JP3172008B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP3172008B2
JP3172008B2 JP23128393A JP23128393A JP3172008B2 JP 3172008 B2 JP3172008 B2 JP 3172008B2 JP 23128393 A JP23128393 A JP 23128393A JP 23128393 A JP23128393 A JP 23128393A JP 3172008 B2 JP3172008 B2 JP 3172008B2
Authority
JP
Japan
Prior art keywords
film
polishing
particles
abrasive particles
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP23128393A
Other languages
Japanese (ja)
Other versions
JPH0786216A (en
Inventor
泰孝 佐々木
純一 和田
美恵 松尾
伸夫 早坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP23128393A priority Critical patent/JP3172008B2/en
Priority to KR1019940006222A priority patent/KR0166404B1/en
Priority to DE19944410787 priority patent/DE4410787A1/en
Priority to US08/300,127 priority patent/US5607718A/en
Publication of JPH0786216A publication Critical patent/JPH0786216A/en
Priority to US08/743,044 priority patent/US5775980A/en
Application granted granted Critical
Publication of JP3172008B2 publication Critical patent/JP3172008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、超LSI等の半導体装
置を製造する方法に係わり、特に半導体装置の製造工程
における研磨方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device such as an VLSI, and more particularly to a polishing method in a process of manufacturing a semiconductor device.

【0002】[0002]

【従来の技術】近年、LSIの高集積化に伴い、様々な
微細加工技術が開発されている。パターンの最小加工寸
法は年々小さくなり、現在では既にサブミクロンのオー
ダーとなっている。
2. Description of the Related Art In recent years, various microfabrication techniques have been developed with the increasing integration of LSIs. The minimum processing size of a pattern is getting smaller year by year, and is now on the order of submicron.

【0003】そのような厳しい微細化の要求を満たすた
めに開発されている技術の一つにCMP(ケミカルメカ
ニカルポリッシング)技術がある。この技術は、半導体
装置の製造工程において、例えば層間絶縁膜の平坦化、
プラグ形成、埋め込み金属配線形成、埋め込み素子分離
等を行う際に必須となる技術である。
One of the technologies that have been developed to satisfy such strict requirements for miniaturization is a CMP (Chemical Mechanical Polishing) technology. This technology is used in the manufacturing process of a semiconductor device, for example, for flattening an interlayer insulating film,
This technique is indispensable when forming a plug, forming a buried metal wiring, and separating a buried element.

【0004】図7(A)〜(D)にCMP技術を用いた
埋め込み金属配線形成の一例を示す。まず、図7(A)
に示すように、半導体基板1上に絶縁膜2を形成し、絶
縁膜2の表面を平坦化する。次いで、図7(B)に示す
ように、通常のフォトリソグラフィー法およびエッチン
グ法により、絶縁膜2に配線用の溝、あるいは接続配線
用の開口部3を形成する。次いで、図7(C)に示すよ
うに、この絶縁膜2上に配線用金属膜4を形成する。こ
の場合、絶縁膜2と配線用金属膜4との間の相互拡散あ
るいは反応を防止するために、両者の間にバリアメタル
膜を形成することもある。
FIGS. 7A to 7D show an example of formation of a buried metal wiring using the CMP technique. First, FIG.
As shown in (1), an insulating film 2 is formed on a semiconductor substrate 1, and the surface of the insulating film 2 is flattened. Next, as shown in FIG. 7B, a groove for wiring or an opening 3 for connection wiring is formed in the insulating film 2 by ordinary photolithography and etching. Next, as shown in FIG. 7C, a wiring metal film 4 is formed on the insulating film 2. In this case, a barrier metal film may be formed between the insulating film 2 and the wiring metal film 4 in order to prevent mutual diffusion or reaction between them.

【0005】次いで、溝もしくは開口部のみに配線用金
属膜4を残存させるために、配線用金属膜4にアルミナ
粒子等を研磨粒子としてCMPを施す。この場合、配線
用金属膜4の下に耐研磨性膜として配線用金属膜4に対
して研磨速度選択比の大きな材質の膜を形成することも
ある。なお、本出願人が先に出願している特願平5−6
7410号明細書に述べられているように、配線用金属
膜としてAl膜5を用い、図7(C)に示すように、ス
パッタリングによりAl膜4を堆積し、真空中において
連続的にアニール処理を施して図7(D)に示すよう
に、凹部内においてAlを単結晶化させると共に、Al
膜4を絶縁膜2の凸部に分離残存させ、その後CMPに
より残存したAl膜を除去してもよい。このようにし
て、図7(E)に示すように、絶縁膜2の表面と配線用
金属膜5の表面が同一平面となるようにする。
Next, in order to leave the wiring metal film 4 only in the grooves or openings, the wiring metal film 4 is subjected to CMP using alumina particles or the like as abrasive particles. In this case, a film made of a material having a high polishing rate selection ratio with respect to the wiring metal film 4 may be formed as a polishing-resistant film under the wiring metal film 4. The applicant has filed a Japanese Patent Application No. 5-6 / 1993.
As described in Japanese Patent No. 7410, an Al film 5 is used as a metal film for wiring, and an Al film 4 is deposited by sputtering as shown in FIG. As shown in FIG. 7D, Al is monocrystallized in the concave portions,
The film 4 may be separated and left on the convex portion of the insulating film 2 and then the remaining Al film may be removed by CMP. Thus, as shown in FIG. 7E, the surface of the insulating film 2 and the surface of the wiring metal film 5 are coplanar.

【0006】しかしながら、実際のCMPの工程では、
配線用金属膜4の被研磨面と研磨粒子との間あるいは被
研磨面と研磨剤を保持する定盤との間におけるメカニカ
ルな作用によって、配線用金属膜表面に傷がついて表面
が粗くなったり、配線用金属膜4に研磨粒子が埋め込ま
れたり残留したりする。
However, in the actual CMP process,
Due to the mechanical action between the polished surface of the wiring metal film 4 and the abrasive particles or between the polished surface and the platen holding the abrasive, the surface of the wiring metal film is scratched and roughened. Then, the abrasive particles are buried or remain in the wiring metal film 4.

【0007】また、図7(F)に示すように、溝や開口
部に埋め込まれた配線用金属膜4、特に幅が広い領域で
は中心部の厚さが薄くなるディッシングという現象が生
じる。このディッシングの現象が生じると、そこに研磨
粒子が残留し易くなる。例えば、配線用金属膜4の材料
として、Al,Cuのような硬度が低く、延性のある金
属を用いる場合、それらの傾向が顕著に現れる。配線用
金属膜表面の傷やディッシングの発生、あるいは研磨粒
子の残留等は、得られる配線の抵抗を増加させたり、断
線を引き起こして、信頼性の低下や製品歩留りの低下を
招く。
Further, as shown in FIG. 7F, a phenomenon called dishing occurs in which the thickness of the central portion of the wiring metal film 4 buried in the trenches and openings, particularly in a wide region, becomes thin. When this dishing phenomenon occurs, abrasive particles tend to remain there. For example, when a metal having low hardness and ductility, such as Al or Cu, is used as the material of the wiring metal film 4, those tendencies appear remarkably. Occurrence of scratches or dishing on the surface of the wiring metal film, residual abrasive particles, and the like increase the resistance of the obtained wiring or cause disconnection, resulting in lower reliability and lower product yield.

【0008】[0008]

【発明が解決しようとする課題】半導体装置の製造工程
においては、CMP後の研磨粒子の残留が大きな問題と
なる。すなわち、残留した研磨粒子が半導体装置の不良
の原因となる。このため、CMP後の研磨粒子を完全に
除去する必要がある。
In the process of manufacturing a semiconductor device, there is a great problem that abrasive particles remain after CMP. That is, the remaining abrasive particles cause a failure of the semiconductor device. Therefore, it is necessary to completely remove the abrasive particles after the CMP.

【0009】従来、CMP後の研磨粒子の除去には、純
水による水洗、スポンジスクラバーもしくはブラシスク
ラバーを用いるスクラブ洗浄、超音波洗浄、または硫酸
−過酸化水素水混合溶液を用いる化学的洗浄等が行われ
る。しかしながら、これらの洗浄では充分に研磨粒子を
除去することはできない。ここで、酸化セリウム粒子を
研磨粒子として用い、これを純水に分散させた研磨剤
で、6インチSiウェハ上に形成したSiO2 膜をCM
Pした後、ブラシスクラバーを用いるスクラブ洗浄(洗
浄1)、またはスクラブ洗浄と硫酸過酸化水素水混合溶
液による化学的洗浄との組み合わせ洗浄(洗浄2)を行
ったときの粒径別の残留粒子数を測定した結果を下記表
1に示す。
Conventionally, removal of abrasive particles after CMP includes washing with pure water, scrubbing with a sponge scrubber or brush scrubber, ultrasonic washing, or chemical washing with a mixed solution of sulfuric acid and hydrogen peroxide. Done. However, these cleanings cannot sufficiently remove abrasive particles. Here, cerium oxide particles were used as abrasive particles, and an SiO 2 film formed on a 6-inch Si wafer was subjected to CM using an abrasive dispersed in pure water.
Number of residual particles by particle size when scrub cleaning using brush scrubber (cleaning 1) or combined cleaning of scrub cleaning and chemical cleaning with a mixed solution of sulfuric acid and hydrogen peroxide (cleaning 2) after P Are shown in Table 1 below.

【0010】[0010]

【表1】 [Table 1]

【0011】表1から明らかなように、いずれの粒径の
残留粒子においても、CMP前の残留粒子数と比較する
と、いずれも残留する研磨粒子量が多いことが分る。L
SIの最小加工寸法は既にサブハーフミクロンの世代に
入っており、要求されるダスト数のレベルもますます厳
しくなってきていることを考えると、0.3μm以下の
小さな残留粒子でさえも、製品の歩留りに大きく影響す
ることは明らかである。したがって、従来の研磨粒子を
用いた従来の研磨方法では、次世代のLSIの製造に対
応することはできない。
As is clear from Table 1, it can be seen that the amount of residual abrasive particles is large in any of the residual particles of any particle size as compared with the number of residual particles before CMP. L
Considering that the minimum processing size of SI is already in the sub-half micron generation and the level of required dust count is becoming increasingly severe, even small residual particles of 0.3 μm or less can be used in products. It is clear that this greatly affects the yield. Therefore, the conventional polishing method using the conventional polishing particles cannot cope with the next-generation LSI manufacturing.

【0012】本発明はかかる点に鑑みてなされたもので
あり、研磨後の研磨粒子の残存量を極力少なくし、ディ
ッシング等を起こすことなく研磨することができ、良好
に膜の平坦化、埋め込み金属配線形成等を行うことがで
きる半導体装置の製造方法を提供することを目的とす
る。
The present invention has been made in view of the above points, and the polishing particles can be polished without causing dishing or the like by minimizing the residual amount of the polishing particles after polishing. An object of the present invention is to provide a method for manufacturing a semiconductor device capable of forming a metal wiring or the like.

【0013】[0013]

【課題を解決するための手段】本発明者らは、上記問題
点を解決すべく鋭意研究を重ねた結果、従来半導体装置
の製造工程において使用されていなかった有機高分子化
合物からなる粒子または少なくとも炭素を主成分とする
粒子を研磨粒子として用いることにより、研磨後の研磨
粒子の残存量を極力少なくし、ディッシング等を起こす
ことなく研磨することができることを見出だし本発明を
するに至った。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies to solve the above-mentioned problems, and as a result, it has been found that particles or at least organic polymer compounds which have not been used in the conventional semiconductor device manufacturing process. The present inventors have found that the use of particles containing carbon as a main component as polishing particles minimizes the residual amount of the polishing particles after polishing and enables polishing without causing dishing or the like, and has led to the present invention.

【0014】すなわち、本発明は、有機高分子化合物か
らなる粒子または少なくとも炭素を主成分とする粒子を
研磨粒子として用いて被加工膜を研磨する工程を具備す
ることを特徴とする半導体装置の製造方法を提供する。
That is, the present invention provides a method of manufacturing a semiconductor device, comprising a step of polishing a film to be processed by using particles made of an organic polymer compound or particles containing at least carbon as a main component as abrasive particles. Provide a way.

【0015】本発明においては、研磨後に前記研磨粒子
を燃焼させることにより除去する工程をさらに具備する
ことが好ましい。ここで、有機高分子化合物としては、
PMMA等のメタクリル樹脂、これと同等の硬度を有す
るフェノール樹脂、ユリア樹脂、メラミン樹脂、ポリス
チレン樹脂、ポリアセタール樹脂、ポリカーボネート樹
脂等を用いることができる。また、少なくとも炭素を主
成分とする材料としては、非晶質炭素、金剛砂、一層ま
たは数層のグラファイト構造を単位とし、それらがラン
ダムに結合してなるカーボンブラックを用いることがで
きる。
In the present invention, it is preferable that the method further comprises the step of removing the abrasive particles by burning them after polishing. Here, as the organic polymer compound,
A methacrylic resin such as PMMA, a phenolic resin, a urea resin, a melamine resin, a polystyrene resin, a polyacetal resin, a polycarbonate resin, or the like having the same hardness can be used. In addition, as a material containing at least carbon as a main component, it is possible to use amorphous carbon, gold sand, carbon black in which one or more layers of a graphite structure are united and randomly bonded.

【0016】上記研磨粒子は球形のものを使用すると良
い。球形とは、鋭角部のない略球形のものを含む意味で
ある。これは、研磨の際にメカニカル作用を抑制して被
加工膜表面に傷が付いたり、粗くなることを防止するた
めである。
It is preferable that the abrasive particles have a spherical shape. The spherical shape is meant to include a substantially spherical shape without an acute angle portion. This is to suppress the mechanical action during polishing and prevent the surface of the film to be processed from being scratched or roughened.

【0017】研磨粒子の平均粒径は、0.01〜0.1
μmであることが好ましい。これは、研磨粒子の平均粒
径が0.01μm未満であると粒子が凝集し易いために
表面粗さが増大し、また研磨速度も不安定となり、0.
1μmを超えると表面粗さが増大し、また、ディッシン
グ量も粒径に比例して増大するからである。
The average particle size of the abrasive particles is 0.01 to 0.1.
μm is preferred. If the average particle size of the abrasive particles is less than 0.01 μm, the particles tend to aggregate, so that the surface roughness increases, and the polishing rate becomes unstable.
If the thickness exceeds 1 μm, the surface roughness increases, and the dishing amount also increases in proportion to the particle size.

【0018】研磨後の研磨粒子を燃焼させる方法として
は、酸素プラズマ中に晒したり、酸素ラジカルをダウン
フローで供給すること等のプラズマによる灰化処理、酸
素雰囲気中での高温処理等を用いることができる。これ
らの方法により上記研磨粒子を容易に除去することがで
きる。
As a method of burning the abrasive particles after polishing, ashing treatment by plasma, such as exposure to oxygen plasma or supply of oxygen radicals in a downflow manner, a high temperature treatment in an oxygen atmosphere, or the like is used. Can be. These methods make it possible to easily remove the abrasive particles.

【0019】被加工膜としては、純Al膜や、AlSi
Cu合金、AlCu合金等のAlを主成分とする合金か
らなる膜、シリコン酸化膜、シリコン窒化膜、アモルフ
ァスシリコン膜、多結晶シリコン膜、単結晶シリコン膜
等が挙げられる。
As a film to be processed, a pure Al film, AlSi
Examples include a film made of an alloy containing Al as a main component such as a Cu alloy and an AlCu alloy, a silicon oxide film, a silicon nitride film, an amorphous silicon film, a polycrystalline silicon film, and a single crystal silicon film.

【0020】上記被加工膜、研磨粒子、研磨粒子を分散
させる溶液は、硬度や化学的エッチング作用等を考慮し
て相対的に適宜選択する必要がある。例えば、研磨粒子
を分散させる溶液がアルカリ性であることが好ましい場
合は、被加工膜に純Al、Al−Si−Cu合金、Al
−Cu合金等からなる膜を用い、研磨粒子に有機高分子
化合物粒子あるいはカーボンブラック粒子を用いる場合
であり、酸性であることが好ましい場合は、被加工膜に
Cuを主成分とする膜を用い、研磨粒子に有機高分子化
合物粒子等を用いる場合である。
The film to be processed, the abrasive particles, and the solution in which the abrasive particles are dispersed need to be appropriately selected in consideration of hardness, chemical etching action, and the like. For example, when the solution in which the abrasive particles are dispersed is preferably alkaline, pure Al, Al-Si-Cu alloy, Al
Using a film made of a Cu alloy or the like, using organic polymer compound particles or carbon black particles as the abrasive particles, and preferably using a film containing Cu as a main component in the film to be processed when it is preferably acidic. And organic polymer compound particles and the like are used as abrasive particles.

【0021】[0021]

【作用】本発明の半導体装置の製造方法は、有機高分子
化合物からなる球形粒子または少なくとも炭素を主成分
とする粒子を研磨粒子として用いて被加工膜を研磨する
工程を具備することを特徴としている。
The method of manufacturing a semiconductor device according to the present invention comprises a step of polishing a film to be processed using spherical particles made of an organic polymer compound or particles containing at least carbon as a main component as abrasive particles. I have.

【0022】上記の研磨粒子は球形であるので、メカニ
カル作用が小さく、CMPの際に被加工膜の表面に傷を
付けたり、ディッシングを発生させることがない。ま
た、これらの研磨粒子は、燃焼することにより被加工膜
上から完全に除去することができるので、研磨粒子の残
留による信頼性の低下や製品歩留りの低下等の半導体装
置の不良を引き起こすことがない。
Since the above-mentioned abrasive particles are spherical, they have a small mechanical action, and do not damage the surface of the film to be processed or cause dishing during CMP. In addition, since these abrasive particles can be completely removed from the film to be processed by burning, they may cause a failure of the semiconductor device such as a decrease in reliability and a decrease in product yield due to residual abrasive particles. Absent.

【0023】[0023]

【実施例】以下、本発明の実施例を図面を参照して具体
的に説明する。 実施例1 まず、図1に示すように、Si基板11上にSiO2
12を形成し、通常のフォトリソグラフィー法およびエ
ッチング法により、幅0.4〜10μm、深さ0.4μ
mの配線用溝13を形成した。次いで、圧力10-4Torr
のAr雰囲気中で直流マグネトロンスパッタリング法に
より全面に非加熱の状態で厚さ4500オングストロー
ムのAl膜14を形成した。このようにして試料20を
作製した。このときの試料20表面に残存する研磨粒子
の数をダストカウンターを用いて測定した。その結果を
下記表2に示す。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be specifically described below with reference to the drawings. Example 1 First, as shown in FIG. 1, an SiO 2 film 12 was formed on a Si substrate 11, and the width was 0.4 to 10 μm and the depth was 0.4 μm by ordinary photolithography and etching.
m of wiring grooves 13 were formed. Then, a pressure of 10 -4 Torr
An Al film 14 having a thickness of 4500 angstroms was formed on the entire surface in a non-heated state by a DC magnetron sputtering method in an Ar atmosphere. Thus, a sample 20 was produced. At this time, the number of abrasive particles remaining on the surface of the sample 20 was measured using a dust counter. The results are shown in Table 2 below.

【0024】次に、この試料20に図2に示す装置を用
いてCMPを施した。この装置は、回転可能な研磨プレ
ート21と、研磨プレート21上に貼付されたポリッシ
ングパッド22と、研磨プレート21の上方に配置され
ており、回転可能な試料ホルダー23と、研磨液タンク
に接続され、吐出部がポリッシングパッド22近傍まで
延出した研磨液供給用配管24とから構成されている。
試料20は、ポリッシングパッド22に被加工面が対向
するように試料ホルダー23に真空チャックされる。ま
た、研磨液供給用配管24は、研磨液の供給量を制御す
る手段を備えている。なお、ポリッシングパッド22に
は、発泡ポリウレタン製のポリッシングパッドを用い
た。
Next, the sample 20 was subjected to CMP using the apparatus shown in FIG. This apparatus is arranged above a rotatable polishing plate 21, a polishing pad 22 stuck on the polishing plate 21, and a polishing plate 21, and is connected to a rotatable sample holder 23 and a polishing liquid tank. And a polishing liquid supply pipe 24 whose discharge section extends to the vicinity of the polishing pad 22.
The sample 20 is vacuum-chucked to the sample holder 23 such that the surface to be processed faces the polishing pad 22. In addition, the polishing liquid supply pipe 24 includes means for controlling the supply amount of the polishing liquid. As the polishing pad 22, a polishing pad made of foamed polyurethane was used.

【0025】CMPにおいて、研磨剤としては、平均粒
径1000オングストロームのPMMA(ポリメチルメ
タクリレート)粒子を、pH10程度のアルカリ性水溶
液に10.0重量%の割合で分散させたスラリーを用い
た。分散剤としては、ポリカルボン酸アンモニウム塩を
用いた。また、研磨条件は、研磨圧力300gf/cm2
定盤および試料ホルダーの回転数100rpm とした。そ
の結果、図1中の配線用溝13内に、ほぼ完全にAlを
残すことができた。また、Al配線の表面には傷はほと
んど見られなかった。なお、この研磨剤によるAlの研
磨速度は、VAl=150オングストローム/分であっ
た。また、CMP後に試料表面に残存する研磨粒子の数
を上記と同様にして測定した。その結果を下記表2に併
記する。
In the CMP, a slurry in which PMMA (polymethyl methacrylate) particles having an average particle diameter of 1000 angstroms were dispersed in an alkaline aqueous solution having a pH of about 10 at a ratio of 10.0% by weight was used as an abrasive. As a dispersant, ammonium polycarboxylate was used. The polishing conditions were a polishing pressure of 300 gf / cm 2 ,
The rotation speed of the platen and the sample holder was 100 rpm. As a result, Al was almost completely left in the wiring groove 13 in FIG. Almost no scratch was seen on the surface of the Al wiring. The polishing rate of Al with this polishing agent was VAl = 150 Å / min. Further, the number of abrasive particles remaining on the sample surface after the CMP was measured in the same manner as described above. The results are shown in Table 2 below.

【0026】次いで、CMP後の試料にスポンジを用い
て純水で洗浄処理を施し、乾燥した。このときの試料表
面に残存する研磨粒子の数を上記と同様にして測定し
た。その結果を下記表2に併記する。さらに、試料に、
プラズマ出力500W、O2 分圧0.9Torrの条件下で
酸素プラズマによる灰化処理を施し、残留している研磨
粒子を除去した。このときの試料表面に残存する研磨粒
子の数を上記と同様にして測定した。その結果を下記表
2に併記する。表2中の値はすべてウェハ1枚当たりの
平均値である。
Next, the sample after CMP was washed with pure water using a sponge and dried. At this time, the number of abrasive particles remaining on the sample surface was measured in the same manner as described above. The results are shown in Table 2 below. In addition,
Ashing treatment with oxygen plasma was performed under the conditions of a plasma output of 500 W and an O 2 partial pressure of 0.9 Torr to remove remaining abrasive particles. At this time, the number of abrasive particles remaining on the sample surface was measured in the same manner as described above. The results are shown in Table 2 below. All the values in Table 2 are average values per wafer.

【0027】[0027]

【表2】 [Table 2]

【0028】表2から明らかなように、灰化処理まで行
った試料の表面に残存する研磨粒子はほぼ完全に除去で
きたことが分る。なお、灰化処理後の試料の表面でカウ
ントされているもののほとんどは、研磨粒子以外のダス
トや試料表面の凹凸等を検出したものと思われる。
As is evident from Table 2, the abrasive particles remaining on the surface of the sample subjected to the incineration treatment were almost completely removed. In addition, it is considered that most of the components counted on the surface of the sample after the incineration treatment detected dust other than the abrasive particles, and irregularities on the sample surface.

【0029】ここで、PMMA粒子をpH7の純水に分
散してなるスラリーを用いてCMPを行ったところ、A
lは全く研磨されなかった。すなわち、純水にPMMA
粒子を分散した研磨剤のAlの研磨速度は、研磨圧力1
0〜1000gf/cm2 において、VAl=0A/分であっ
た。この結果から、PMMA粒子をAlの研磨に用いる
場合、研磨剤溶液を酸性あるいはアルカリ性にして、化
学的エッチング作用が進行する条件にすることが必要で
あることが分かった。化学的エッチング作用を加えるこ
とにより、実用的な研磨速度を得ることができる。特
に、化学的エッチング作用を加えて研磨速度を上げると
同時にAl表面に傷を付けないという観点から、分散さ
せる溶液はアルカリ性であることが望ましい。
Here, when CMP was performed using a slurry in which PMMA particles were dispersed in pure water having a pH of 7,
1 was not polished at all. That is, PMMA is added to pure water.
The polishing rate of Al of the abrasive in which the particles are dispersed is a polishing pressure of 1
At 0 to 1000 gf / cm 2 , V Al = 0 A / min. From these results, it was found that when the PMMA particles were used for polishing Al, it was necessary to make the polishing agent solution acidic or alkaline so that the chemical etching action proceeded. A practical polishing rate can be obtained by adding a chemical etching action. In particular, it is desirable that the solution to be dispersed is alkaline from the viewpoint of increasing the polishing rate by adding a chemical etching effect and at the same time not damaging the Al surface.

【0030】本実施例においては、試料は図1に示す構
造を有するものを用いているが、図3に示すように、S
i基板1上にSiO2 膜12を形成し、その上に圧力1
-4TorrのAr雰囲気中で直流マグネトロンスパッタリ
ング法により厚さ500オングストロームの耐研磨性膜
である炭素膜15を形成し、通常のフォトリソグラフィ
ー法およびエッチング法により図1と同様の大きさの配
線用溝13を形成した後、試料を500℃に加熱しなが
ら圧力10-4TorrのAr雰囲気中で直流マグネトロンス
パッタリング法で膜厚4000オングストロームのAl
膜14を形成してなる構造を有する試料においても、同
様な効果が得られることが分かった。すなわち、本発明
の方法によれば、耐研磨性膜の有無に拘らず、また、被
加工膜の表面形状に拘らず、研磨粒子をほぼ完全に除去
できることが分かった。なお、研磨粒子を実施例1と同
様の酸素プラズマによる灰化処理で除去する際、炭素膜
15を同時に除去することができ、工程数を削減するこ
とができる。 実施例2 図4に示すように、Si基板11上にSiO2 膜12を
形成し、通常のフォトリソグラフィー法およびエッチン
グ法により図1と同様の大きさの配線用溝13を形成し
た。次いで、圧力10-4TorrのAr雰囲気中で直流マグ
ネトロンスパッタリング法により全面に厚さ500オン
グストロームのNb膜16を形成し、その全面に圧力1
-4TorrのArおよびO2 の混合ガス雰囲気中で反応性
スパッタリング法により、厚さ約4000オングストロ
ームのCuOx(x=0〜0.5)膜17を形成した。
このようにして試料を作製した。
In the present embodiment, the sample having the structure shown in FIG. 1 is used, but as shown in FIG.
An SiO 2 film 12 is formed on an i-substrate 1 and a pressure 1
A carbon film 15 which is a polishing-resistant film having a thickness of 500 Å is formed by a DC magnetron sputtering method in an Ar atmosphere of 0 -4 Torr, and a wiring having the same size as that of FIG. 1 is formed by a usual photolithography method and etching method. After forming the groove 13, the sample was heated to 500 ° C. and a 4000 Å-thick Al film was formed by DC magnetron sputtering in an Ar atmosphere at a pressure of 10 −4 Torr.
It was found that the same effect can be obtained in a sample having a structure in which the film 14 is formed. That is, according to the method of the present invention, it was found that the abrasive particles could be almost completely removed regardless of the presence or absence of the polishing-resistant film and regardless of the surface shape of the film to be processed. When the abrasive particles are removed by the ashing treatment using oxygen plasma as in the first embodiment, the carbon film 15 can be removed at the same time, and the number of steps can be reduced. Example 2 As shown in FIG. 4, an SiO 2 film 12 was formed on a Si substrate 11, and a wiring groove 13 having the same size as that of FIG. 1 was formed by ordinary photolithography and etching. Next, an Nb film 16 having a thickness of 500 Å is formed on the entire surface by a DC magnetron sputtering method in an Ar atmosphere at a pressure of 10 −4 Torr, and a pressure of 1 Å is formed on the entire surface.
A CuOx (x = 0 to 0.5) film 17 having a thickness of about 4000 Å was formed by a reactive sputtering method in a mixed gas atmosphere of Ar and O 2 at 0 -4 Torr.
Thus, a sample was prepared.

【0031】この試料に実施例1と同様な研磨条件でC
MPを行った。ただし、研磨剤としては、平均粒径10
00オングストロームのPMMA粒子をpH3程度の酸
性水溶液に10.0重量%の割合で分散させたものを用
いた。その結果、定盤および試料ホルダーの回転数10
0rpm 、研磨圧力300gf/cm2 におけるCuOx膜1
7の研磨速度は200〜250オングストローム/分で
あり、Alの場合よりやや速かった。
This sample was treated with C under the same polishing conditions as in Example 1.
MP was performed. However, the abrasive has an average particle size of 10
A dispersion in which 00 Å PMMA particles were dispersed in an acidic aqueous solution having a pH of about 3 at a ratio of 10.0% by weight was used. As a result, the number of rotations of the platen and the sample holder was 10
CuOx film 1 at 0 rpm and polishing pressure of 300 gf / cm 2
The polishing rate of No. 7 was 200 to 250 Å / min, which was slightly faster than that of Al.

【0032】CMP後に試料をスポンジ洗浄処理した
後、実施例1と同様の条件で酸素プラズマによる灰化処
理を行ったところ、試料表面に残留した研磨粒子は完全
に除去された。
After the sample was subjected to a sponge cleaning treatment after the CMP, an ashing treatment was performed by oxygen plasma under the same conditions as in Example 1. As a result, abrasive particles remaining on the sample surface were completely removed.

【0033】本実施例より、研磨剤としてPMMA粒子
を用いてCuOx膜を研磨する場合、化学的エッチング
作用を加えて研磨速度を上げるという観点から、分散さ
せる溶液には、アンモニウム塩を含む、例えばpH3程
度の酸性水溶液、あるいは銅と共に錯イオンもしくはキ
レート化合物を作るようなイオンを含む溶液が好まし
い。 実施例3 図5に示すように、Si基板11上にSiO2 膜12を
膜厚5000オングストロームで形成し、その上にAl
膜14を膜厚4000オングストロームで形成し、およ
び炭素膜15を膜厚500オングストロームで形成し、
通常のフォトリソグラフィー法およびエッチング法によ
り上面にのみ炭素膜15を残したAl配線を形成した
後、プラズマCVD法によりSiO2 膜12を膜厚45
00オングストロームで形成した。このようにしてAl
配線がSiO2 膜12中に埋設された構造を有する試料
を作製した。
According to the present embodiment, when a CuOx film is polished using PMMA particles as an abrasive, from the viewpoint of increasing the polishing rate by adding a chemical etching effect, the solution to be dispersed contains an ammonium salt. An acidic aqueous solution having a pH of about 3 or a solution containing ions that form a complex ion or a chelate compound with copper is preferable. Example 3 As shown in FIG. 5, an SiO 2 film 12 was formed on a Si substrate 11 to a thickness of 5000 Å, and an Al film was formed thereon.
Forming a film 14 with a thickness of 4000 angstrom and a carbon film 15 with a thickness of 500 angstrom;
After forming the Al wiring leaving the carbon film 15 only on the upper surface by the usual photolithography and etching, the SiO 2 film 12 is formed to a thickness of 45 by plasma CVD.
It was formed at 00 Å. Thus, Al
A sample having a structure in which the wiring was embedded in the SiO 2 film 12 was manufactured.

【0034】この試料に実施例1と同様な研磨条件でC
MPを行った。ただし、研磨剤としては、平均粒径0.
5μmの非晶質炭素粒子を純水に1.0重量%の割合で
分散させたものを用いた。このとき、分散剤としては、
ポリカルボン酸アンモニウム塩を用いた。
This sample was subjected to polishing under the same polishing conditions as in Example 1.
MP was performed. However, the abrasive has an average particle size of 0.1.
A dispersion obtained by dispersing amorphous carbon particles of 5 μm in pure water at a ratio of 1.0% by weight was used. At this time, as the dispersant,
Ammonium polycarboxylate was used.

【0035】その結果、Al配線間にSiO2 膜12が
残り、炭素膜15上のSiO2 膜12は全て除去するこ
とができた。なお、定盤および試料ホルダーの回転数1
00rpm 、研磨圧力300gf/cm2 におけるSiO2
12の研磨速度はほぼ2000オングストローム/分で
あった。
As a result, the SiO 2 film 12 remained between the Al wirings, and the entire SiO 2 film 12 on the carbon film 15 could be removed. The number of rotations of the platen and the sample holder was 1
The polishing rate of the SiO 2 film 12 at 00 rpm and a polishing pressure of 300 gf / cm 2 was approximately 2000 Å / min.

【0036】CMP後に試料をスポンジ洗浄処理した
後、酸素プラズマによる灰化処理を行ったところ、試料
表面に残留した研磨粒子は完全に除去された。なお、プ
ラズマ出力は500W、O2 分圧は0.9Torrとした。
この酸素プラズマによる灰化処理において、Al配線1
4上の炭素膜は同時に除去することができ、工程数を削
減することができる。
After the sample was subjected to a sponge cleaning treatment after the CMP, an ashing treatment with oxygen plasma was performed. As a result, abrasive particles remaining on the sample surface were completely removed. The plasma output was 500 W and the O 2 partial pressure was 0.9 Torr.
In this ashing process using oxygen plasma, the Al wiring 1
4 can be removed at the same time, and the number of steps can be reduced.

【0037】本実施例より、研磨剤として平均粒径0.
5μmの非晶質炭素粒子を用いてSiO2 膜を研磨する
場合、化学的エッチング作用を加えて研磨速度を上げる
という観点から、分散させる溶液には、水酸化アルカリ
水溶液が好ましい。 実施例4 本実施例は、埋め込み素子分離の工程に本発明の方法を
応用したものである。まず、図6(A)に示すように、
Si基板11に通常のフォトリソグラフィー法およびエ
ッチング法により深さ0.8μm、幅0.35μmの埋
め込み素子分離用の溝18を形成し、TEOSガスとO
2 ガスを用いたCVD法によりSiO2膜12を膜厚
0.8μmで形成して溝18を埋め込んだ。このように
して試料を作製した。
From this example, it was found that the abrasive had an average particle size of 0.1.
When polishing an SiO 2 film using amorphous carbon particles of 5 μm, from the viewpoint of increasing the polishing rate by adding a chemical etching action, an aqueous alkali hydroxide solution is preferable as the solution to be dispersed. Embodiment 4 In this embodiment, the method of the present invention is applied to the step of separating buried elements. First, as shown in FIG.
A groove 18 for burying element isolation having a depth of 0.8 μm and a width of 0.35 μm is formed in the Si substrate 11 by ordinary photolithography and etching, and TEOS gas and O
An SiO 2 film 12 was formed to a thickness of 0.8 μm by a CVD method using two gases to fill the groove 18. Thus, a sample was prepared.

【0038】次に、図6(B)に示すように、実施例3
と同様にして試料にCMPを行った。次いで、図6
(C)に示すように、試料に酸素雰囲気中、大気圧下1
000℃で30分間の加熱処理を施して研磨粒子19を
完全に除去した。 実施例5 本実施例は、研磨粒子として有機高分子化合物粒子と他
の研磨粒子とを併用したものである。試料としては図3
に示すものを用いた。この試料にCMPを行った。研磨
剤としては、平均粒径350オングストロームのシリカ
粒子をpH11のアルカリ性水溶液に分散させたものを
用いた。このとき、研磨剤のAlの研磨速度は、定盤お
よび試料ホルダーの回転数100rpm 、研磨圧力300
gf/cm2の条件でVAl=900オングストローム/分で
あった。
Next, as shown in FIG.
The sample was subjected to CMP in the same manner as described above. Then, FIG.
As shown in (C), the sample was placed in an oxygen atmosphere under atmospheric pressure for 1 hour.
The abrasive particles 19 were completely removed by performing a heat treatment at 000 ° C. for 30 minutes. Example 5 In this example, organic polymer compound particles and other abrasive particles were used in combination as abrasive particles. Fig. 3
The following was used. This sample was subjected to CMP. As the polishing agent, silica particles having an average particle size of 350 Å dispersed in an alkaline aqueous solution having a pH of 11 were used. At this time, the polishing rate of the Al in the polishing agent was 100 rpm at the rotation speed of the platen and sample holder, and the polishing pressure was
Under the conditions of gf / cm 2 , VA = 900 angstroms / min.

【0039】次いで、試料を研磨すると同時に、試料表
面に残留したシリカ粒子を除去する目的で、研磨した定
盤と別の定盤にて、平均粒径1000オングストローム
のPMMA粒子をpH3のアルカリ性水溶液に分散させ
た研磨剤を用いて、研磨圧力100gf/cm2 、定盤およ
び試料ホルダーの回転数100rpm 、研磨時間1分で研
磨した。
Next, at the same time as polishing the sample, the PMMA particles having an average particle diameter of 1000 Å were transferred to an alkaline aqueous solution having a pH of 3 using a platen different from the polished platen in order to remove silica particles remaining on the sample surface. Polishing was performed using the dispersed abrasive at a polishing pressure of 100 gf / cm 2 , a rotation speed of the platen and the sample holder of 100 rpm, and a polishing time of 1 minute.

【0040】その後、実施例1と同様の条件で試料に酸
素プラズマによる灰化処理を施して、シリカ粒子および
PMMA粒子が残留しないAl配線を形成することがで
きた。なお、この酸素プラズマによる灰化処理の際、炭
素膜15も同時に除去できる。このように、通常の研磨
剤を併用することにより、実用的な研磨速度を得ること
ができ、しかも残留する研磨粒子を容易に除去できる。 比較例 研磨粒子として平均粒径0.5μmのダイヤモンド粒子
を用いること以外は実施例3と同様にしてCMPを行っ
たところ、CMP後のスポンジ洗浄および酸素雰囲気中
の熱処理により研磨粒子を除去することができたが、試
料のSiO2 膜の表面に無数の傷が入り、表面粗さRa
が2600オングストローム程度となり非常に表面が粗
くなった。これは、ダイヤモンド粒子の修正モース硬度
が15であり、SiO2 膜の修正モース硬度8に比べて
硬いことと、粒子形状が均質でなく球形でないことが原
因であると考えられる。このように、表面粗さおよび表
面の傷の発生という観点から、ダイアモンド粒子は不適
当であることが分る。
Thereafter, the sample was ashed by oxygen plasma under the same conditions as in Example 1 to form an Al wiring in which silica particles and PMMA particles did not remain. Note that the carbon film 15 can be removed at the same time during the incineration process using oxygen plasma. As described above, by using a normal abrasive in combination, a practical polishing rate can be obtained, and the remaining abrasive particles can be easily removed. Comparative Example When CMP was performed in the same manner as in Example 3 except that diamond particles having an average particle size of 0.5 μm were used as abrasive particles, the abrasive particles were removed by washing with a sponge after the CMP and heat treatment in an oxygen atmosphere. Was formed, but countless scratches were made on the surface of the sample SiO 2 film, and the surface roughness Ra
Was about 2600 angstroms and the surface was very rough. It is considered that this is because the modified Mohs hardness of the diamond particles is 15, which is higher than the modified Mohs hardness 8 of the SiO 2 film, and the particle shape is not uniform and not spherical. Thus, diamond particles are found to be unsuitable in terms of surface roughness and generation of surface flaws.

【0041】[0041]

【発明の効果】以上説明した如く本発明の半導体装置の
製造方法は、有機高分子化合物からなる球形粒子または
少なくとも炭素を主成分とする粒子を研磨粒子として用
いて被加工膜を研磨するので、研磨後の研磨粒子の残存
量を極力少なくし、ディッシング等を起こすことなく研
磨することができ、膜の平坦化、埋め込み金属配線形成
等を信頼性高く、しかも歩留り良く行うことができる。
As described above, in the method of manufacturing a semiconductor device according to the present invention, a film to be processed is polished using spherical particles made of an organic polymer compound or particles containing at least carbon as a main component. The remaining amount of the abrasive particles after the polishing is minimized, the polishing can be performed without causing dishing or the like, and the flattening of the film, the formation of the buried metal wiring, and the like can be performed with high reliability and high yield.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例1において使用する試料の一例を示す断
面図。
FIG. 1 is a cross-sectional view illustrating an example of a sample used in Example 1.

【図2】研磨処理に使用される装置を示す概略図。FIG. 2 is a schematic diagram showing an apparatus used for a polishing process.

【図3】実施例1において使用する試料の他の例を示す
断面図。
FIG. 3 is a sectional view showing another example of the sample used in the first embodiment.

【図4】実施例2において使用する試料を示す断面図。FIG. 4 is a cross-sectional view showing a sample used in Example 2.

【図5】実施例3において使用する試料を示す断面図。FIG. 5 is a cross-sectional view showing a sample used in Example 3.

【図6】(A)〜(C)は実施例4を説明するための断
面図。
FIGS. 6A to 6C are cross-sectional views illustrating a fourth embodiment.

【図7】(A)〜(F)は従来の研磨方法を説明するた
めの断面図。
7A to 7F are cross-sectional views illustrating a conventional polishing method.

【符号の説明】[Explanation of symbols]

11…Si基板、12…SiO2 膜、13…配線用溝、
14…Al膜、15…炭素膜、16…Nb膜、17…C
uOx膜、18…溝、19…研磨粒子、20…試料、2
1…研磨プレート、22…ポリッシングパッド、23…
試料ホルダー、24…研磨液供給用配管。
11 ... Si substrate, 12 ... SiO 2 film, 13 ... wiring trench,
14 ... Al film, 15 ... Carbon film, 16 ... Nb film, 17 ... C
uOx film, 18 groove, 19 abrasive particles, 20 sample, 2
1 Polishing plate, 22 Polishing pad, 23
Sample holder, 24 ... Piping for supply of polishing liquid.

フロントページの続き (72)発明者 早坂 伸夫 神奈川県川崎市幸区小向東芝町1番地 株式会社東芝研究開発センター内 (56)参考文献 特開 平5−154761(JP,A) 特開 昭63−160338(JP,A) 特開 昭63−160341(JP,A) 特開 平5−102112(JP,A) 特開 平6−140393(JP,A) 特開 平7−86215(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/304 B24B 1/00 B24B 37/00 Continuation of the front page (72) Inventor Nobuo Hayasaka 1 Toshiba-cho, Komukai, Koyuki-ku, Kawasaki City, Kanagawa Prefecture (56) References JP-A-5-154761 (JP, A) JP-A-63 JP-A-160338 (JP, A) JP-A-63-160341 (JP, A) JP-A-5-102112 (JP, A) JP-A-6-140393 (JP, A) JP-A-7-86215 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21/304 B24B 1/00 B24B 37/00

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】有機高分子化合物からなる粒子を研磨粒子
として用いて被加工膜を研磨する工程を具備することを
特徴とする半導体装置の製造方法。
1. A method for manufacturing a semiconductor device, comprising a step of polishing a film to be processed using particles made of an organic polymer compound as abrasive particles.
【請求項2】非晶質炭素およびカーボンブラックからな
る群から選ばれた炭素を主成分とする粒子を研磨粒子と
して用いて被加工膜を研磨する工程を具備することを特
徴とする半導体装置の製造方法。
2. The semiconductor device according to claim 1, further comprising a step of polishing a film to be processed by using, as abrasive particles, particles mainly containing carbon selected from the group consisting of amorphous carbon and carbon black. Production method.
【請求項3】 研磨後に前記研磨粒子を燃焼させること
により除去する工程を更に具備する請求項1または2に
記載の半導体装置の製造方法。
3. The method of manufacturing a semiconductor device according to claim 1, further comprising a step of burning and removing the abrasive particles after polishing.
JP23128393A 1993-03-26 1993-09-17 Method for manufacturing semiconductor device Expired - Lifetime JP3172008B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP23128393A JP3172008B2 (en) 1993-09-17 1993-09-17 Method for manufacturing semiconductor device
KR1019940006222A KR0166404B1 (en) 1993-03-26 1994-03-26 Polishing method and polishing apparatus
DE19944410787 DE4410787A1 (en) 1993-03-26 1994-03-28 Polishing method and polishing device
US08/300,127 US5607718A (en) 1993-03-26 1994-09-02 Polishing method and polishing apparatus
US08/743,044 US5775980A (en) 1993-03-26 1996-11-04 Polishing method and polishing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23128393A JP3172008B2 (en) 1993-09-17 1993-09-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0786216A JPH0786216A (en) 1995-03-31
JP3172008B2 true JP3172008B2 (en) 2001-06-04

Family

ID=16921182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23128393A Expired - Lifetime JP3172008B2 (en) 1993-03-26 1993-09-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP3172008B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452819B2 (en) 2003-06-02 2008-11-18 Kabushiki Kaisha Toshiba Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device
US8147712B2 (en) 2006-03-20 2012-04-03 Mitsui Chemicals, Inc. Polishing composition
JP6680423B1 (en) * 2019-09-17 2020-04-15 Agc株式会社 Abrasive, glass polishing method, and glass manufacturing method

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11162910A (en) * 1997-11-25 1999-06-18 Sumitomo Chem Co Ltd Abrasive and polishing method for semiconductor device manufacture
JP2000040679A (en) 1998-07-24 2000-02-08 Hitachi Ltd Manufacture of semiconductor integrated circuit device
JP3144635B2 (en) * 1998-10-13 2001-03-12 日本電気株式会社 Method for manufacturing semiconductor device
KR100472882B1 (en) 1999-01-18 2005-03-07 가부시끼가이샤 도시바 Aqueous Dispersion, Chemical Mechanical Polishing Aqueous Dispersion Composition, Wafer Surface Polishing Process and Manufacturing Process of a Semiconductor Apparatus
KR100447551B1 (en) 1999-01-18 2004-09-08 가부시끼가이샤 도시바 Composite Particles and Production Process Thereof, Aqueous Dispersion, Aqueous Dispersion Composition for Chemical Mechanical Polishing, and Process for Manufacture of Semiconductor Apparatus
US6740590B1 (en) 1999-03-18 2004-05-25 Kabushiki Kaisha Toshiba Aqueous dispersion, aqueous dispersion for chemical mechanical polishing used for manufacture of semiconductor devices, method for manufacture of semiconductor devices, and method for formation of embedded writing
EP1243611B1 (en) 1999-11-22 2006-02-08 JSR Corporation Composited particles and aqueous dispersions for chemical mechanical polishing
JP2001267273A (en) 2000-01-11 2001-09-28 Sumitomo Chem Co Ltd Abrasive for metal, abrasive composition, and polishing method
JP4123685B2 (en) 2000-05-18 2008-07-23 Jsr株式会社 Aqueous dispersion for chemical mechanical polishing
JP2004128211A (en) 2002-10-02 2004-04-22 Toshiba Corp Method for polishing organic film on semiconductor substrate using resin particle and slurry
JP4764604B2 (en) * 2004-01-30 2011-09-07 ルネサスエレクトロニクス株式会社 Manufacturing method of semiconductor integrated circuit device
KR100959439B1 (en) 2005-04-14 2010-05-25 미쓰이 가가쿠 가부시키가이샤 Polishing slurry and polishing material using same
JP2007043183A (en) * 2006-09-05 2007-02-15 Renesas Technology Corp Method for manufacturing semiconductor integrated circuit device
JP2009094534A (en) * 2008-12-26 2009-04-30 Dainippon Screen Mfg Co Ltd Etching treatment method of substrate peripheral edge part, and etching treatment apparatus of substrate peripheral edge part

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7452819B2 (en) 2003-06-02 2008-11-18 Kabushiki Kaisha Toshiba Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device
US8685857B2 (en) 2003-06-02 2014-04-01 Kabushiki Kaisha Toshiba Chemical mechanical polishing method of organic film and method of manufacturing semiconductor device
US8147712B2 (en) 2006-03-20 2012-04-03 Mitsui Chemicals, Inc. Polishing composition
JP6680423B1 (en) * 2019-09-17 2020-04-15 Agc株式会社 Abrasive, glass polishing method, and glass manufacturing method
WO2021053732A1 (en) * 2019-09-17 2021-03-25 Agc株式会社 Abrasive agent, method for grinding glass, and method for producing glass
US11370939B2 (en) 2019-09-17 2022-06-28 AGC Inc. Polishing slurry, method for polishing glass, and method for manufacturing glass
US11518912B2 (en) 2019-09-17 2022-12-06 AGC Inc. Polishing slurry, method for polishing glass, and method for manufacturing glass

Also Published As

Publication number Publication date
JPH0786216A (en) 1995-03-31

Similar Documents

Publication Publication Date Title
JP3172008B2 (en) Method for manufacturing semiconductor device
JP3076244B2 (en) Polishing method of multilayer wiring
US5607718A (en) Polishing method and polishing apparatus
US6267909B1 (en) Planarization composition for removing metal films
KR100214749B1 (en) Polishing chemical for cu metal and fabricating method of semiconductor device thereby
US7183212B2 (en) Polishing method, metallization fabrication method, method for manufacturing semiconductor device and semiconductor device
US20090176372A1 (en) Chemical mechanical polishing slurry and semiconductor device manufacturing method
US7731864B2 (en) Slurry for chemical mechanical polishing of aluminum
JP3192968B2 (en) Polishing liquid for copper-based metal and method for manufacturing semiconductor device
JP2003133267A (en) Polishing particle and polishing material
US9012327B2 (en) Low defect chemical mechanical polishing composition
JP2003031529A (en) Slurry for cmp, and manufacturing method of semiconductor device using the slurry
KR100672940B1 (en) Metal slurry for cmp and metal cmp method using the same
US20060094242A1 (en) Chemical mechanical polishing method, and washing/rinsing method associated therewith
JP3335667B2 (en) Method for manufacturing semiconductor device
JP4987254B2 (en) Manufacturing method of semiconductor device
US20060261041A1 (en) Method for manufacturing metal line contact plug of semiconductor device
JP4077192B2 (en) Chemical mechanical polishing method and semiconductor device manufacturing method
JP3187216B2 (en) Method for manufacturing semiconductor device
KR0166404B1 (en) Polishing method and polishing apparatus
US6439972B2 (en) Polishing fluid, polishing method, semiconductor device and semiconductor device fabrication method
JP4713767B2 (en) Cleaning liquid and method for manufacturing semiconductor device
JP2002270566A (en) Cleaning liquid and method of manufacturing semiconductor device
Wang et al. A modified multi-chemicals spray cleaning process for post-CMP cleaning application
JP2000091278A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080323

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090323

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100323

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110323

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120323

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130323

Year of fee payment: 12