変形し、それぞれ、図の右側半分は下方へ撓み、左側半分は上方へ撓むことになる。
このような撓みが生じると、図5に示す電極C1,D1を含む容量素子は電極間隔が狭まり、静電容量値は増加するが、電極C3,D3を含む容量素子は電極間隔が広がり、静電容量値は減少する。その他の電極を含む容量素子の静電容量値に有意な変化は生じない。
ここに示す実施例に係る力覚センサの場合、少なくとも、第1〜第4の柱状部材Ta〜Td、第1〜第4のダイアフラム210,220,230,240、および各グループの第1〜第3電極からなる合計12枚の電極A1〜D3によって構成される構造体は、XZ平面に関して面対称をなし、かつ、YZ平面に関して面対称をなす。このような対称性を有していると、静電容量値の増減変化に関しても対称性が得られるので、作用した力を単純な演算式で求めることができる。
ここでは、便宜上、電極A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3と表すことにする。そうすると、上例の場合、静電容量値C1,D1は増加し、静電容量値C3,D3は減少し、増減変化は対称性を有しているので、X軸方向の力Fxは、Fx=(C1+D1)−(C3+D3)なる式で求めることができる。X軸負方向の力−Fxが作用したときには、増減の関係が逆になるので、Fxは負の値になる。したがって、上式は、作用した力Fxの向きにかかわらず成り立つ。
また、Y軸方向の力Fyが作用した場合の変形態様は、上述したX軸方向の力Fxが作用した場合の変形態様を、Z軸を回転軸として90°回転させたものになるので、Y軸方向の力Fyは、Fy=(A1+B1)−(A3+A3)なる式で求めることができる。
一方、図7は、この力覚センサの上方基板100に対して、Z軸正方向の力+Fzが作用したときの変形態様を示す断面図(XZ平面で切断した断面を示す)である。力+Fzは、上方基板100を図の上方へと平行移動させる力であるため、4本の柱状部材Ta〜Tdは、いずれも上方に持ち上げられる。ここで、各ダイアフラム210,220,230,240は、図示のように変形し、いずれも伏せた椀状に撓むことになる。
このような撓みが生じると、図5に示す各電極を含むすべての容量素子は電極間隔が広がり、静電容量値は減少する。逆に、力−Fzが作用すると、上方基板100は図の下方へと平行移動し、4本の柱状部材Ta〜Tdは、いずれも下方に押し下げられる。このため、各ダイアフラム210,220,230,240は、図示とは逆に撓むことになり、静電容量値は増加する。このような増減の変動幅は、特に、電極A2,B2,C2,D2を含む4つの容量素子において顕著である。
そこで、Z軸方向の力Fzは、Fz=−(A2+B2+C2+D2)なる式で求めることができる。もっとも、上式で得られる値Fzは、力Fzの値それ自身を直接示すものではない。すなわち、力Fzが0の場合でも、各容量素子は所定の静電容量値を有しているので、上式で得られる値Fzは所定の基準値をとる。したがって、実際には、この基準値を予め求めておき、上式で得られる値Fzと基準値との差として、力Fzの値を求めることができる。なお、上式で右辺の頭にマイナス符号がついているのは、静電容量値が減少すると、Z軸正方向の力が作用したことを示すものである。
続いて、モーメントの検出動作を説明しよう。ここでは、モーメントの向きとして、ある座標軸の正方向に右ねじを進める回転方向に作用するモーメントを、当該座標軸まわりの正のモーメントと定義することにする。図8は、この力覚センサの上方基板100に対して、Y軸正まわりのモーメント+Myが作用したときの変形態様を示す断面図(XZ平面で切断した断面を示す)である。上方基板100に、このようなモーメントが作用すると、第1の柱状部材Taは下方へ移動し、第2の柱状部材Tbは上方へ移動する。このため、第1グループの各電極A1,A2,A3を含む容量素子は電極間隔が狭まり、静電容量値は増加するが、第2グループの各電極B1,B2,B3を含む容量素子は電極間隔が広がり、静電容量値は減少する。
このような増減の変動幅は、特に、電極A2およびB2を含む2つの容量素子において顕著である。そこで、Y軸まわりのモーメントMyは、My=A2−B2なる式で求めることができる。同様に、X軸まわりのモーメントMxは、Mx=D2−C2なる式で求めることができる。
最後に、Z軸まわりのモーメントMzが作用した場合を考える。この場合、図2に示す上方基板100を、図において反時計まわりに回転させる力が作用するので、柱状部材TaにはY軸正方向に傾斜させる力が働き、柱状部材TcにはX軸負方向に傾斜させる力が働き、柱状部材TbにはY軸負方向に傾斜させる力が働き、柱状部材TdにはX軸正方向に傾斜させる力が働く。このため、図5に示す電極配置において、電極A1,C3,B3,D1を含む容量素子は電極間隔が狭まり、静電容量値は増加するが、電極A3,C1,B1,D3を含む容量素子は電極間隔が広がり、静電容量値は減少する。そこで、Z軸まわりのモーメントMzは、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式で求めることができる。
図9は、上述した各成分の検出に用いる式を示す図である。検出処理部として、このような式に基づいて各成分を検出する構成要素を設けておけば、6成分の検出を行う力覚センサが実現できる。もちろん、6成分すべての検出が必要なければ、検出に必要な成分についての検出機能だけを設けておけばよい。
個々の容量素子の静電容量値は、たとえば、特開平5−346357号公報などに開示されているように、インバータやEXOR素子を用いた検出回路によって電圧値として検出することができるので、これらの電圧値に対してオペアンプなどを用いて加算や減算を行う電子回路を構成すれば、図9に示す式に基づく演算結果を電圧値として出力することが可能になる。もちろん、電圧値をデジタルデータとしてマイクロプロッサに入力し、マイクロプロッサによって図9に示す演算を行い、デジタルデータとして各成分の検出値を得るようにしてもかまわない。
図9に示す演算式は、図5に示す12枚の電極配置を前提としたものである。この電極配置では、各ダイアフラムの対向領域に、それぞれ3個の円盤状の電極が配置されている。このように、比較的面積の小さい円形の電極を配置するようにしたため、支持基板300上での配線(図示されていない個々の電極に対する配線)の自由度が高くなり、配線パターンの形成作業は非常に容易になる。この力覚センサの検出感度は、個々の容量素子の初期容量値をC0,容量値の変化量をΔCとすれば、ΔC/C0になるため、たとえ電極面積が小さくなっても、ΔCとともにC0も同じ割合で小さくなるので、理論上は、電極面積が小さくなっても、それ自体による検出感度の低下はない。もっとも、電極面積が小さくなれば、電極加工上の寸法精度を維持するのが困難になってくるため、寸法精度の影響を受けて検出精度が低下する可能性はある。
ここでは、力Fx,Fy,Fzの検出精度を向上させるための工夫を述べておく。図10は、図9に示す式の一部についての変形例を示す図である。この変形例では、図9に示す力Fx,Fy,Fzに関する式の代わりに、それぞれ図10に示す式を用いる。以下、これらの式の意味を順に説明する。
まず、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式は、図9に示すFxについての式に、補正項「−K1(A2−B2)」を付加したものであり、K1は補正のための所定の定数である。この補正項は、他軸の検出成分による干渉を排除する役割を果たす。具体的には、モーメント成分Myが力成分Fxの検出値に混入することを防ぐ役割を果たす。
モーメントMyが作用すると、図8に示すような変形が生じることになり、第1グループの各電極A1,A2,A3を含む容量素子は電極間隔が狭まり、第2グループの各電極B1,B2,B3を含む容量素子は電極間隔が広がる。このとき、第3グループの各電極C1,C2,C3を含む容量素子および第4グループの各電極D1,D2,D3を含む容量素子の電極間隔には、大きな変化は生じないため、無視することも可能である。しかしながら、厳密に言えば、電極C1,D1を含む容量素子は電極間隔が狭まり、電極C3,D3を含む容量素子は電極間隔が広がるため、容量値C1,D1は増加し、容量値C3,D3は減少する。このため、Fx=(C1+D1)−(C3+D3)なる式で力Fxを算出すると、力Fxが全く作用していないにもかかわらず、モーメントMyの成分が検出されてしまう。
補正項「−K1(A2−B2)」における(A2−B2)は、図9に示すとおり、モーメント成分Myの値を示すものであるので、これに所定の比例定数K1を乗じた補正値を減じる補正を行うことにより、モーメント成分Myに相当する検出値を相殺することができる。比例定数K1の値は、実測により適正値に定めることができる。
また、図10に示すFy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式は、図9に示すFyについての式に、補正項「−K2(C2−D2)」を付加したものであり、K2は補正のための所定の定数である。この補正項は、モーメント成分Mxが力成分Fyの検出値に混入することを防ぐ役割を果たす。すなわち、補正項「−K2(C2−D2)」における(C2−D2)は、図9に示すとおり、モーメント成分Mxの値の符号を反転したものを示すものであり(符号を反転させるのは、モーメント+Mxが力−Fyの成分として検出されるためである)、これに所定の比例定数K2を乗じた補正値を減じる補正を行うことにより、モーメント成分Mxに相当する検出値を相殺することができる。比例定数K2の値も、実測により適正値に定めることができる。このように、他軸の検出成分による干渉を排除する方法のより詳細な説明は、たとえば、特開2009−257992号公報などを参照されたい。
一方、図10に示すFz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式は、図9に示すFzについての式に、比較項「K3(A1+A3+B1+B3+C1+C3+D1+D3)」を付加したものであり、力Fzについても差分検出を行うようにするためのものである。図9に示す6本の式において、Fzの式以外はすべて差分を求める式になっており、力やモーメントの値を直接得ることができる。これに対して、Fzの式は、4つの静電容量値の和を求める式であり、前述したとおり、値Fzは、力Fzの値を直接的に示すものではない。
そこで、上述した差分検出を行うことにより、力やモーメントの値を直接得ることができる利点が得られるだけでなく、温度変化に基づく各部の寸法変化や同相ノイズの影響などに起因する検出誤差を相殺して、正確な検出値を得る利点も得られる。図5に示す電極配置をみると、同じグループ内では、近距離に同一形状の3個の電極が配置されており、力Fzが作用した場合、中央の電極を含む容量素子の静電容量値の変化が、その両脇の容量素子の静電容量値の変化よりも大きくなる。
図11は、第4グループに所属するダイアフラム240と3個の電極D1,D2,D3の部分について、力−Fzが作用したときの変形態様を示す拡大断面図である。図から明らかなように、電極間隔の変化は、中央の電極D2を含む容量素子が最も大きくなる。したがって、Z軸方向の力が作用した場合、値D2の変動量は、値D1やD3の変動量よりも大きくなる。よって、D2とK3(D1+D3)との差は、力Fzの大きさを示すものになる。図10に示すFz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式は、このような原理に基づき、力Fzを差分検出するための式ということになる。
ここで、定数K3は、たとえば、K3=1/2など、実際の電極の配置やサイズに応じて適当となる値を設定すればよい。この図10に示すFzの式を用いると、検出感度が低下することは否めないが、アンプのゲインを調整すれば問題は生じない。なお、力Fx,Fy,Mzの検出に関しては、中央の電極を含む容量素子よりも、両脇の電極を含む容量素子の方が、静電容量値の変動が大きくなるので、十分な検出感度を得ることができる。
結局、ここに示す力覚センサ用の検出処理部には、X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)なる式、もしくは、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、Y軸方向の力Fyを、Fy=(A1+B1)−(A3+B3)なる式、もしくは、Fy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式(但し、K2は所定の定数)に基づいて検出し、Z軸方向の力Fzを、Fz=−(A2+B2+C2+D2)なる式、もしくは、Fz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式(但し、K3は所定の定数)に基づいて検出し、X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出する機能をもたせておけばよい。
<<< §3. 変形例に係る力覚センサ >>>
図12は、本考案の変形例に係る力覚センサをXZ平面で切断した断面図である。この変形例の構造は、基本的には、これまで述べてきた実施例と共通する、ただ、各ダイアフラム210,220,230,240と支持基板300の上面との間に形成された空隙部が、各ダイアフラムの輪郭より外側の領域にまで広がっている。すなわち、図12に示す構造を、図3に示す構造と比較すると、空隙部S1およびS2の横幅が、ダイアフラム210,220の輪郭より外側の領域にまで広がっていることがわかる。また、この変形例では、電極が追加されている。たとえば、図12において、空隙部S1内には、第1グループ第4電極A4が付加され、空隙部S2内には、第2グループ第4電極B4が付加されている。
図12は、本考案の変形例に係る力覚センサをXZ平面で切断した断面図である。この変形例の構造は、基本的には、これまで述べてきた実施例と共通する、ただ、各ダイアフラム210,220,230,240と支持基板300の上面との間に形成された空隙部が、各ダイアフラムの輪郭より外側の領域にまで広がっている。すなわち、図12に示す構造を、図3に示す構造と比較すると、空隙部S1およびS2の横幅が、ダイアフラム210,220の輪郭より外側の領域にまで広がっていることがわかる。また、この変形例では、電極が追加されている。たとえば、図12において、空隙部S1内には、第1グループ第4電極A4が付加され、空隙部S2内には、第2グループ第4電極B4が付加されている。
図13は、図12に示す力覚センサの支持基板300の上面図である。破線の円は、その上方に配置された4組のダイアフラム210,220,230,240の位置を示しており、一点鎖線の円は、各空隙部の内周位置を示している。このように、空隙部を各ダイアフラム210,220,230,240の輪郭より外側の領域にまで広げたため、各グループについて、第4電極A4,B4,C4,D4を設けることができる。
ここで、第1グループ第4電極A4は、第1のダイアフラム210の輪郭を支持基板300の上面に投影した投影像とX軸の正領域の投影像との外側交点位置(図に示す破線の円とX軸の正領域の投影像との2つの交点のうち、原点Oから遠い方の交点の位置、以下、同様)に配置されており、第2グループ第4電極B4は、第2のダイアフラムの輪郭を支持基板300の上面に投影した投影像とX軸の負領域の投影像との外側交点位置に配置されており、第3グループ第4電極C4は、第3のダイアフラム230の輪郭を支持基板300の上面に投影した投影像とY軸の正領域の投影像との外側交点位置に配置されており、第4グループ第4電極D4は、第4のダイアフラムの輪郭を支持基板300の上面に投影した投影像とY軸の負領域の投影像との外側交点位置に配置されている。
これら第4電極A4,B4,C4,D4に対向する下方基板200の下面は、各ダイアフラム210,220,230,240の部分を含めて導電性を有しているので、各第4電極A4,B4,C4,D4とこれに対向する下方基板200の下面の一部分とによって静電容量素子が構成される。検出処理部は、各第4電極A4,B4,C4,D4をそれぞれ含む各容量素子の静電容量値の変化も考慮して、作用した力もしくはモーメントの検出を行うことになる。
この図12および図13に示す変形例においても、第1〜第4の柱状部材Ta〜Td、第1〜第4のダイアフラム210,220,230,240、および各グループの第1〜第4電極からなる合計16枚の電極A1〜D4によって構成される構造体が、XZ平面に関して面対称をなし、かつ、YZ平面に関して面対称をなすという対称性が確保されている。
図14は、この図12に示す力覚センサにおける各成分の検出に用いる式を示す図である。ここでも、便宜上、電極A1〜A4,B1〜B4,C1〜C4,D1〜D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1〜A4,B1〜B4,C1〜C4,D1〜D4と表すことにする。
図14において、Fx,Fy,Mx,My,Mzに関する式は、これまでに述べた式と同じであるが、Fz=K4(A4+B4+C4+D4)−(A2+B2+C2+D2)なる式は、図10に示す比較項を「K4(A4+B4+C4+D4)」に置き換えたものである(K4は所定の定数)。図10に示す比較項は、第1電極および第3電極を利用したものであるが、図14に示す式では、第4電極を利用した補正項が用いられている。第4電極に対するダイアフラムの変位は、第1電極および第3電極に対するダイアフラムの変位よりも小さいため、図14に示すFzの式を用いれば、Fzの検出感度低下を抑えるメリットが得られる。
結局、この変形例に係る力覚センサ用の検出処理部には、X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、Y軸方向の力Fyを、Fy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式(但し、K2は所定の定数)に基づいて検出し、Z軸方向の力Fzを、Fz=K4(A4+B4+C4+D4)−(A2+B2+C2+D2)なる式(但し、K4は所定の定数)に基づいて検出し、X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、Fx,Fy,Fz,Mx,My,Mzの6成分を検出する機能をもたせておけばよい。
図13に示すように、各グループの第4電極A4,B4,C4,D4は、内側部分が各ダイアフラム210,220,230,240の対向領域内に入り、外側部分がその外側へと食み出す位置に配置されている。本願考案者が行った実験によると、このように、第4電極の一部がダイアフラムの対向領域から食み出るような配置を行うと、良好な検出結果が得られる事実が判明した。検出誤差を相殺するためには第4電極を第2電極に近接配置した方がよいが、補正項によるFzの検出感度低下を抑えるためには対向するダイアフラムの変位が小さい位置(すなわち、第2電極から離れた位置)に配置した方がよい、という事情があり、このような事情を考慮すると、図13に示す配置が最適になるものと考えられる。したがって、実用上は、このような配置を採るのが好ましい。
100:上方基板
110:第1の可撓性接続部
111:固定ねじ
120:第2の可撓性接続部
121:固定ねじ
130:第3の可撓性接続部
131:固定ねじ
140:第4の可撓性接続部
141:固定ねじ
200:下方基板
210:第1のダイアフラム
220:第2のダイアフラム
230:第3のダイアフラム
240:第4のダイアフラム
300:支持基板
A1〜A4:第1グループ第1電極〜第4電極
B1〜B4:第2グループ第1電極〜第4電極
C1〜C4:第3グループ第1電極〜第4電極
D1〜D4:第4グループ第1電極〜第4電極
Fx,Fy,Fz:各座標軸方向の力
K1〜K4:比例定数
Mx,My,Mz:各座標軸まわりのモーメント
O:XYZ三次元座標系の原点
S1,S2:空隙部
Ta:第1の柱状部材
Tb:第2の柱状部材
Tc:第3の柱状部材
Td:第4の柱状部材
X:XYZ三次元座標系の座標軸
Y:XYZ三次元座標系の座標軸
Z:XYZ三次元座標系の座標軸
110:第1の可撓性接続部
111:固定ねじ
120:第2の可撓性接続部
121:固定ねじ
130:第3の可撓性接続部
131:固定ねじ
140:第4の可撓性接続部
141:固定ねじ
200:下方基板
210:第1のダイアフラム
220:第2のダイアフラム
230:第3のダイアフラム
240:第4のダイアフラム
300:支持基板
A1〜A4:第1グループ第1電極〜第4電極
B1〜B4:第2グループ第1電極〜第4電極
C1〜C4:第3グループ第1電極〜第4電極
D1〜D4:第4グループ第1電極〜第4電極
Fx,Fy,Fz:各座標軸方向の力
K1〜K4:比例定数
Mx,My,Mz:各座標軸まわりのモーメント
O:XYZ三次元座標系の原点
S1,S2:空隙部
Ta:第1の柱状部材
Tb:第2の柱状部材
Tc:第3の柱状部材
Td:第4の柱状部材
X:XYZ三次元座標系の座標軸
Y:XYZ三次元座標系の座標軸
Z:XYZ三次元座標系の座標軸
Claims (12)
- XYZ三次元座標系における所定座標軸方向の力もしくは所定座標軸まわりのモーメントまたはその双方を検出する力覚センサであって、
検出対象となる力もしくはモーメントを受けるために前記座標系の原点位置に配置され、XY平面に沿って広がる上方基板と、
前記上方基板の下方に所定間隔をあけて配置され、XY平面に平行な平面に沿って広がる下方基板と、
前記下方基板の下面に接合され、XY平面に平行な平面に沿って広がる支持基板と、
Z軸方向を長手方向とする構造をなし、上端が前記上方基板に接続され、下端が前記下方基板に接続され、XY平面への投影像がX軸の正領域に形成される第1の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が前記上方基板に接続され、下端が前記下方基板に接続され、XY平面への投影像がX軸の負領域に形成される第2の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が前記上方基板に接続され、下端が前記下方基板に接続され、XY平面への投影像がY軸の正領域に形成される第3の柱状部材と、
Z軸方向を長手方向とする構造をなし、上端が前記上方基板に接続され、下端が前記下方基板に接続され、XY平面への投影像がY軸の負領域に形成される第4の柱状部材と、
を備え、
前記上方基板の前記第1の柱状部材に対する接続部分は可撓性を有しており、前記下方基板の前記第1の柱状部材に対する接続部分には、可撓性をもった第1のダイアフラムが形成されており、前記第1の柱状部材の下端は前記第1のダイアフラムの中心部に接続されており、前記第1のダイアフラムと前記支持基板の上面との間には空隙部が形成されており、
前記上方基板の前記第2の柱状部材に対する接続部分は可撓性を有しており、前記下方基板の前記第2の柱状部材に対する接続部分には、可撓性をもった第2のダイアフラムが形成されており、前記第2の柱状部材の下端は前記第2のダイアフラムの中心部に接続されており、前記第2のダイアフラムと前記支持基板の上面との間には空隙部が形成されており、
前記上方基板の前記第3の柱状部材に対する接続部分は可撓性を有しており、前記下方基板の前記第3の柱状部材に対する接続部分には、可撓性をもった第3のダイアフラムが形成されており、前記第3の柱状部材の下端は前記第3のダイアフラムの中心部に接続されており、前記第3のダイアフラムと前記支持基板の上面との間には空隙部が形成されており、
前記上方基板の前記第4の柱状部材に対する接続部分は可撓性を有しており、前記下方基板の前記第4の柱状部材に対する接続部分には、可撓性をもった第4のダイアフラムが形成されており、前記第4の柱状部材の下端は前記第4のダイアフラムの中心部に接続されており、前記第4のダイアフラムと前記支持基板の上面との間には空隙部が形成されており、
前記支持基板の上面における前記第1のダイアフラムの対向部分には、Y軸に平行な配置軸に沿って並べられた第1グループ第1電極A1、第1グループ第2電極A2、第1グループ第3電極A3が設けられており、前記第1グループ第1電極A1は、Y座標値が正となる位置に配置され、前記第1グループ第2電極A2は、XZ平面と交差する位置に配置され、前記第1グループ第3電極A3は、Y座標値が負となる位置に配置され、
前記支持基板の上面における前記第2のダイアフラムの対向部分には、Y軸に平行な配置軸に沿って並べられた第2グループ第1電極B1、第2グループ第2電極B2、第2グループ第3電極B3が設けられており、前記第2グループ第1電極B1は、Y座標値が正となる位置に配置され、前記第2グループ第2電極B2は、XZ平面と交差する位置に配置され、前記第2グループ第3電極B3は、Y座標値が負となる位置に配置され、
前記支持基板の上面における前記第3のダイアフラムの対向部分には、X軸に平行な配置軸に沿って並べられた第3グループ第1電極C1、第3グループ第2電極C2、第3グループ第3電極C3が設けられており、前記第3グループ第1電極C1は、X座標値が正となる位置に配置され、前記第3グループ第2電極C2は、YZ平面と交差する位置に配置され、前記第3グループ第3電極A3は、X座標値が負となる位置に配置され、
前記支持基板の上面における前記第4のダイアフラムの対向部分には、X軸に平行な配置軸に沿って並べられた第4グループ第1電極D1、第4グループ第2電極D2、第4グループ第3電極D3が設けられており、前記第4グループ第1電極D1は、X座標値が正となる位置に配置され、前記第4グループ第2電極D2は、YZ平面と交差する位置に配置され、前記第4グループ第3電極D3は、X座標値が負となる位置に配置され、
前記各ダイアフラムは導電性を有し、前記各電極とこれに対向する前記各ダイアフラムの一部分とによって静電容量素子が構成され、これら静電容量素子の静電容量値の変化に基づいて、作用した力もしくはモーメントの検出を行う検出処理部を更に備えることを特徴とする力覚センサ。 - 請求項1に記載の力覚センサにおいて、
少なくとも、第1〜第4の柱状部材、第1〜第4のダイアフラム、および各グループの第1〜第3電極からなる合計12枚の電極によって構成される構造体が、XZ平面に関して面対称をなし、かつ、YZ平面に関して面対称をなすことを特徴とする力覚センサ。 - 請求項2に記載の力覚センサにおいて、
電極A1,A3,B1,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A3,B1,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
少なくとも、MxおよびMzを検出する機能を有することを特徴とする力覚センサ。 - 請求項2に記載の力覚センサにおいて、
電極A2,B2,C1,C3,D1,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA2,B2,C1,C3,D1,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)なる式、もしくは、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
少なくとも、FxおよびMyを検出する機能を有することを特徴とする力覚センサ。 - 請求項2に記載の力覚センサにおいて、
電極A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸方向の力Fzを、Fz=−(A2+B2+C2+D2)なる式、もしくは、Fz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式(但し、K3は所定の定数)に基づいて検出し、
少なくとも、Mx,MyおよびFzを検出する機能を有することを特徴とする力覚センサ。 - 請求項2に記載の力覚センサにおいて、
電極A1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,B1,B2,B3,C1,C2,C3,D1,D2,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)なる式、もしくは、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸方向の力Fyを、Fy=(A1+B1)−(A3+B3)なる式、もしくは、Fy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式(但し、K2は所定の定数)に基づいて検出し、
Z軸方向の力Fzを、Fz=−(A2+B2+C2+D2)なる式、もしくは、Fz=K3(A1+A3+B1+B3+C1+C3+D1+D3)−(A2+B2+C2+D2)なる式(但し、K3は所定の定数)に基づいて検出し、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
Fx,Fy,Fz,Mx,My,Mzの6成分を検出する機能を有することを特徴とする力覚センサ。 - 請求項1に記載の力覚センサにおいて、
各ダイアフラムと支持基板上面との間に形成された空隙部は、各ダイアフラムの輪郭より外側の領域にまで広がっており、
第1のダイアフラムの輪郭を支持基板上面に投影した投影像とX軸の正領域の投影像との外側交点位置に配置された第1グループ第4電極A4と、第2のダイアフラムの輪郭を支持基板上面に投影した投影像とX軸の負領域の投影像との外側交点位置に配置された第2グループ第4電極B4と、第3のダイアフラムの輪郭を支持基板上面に投影した投影像とY軸の正領域の投影像との外側交点位置に配置された第3グループ第4電極C4と、第4のダイアフラムの輪郭を支持基板上面に投影した投影像とY軸の負領域の投影像との外側交点位置に配置された第4グループ第4電極D4と、を更に備え、
前記各第4電極に対向する下方基板の下面は、各ダイアフラムの部分を含めて導電性を有し、前記各第4電極とこれに対向する前記下方基板の下面の一部分とによって静電容量素子が構成され、
検出処理部が、前記各第4電極をそれぞれ含む各容量素子の静電容量値の変化も考慮して、作用した力もしくはモーメントの検出を行うことを特徴とする力覚センサ。 - 請求項7に記載の力覚センサにおいて、
少なくとも、第1〜第4の柱状部材、第1〜第4のダイアフラム、および各グループの第1〜第4電極からなる合計16枚の電極によって構成される構造体が、XZ平面に関して面対称をなし、かつ、YZ平面に関して面対称をなすことを特徴とする力覚センサ。 - 請求項8に記載の力覚センサにおいて、
電極A1,A3,B1,B3,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A3,B1,B3,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
少なくとも、MxおよびMzを検出する機能を有することを特徴とする力覚センサ。 - 請求項8に記載の力覚センサにおいて、
電極A2,A4,B2,B4,C1,C3,D1,D3をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA2,A4,B2,B4,C1,C3,D1,D3としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
少なくとも、FxおよびMyを検出する機能を有することを特徴とする力覚センサ。 - 請求項8に記載の力覚センサにおいて、
電極A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸方向の力Fzを、Fz=K4(A4+B4+C4+D4)−(A2+B2+C2+D2)なる式(但し、K4は所定の定数)に基づいて検出し、
少なくとも、Mx,MyおよびFzを検出する機能を有することを特徴とする力覚センサ。 - 請求項8に記載の力覚センサにおいて、
電極A1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4をそれぞれ含む各容量素子の静電容量値を、同じ符号を用いてそれぞれA1,A2,A3,A4,B1,B2,B3,B4,C1,C2,C3,C4,D1,D2,D3,D4としたときに、
検出処理部が、
X軸方向の力Fxを、Fx=(C1+D1)−(C3+D3)−K1(A2−B2)なる式(但し、K1は所定の定数)に基づいて検出し、
Y軸方向の力Fyを、Fy=(A1+B1)−(A3+B3)−K2(C2−D2)なる式(但し、K2は所定の定数)に基づいて検出し、
Z軸方向の力Fzを、Fz=K4(A4+B4+C4+D4)−(A2+B2+C2+D2)なる式(但し、K4は所定の定数)に基づいて検出し、
X軸まわりのモーメントMxを、Mx=D2−C2なる式に基づいて検出し、
Y軸まわりのモーメントMyを、My=A2−B2なる式に基づいて検出し、
Z軸まわりのモーメントMzを、Mz=(A1−A3)+(B3−B1)+(C3−C1)+(D1−D3)なる式に基づいて検出し、
Fx,Fy,Fz,Mx,My,Mzの6成分を検出する機能を有することを特徴とする力覚センサ。
Publications (1)
Publication Number | Publication Date |
---|---|
JP3172413U true JP3172413U (ja) | 2011-12-15 |
Family
ID=
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019066409A (ja) * | 2017-10-04 | 2019-04-25 | 第一精工株式会社 | 力検出装置 |
CN113970405A (zh) * | 2021-11-15 | 2022-01-25 | 珠海格力电器股份有限公司 | 多维力传感器标定装置及标定方法 |
CN114674482A (zh) * | 2022-03-25 | 2022-06-28 | 中国科学院合肥物质科学研究院 | 一种用于穿刺手术的多维力检测装置 |
CN116839541A (zh) * | 2023-08-29 | 2023-10-03 | 西南交通建设集团股份有限公司 | 一种用于桥梁施工的沉降度测量装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019066409A (ja) * | 2017-10-04 | 2019-04-25 | 第一精工株式会社 | 力検出装置 |
JP6992386B2 (ja) | 2017-10-04 | 2022-01-13 | I-Pex株式会社 | 力検出装置 |
CN113970405A (zh) * | 2021-11-15 | 2022-01-25 | 珠海格力电器股份有限公司 | 多维力传感器标定装置及标定方法 |
CN114674482A (zh) * | 2022-03-25 | 2022-06-28 | 中国科学院合肥物质科学研究院 | 一种用于穿刺手术的多维力检测装置 |
CN114674482B (zh) * | 2022-03-25 | 2023-07-25 | 中国科学院合肥物质科学研究院 | 一种用于穿刺手术的多维力检测装置 |
CN116839541A (zh) * | 2023-08-29 | 2023-10-03 | 西南交通建设集团股份有限公司 | 一种用于桥梁施工的沉降度测量装置 |
CN116839541B (zh) * | 2023-08-29 | 2023-11-10 | 西南交通建设集团股份有限公司 | 一种用于桥梁施工的沉降度测量装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI772635B (zh) | 力矩感測器 | |
JP5568768B2 (ja) | 力検出装置 | |
JP6092326B2 (ja) | トルクセンサ | |
JP4907050B2 (ja) | 力検出装置 | |
JP4387691B2 (ja) | 力検出装置 | |
US20190353537A1 (en) | Force sensor | |
US7500406B2 (en) | Multiaxial sensor | |
JPH05215627A (ja) | 多次元方向に関する力・加速度・磁気の検出装置 | |
JP2008039646A (ja) | 力覚センサ用チップ | |
WO2013128819A1 (ja) | 操作位置検出装置および車載装置 | |
JP2008096229A (ja) | 静電容量式センサ | |
JP2019095407A (ja) | 変位検出方式の力検出構造及び力センサ | |
JP5277038B2 (ja) | 力検出装置 | |
JP5248182B2 (ja) | 力検出装置 | |
JP4931971B2 (ja) | 力検出装置 | |
JP3172413U (ja) | 力覚センサ | |
JP3136188U (ja) | 力検出装置 | |
JP6865982B2 (ja) | 力覚センサ | |
JP6364637B2 (ja) | 荷重変換器 | |
JP6887711B1 (ja) | 力覚センサ | |
JP6910693B2 (ja) | 力覚センサ | |
JP7432973B1 (ja) | 力覚センサ | |
JP2006058211A (ja) | 歪みゲージ型センサ |