JP4077192B2 - Chemical mechanical polishing method and semiconductor device manufacturing method - Google Patents

Chemical mechanical polishing method and semiconductor device manufacturing method Download PDF

Info

Publication number
JP4077192B2
JP4077192B2 JP2001367798A JP2001367798A JP4077192B2 JP 4077192 B2 JP4077192 B2 JP 4077192B2 JP 2001367798 A JP2001367798 A JP 2001367798A JP 2001367798 A JP2001367798 A JP 2001367798A JP 4077192 B2 JP4077192 B2 JP 4077192B2
Authority
JP
Japan
Prior art keywords
polishing
film
abrasive grains
chemical mechanical
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2001367798A
Other languages
Japanese (ja)
Other versions
JP2003168661A (en
Inventor
直明 桜井
俊秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2001367798A priority Critical patent/JP4077192B2/en
Publication of JP2003168661A publication Critical patent/JP2003168661A/en
Application granted granted Critical
Publication of JP4077192B2 publication Critical patent/JP4077192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Grinding-Machine Dressing And Accessory Apparatuses (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、半導体装置の製造工程に用いられる化学機械研磨(CMP; Chemical Mechanical Polishing)方法に関する。
【0002】
【従来の技術】
例えば、半導体装置の動作速度の向上化等を目的としてAl配線層に比べてより低抵抗であるCu配線層を用いることが検討され、一部実用化されている。このCu配線層は、表面の段差を解消する目的でCMP方法により形成されている。具体的には、半導体基板上の絶縁膜に配線形状の溝を形成し、前記溝を含む前記絶縁膜上にCu膜を堆積し、前記Cu膜を研磨砥粒、酸化剤および水を含む研磨スラリーとポリシング装置とを用いてCMP処理し、前記溝内のみにCu膜を残存させて埋め込み配線層を形成する。
【0003】
ところで、Cu配線層の形成において研磨開始から研磨終了までの間に前記研磨砥粒、酸化剤および水を含み、かつ組成の異なる複数の研磨スラリーに切り替えて連続してCMP処理することが行われている。具体的には、Cu膜を半導体基板の絶縁膜に形成した溝に堆積するに先立って、埋込まれたCu配線からのCuの拡散を防止する目的でTaNのような銅拡散防止膜を堆積した場合、Cuの研磨途中で銅拡散防止膜が表面に露出するため、Cu膜の研磨スラリーと異なる組成の研磨スラリーに切り替えることが行われている。
【0004】
しかしながら、前記連続的なCMPにおいて始めに使用する研磨スラリーと次に使用する研磨スラリーをそれぞれ単体で研磨を行っても支障がない場合でも、連続して研磨すると後続の研磨スラリー中の研磨砥粒が凝集して研磨面(例えばCu膜表面)にスクラッチが生じる虞があった。
【0005】
【発明が解決しようとする課題】
本発明は、連続的な研磨途中で組成の異なる研磨スラリーに切り替えてもその中の研磨砥粒の凝集を防止することが可能な化学機械研磨方法を提供するものである。
【0006】
【課題を解決するための手段】
本発明に係る化学機械研磨方法は、基板上の各種被膜を研磨開始から研磨終了までの間に研磨砥粒、酸化剤、界面活性剤および水を含み、かつ組成の異なる複数の研磨スラリーに切り替えて連続して化学機械研磨する方法であって、
前記各研磨スラリーは、前記各界面活性剤が同じイオン性を持ち、それらの中の研磨砥粒は互いに材料が異なると共に、各研磨砥粒が示すゼータ電位の極性が同一であることを特徴とするものである。
本発明に係る半導体装置の製造方法は、半導体基板上に各種被膜を形成する工程と、
前記各種被膜を研磨開始から研磨終了までの間に、研磨砥粒、酸化剤、界面活性剤および水を含み、かつ組成の異なる複数の研磨スラリーに切り替えて、連続して化学機械研磨を行う工程とを有し、
前記各研磨スラリーは、前記各界面活性剤が同じイオン性を持ち、それらの中の研磨砥粒は互いに材料が異なると共に、各研磨砥粒が示すゼータ電位の極性が同一であることを特徴とするものである。
【0007】
【発明の実施の形態】
以下、本発明に係る化学機械研磨方法を詳細に説明する。
【0008】
この化学機械研磨方法は、基板上の各種被膜を研磨開始から研磨終了までの間に研磨砥粒、酸化剤および水を含み、かつ組成の異なる複数の研磨スラリーに切り替えて連続して化学機械研磨するに際し、前記各研磨スラリーとしてそれらの中の研磨砥粒がスラリー中で示すゼータ電位の極性を同一にしたものを用いる。
【0009】
前記基板上の各種被膜としては、例えばCu膜、Cu合金膜、またはTaN、TaNb、W,WN,TaN,TaSiN,Ta,Co,Zr,ZrNおよびCuTa合金から選ばれる1層または2層以上の銅拡散防止膜等を挙げることができる。
【0010】
前記研磨スラリー中の研磨砥粒としては、例えばシリカ(コロイダルシリカを含む)、アルミナ(コロイダルアルミナを含む)、酸化セリウム等を挙げることができる。
【0011】
前記各研磨スラリー中の前記酸化剤としては、例えば過酸化水素(H2 2 )、次亜塩素酸ソーダ(NaClO)等を用いることができる。
【0012】
前記各研磨スラリー中には、さらに両性イオン性、陰イオン性、陽イオン性の界面活性剤が添加されることを許容する。このような界面活性剤の使用においては、同じイオン性を持つものが選ばれる。前記両性イオン性界面活性剤としては、例えばイミダゾリベタイン等を挙げることができる。前記陰イオン性界面活性剤としては、例えばドデシル硫酸ナトリウム、ドデシル硫酸アンモニウム等を挙げることができる。前記陽イオン性界面活性剤としては、例えばステアリントリメチルアンモニウムクロライド等を挙げることができる。
【0013】
前記各研磨スラリー中には、さらにキレート剤が添加されることを許容する。このキレート剤としては、各種の有機酸を用いることができるが、特に各種被膜としてCu膜またはCu合金膜を用いる場合には2−キノリンカルボン酸(キナルジン酸)、2−ピリジンカルボン酸、2,6−ピリジンカルボン酸、キノン等が好ましい。
【0014】
前記各研磨スラリー中には、さらに乳酸等のpH調整剤が添加されることを許容する。
【0015】
前述したCMPにあたっては、例えば図1に示すポリシング装置が用いられる。すなわち、ターンテーブル1上には例えば布、独立気泡を有するポリウレタン発泡体から作られた研磨パッド2が被覆されている。研磨スラリーを供給するための供給管3は、前記研磨パッド2の上方に配置されている。上面に支持軸4を有する基板ホルダ5は、研磨パッド2の上方に上下動自在でかつ回転自在に配置されている。
【0016】
このようなポリシング装置において、前記ホルダ5により基板6をその研磨面(被膜)が前記研磨パッド2に対向するように保持し、前記供給管3から前述した組成の研摩スラリー7を供給しながら、前記支持軸4により前記基板6を前記研磨パッド2に向けて所望の加重を与え、さらに前記ホルダ5および前記ターンテーブル1をそれぞれ同方向に回転させることにより前記基板6上の被膜が研磨される。
【0017】
本発明に係る化学機械研磨方法は、次のような半導体装置の製造方法に適用することができる。
【0018】
まず、半導体基板上の絶縁膜に配線層の形状に相当する溝およびビアフィルの形状に相当する開口部から選ばれる少なくとも1つの埋込み用部材を形成する。この埋込み用部材の内面を含む前記絶縁膜上に銅拡散防止膜を形成する。この銅拡散防止膜上に銅または銅合金からなる配線材料膜を形成する。研磨砥粒と酸化剤と水とを含有する第1研磨組成物を用いて前記配線材料膜を研磨する。この研磨過程で前記銅拡散防止膜が露出する直前もしくは直後に表面が前記第1研磨組成物により濡れた状態で研磨砥粒と酸化剤と水とを含有する第2研磨組成物に切り替えて前記銅拡散防止膜を研磨して前記埋込み部材内に前記銅拡散防止膜で覆われた状態で埋込まれた配線層(またはビアフィル)を形成する。このような配線層等の形成において、第2研磨スラリーとしてその研磨砥粒が示すゼータ電位と前記第1研磨スラリー中で研磨砥粒が示すゼータ電位とが同一極性で、かつ前記第1研磨組成物中の酸化剤より多い量の酸化剤を含む組成のものを用いる。
【0019】
前記銅拡散防止膜としては、例えばTaN、TaNb、W,WN,TaN,TaSiN,Ta,Co,Zr,ZrNおよびCuTa合金から選ばれる1層または2層以上のものを挙げることができる。
【0020】
前記第1,第2の研磨スラリー中の研磨砥粒、酸化剤は、前述したのと同様なものを用いることができる。
【0021】
前記第1,第2の研磨スラリー中には、さらに前述した両性イオン性、陰イオン性、陽イオン性の界面活性剤、キレート剤、pH調整剤が添加されることを許容する。
【0022】
前記第1研磨スラリーは、CuまたはCu合金の配線材料膜に対した高い研磨性を示し、前記第2研磨スラリーは配線材料膜と銅拡散防止膜の両者を略同じ速度で研磨する性質を有する。
【0023】
前記配線材料膜、配線材料膜と銅拡散防止膜の研磨にあたっては、前述したポリシング装置が用いられる。
【0024】
以上説明した本発明に係る化学機械研磨方法は、基板上の各種被膜を研磨開始から研磨終了までの間に研磨砥粒、酸化剤および水を含み、かつ組成の異なる複数の研磨スラリーに切り替えて連続して化学機械研磨するに際し、前記各研磨スラリーとしてそれらの中の研磨砥粒がスラリー中で示すゼータ電位の極性を同一にしたものを用いる。
【0025】
このような方法によれば、研磨開始から研磨終了までの間に複数の研磨スラリーに切り替えて連続的に研磨するに際し、研磨砥粒がスラリー中で示すゼータ電位の極性を同一にした研磨スラリーを用いることによって、初期研磨後の第2研磨以降において研磨スラリー中の研磨砥粒の凝集を防止できるため、基板上の各種被膜にスクラッチが発生するのを防止できる。
【0026】
【実施例】
以下、好ましい実施例を詳細に説明する。
【0027】
下記表1に示す組成、pHおよびゼータ電位(研磨砥粒がスラリー中で示すゼータ電位)を有する4種の研磨スラリーA〜研磨スラリーDを調製した。
【0028】
【表1】

Figure 0004077192
【0029】
(実施例1)
まず、表面に厚さ1000nmのCu膜を成膜した8インチシリコンウェハ(シリコン基板)を用意した。
【0030】
次いで、前述した図1に示すポリシング装置のホルダ5により前記基板6をそのCu膜が研磨パッド2に対向するように保持し、供給管3から前記表1の研磨スラリーAを200cc/分を供給しながら、支持軸4により前記基板6を前記研磨パッド2に向けて200g/cm2の荷重を与え、さらに前記ホルダ5および前記ターンテーブル1をそれぞれ60rpm,63rpmの速度で同方向に回転させることにより前記基板6上Cu膜を30秒間研磨した(第1研磨)。つづいて、供給管3から前記研磨スラリーAの供給を停止し、供給管3から前記表1に示す研磨スラリーCを研磨スラリーAが付着された研磨パッド2に供給しながら、同様な条件で前記基板6のCu膜を30秒間研磨した(第2研磨)。その後、純水ブラシで1分間洗浄した後に2000rpmの条件でスピン乾燥を行った。
【0031】
(実施例2)
第1研磨を前記表1に示す研磨スラリーB、第2研磨を前記表1に示す研磨スラリーDを用いて行った以外、実施例1と同様な条件で基板表面のCu膜を連続して研磨し、洗浄、乾燥した。
【0032】
(比較例1)
第1研磨を前記表1に示す研磨スラリーA、第2研磨を前記表1に示す研磨スラリーBを用いて行った以外、実施例1と同様な条件で基板表面のCu膜を連続して研磨し、洗浄、乾燥した。
【0033】
(比較例2)
第1研磨を前記表1に示す研磨スラリーA、第2研磨を前記表1に示す研磨スラリーDを用いて行った以外、実施例1と同様な条件で基板表面のCu膜を連続して研磨し、洗浄、乾燥した。
【0034】
実施例1,2および比較例1,2の連続研磨後にCu膜表面の1μm以上のスクラッチを検査装置(KLA-Tencor社製商品名;SFS6420)と電子顕微鏡を用いて調べた。その結果を下記表2に示す。
【0035】
【表2】
Figure 0004077192
【0036】
前記表2から明らかなように第1,第2のCu研磨においてゼータ電位の極性が異なる研磨スラリーを用いる比較例1,2では連続研磨後のCu膜表面のスクラッチ数が35,18と多くなることがわかる。これに対し、第1,第2のCu研磨においてゼータ電位の極性が同じ研磨スラリーを用いる実施例1,2では連続研磨後のCu膜表面のスクラッチ数が1以下と優れた研磨特性を示すことがわかる。
【0037】
(実施例3)
まず、図2の(A)に示すように表面に図示しないソース、ドレイン等の拡散層が形成されたシリコン基板11上にCVD法により層間絶縁膜としての例えば厚さ1000nmのSiO2 膜12を堆積した後、前記SiO2 膜12にフォトエッチング技術により配線層に相当する形状を有する深さ500nmの複数の溝13を形成した。つづいて、図2の(B)に示すように前記溝13を含む前記SiO2 膜12上にスパッタ蒸着により厚さ15nmのTaNからなる銅拡散防止膜14および厚さ600nmのCu膜15をこの順序で形成した。
【0038】
次いで、前述した図1に示すポリシング装置の基板ホルダ5に図2の(B)に示す基板11を逆さにして保持し、前記ホルダ5の支持軸4により前記基板をターンテーブル1上のローデル社製商品名;IC1000からなる研磨パッド2に500g/cm2 の荷重を与え、前記ターンテーブル1およびホルダ5をそれぞれ103rpm、100rpmの速度で同方向に回転させながら、第1研磨スラリーを供給管3から50ml/分の速度で前記研磨パッド2に供給して前記基板11に形成したCu膜15を前記SiO2 膜12上の前記銅拡散防止膜14の表面が露出するまで研磨した。ここで、前記第1研磨スラリーとして2−キノリンカルボン酸(キナルジン酸)0.57重量%、過酸化水素3.78重量%、アルミナ1.09重量%、乳酸0.67重量%、ドデシル硫酸アンモニウム1.00重量%および水の組成(pH;3、ゼータ電位;−20mV)を有するものを用いた。
【0039】
次いで、前記供給管3から前記第1研磨スラリーの供給を停止し、供給管3から下記組成の第2研磨スラリーを第1研磨スラリーが付着された研磨パッド2に供給しながら、同様な条件で前記基板11の銅拡散防止膜およびCu膜を連続的に研磨した。ここで前記第2研磨スラリーとして2−キノリンカルボン酸0.57重量%、過酸化水素4.67重量%、コロイダルシリカ5.0重量%、乳酸0.67重量%、ドデシル硫酸アンモニウム1.00重量%および水の組成(pH;3、ゼータ電位;−25mV)を有するものを用いた。このような第2研磨スラリーによる研磨によって、図2の(C)に示すように前記溝13内に銅拡散防止膜14が残存すると共に、前記銅拡散防止膜14で覆われた前記溝13内に前記SiO2 膜12表面とほぼ面一な埋め込みCu配線層16が形成された。
【0040】
また、前記Cu配線層16表面を検査装置(KLA-Tencor社製商品名;SFS6420)と電子顕微鏡を用いて調べたところ、前記Cu配線層16表面へのスクラッチの発生は殆ど認められなかった。
【0041】
【発明の効果】
以上詳述したように本発明によれば、連続的な研磨途中で組成の異なる研磨スラリーに切り替えてもその中の研磨砥粒の凝集を防止して研磨表面へのスクラッチの発生を防止することが可能な化学機械研磨方法を提供することができる。
【図面の簡単な説明】
【図1】本発明の研磨工程に使用されるポリシング装置を示す概略図。
【図2】本発明の実施例3における半導体装置の製造工程を示す断面図。
【符号の説明】
1…ターンテーブル、
2…研磨パッド、
3…供給管、
5…ホルダ、
11,…シリコン基板、
13…溝、
14…銅拡散防止膜、
15…Cu膜、
16…Cu配線層。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a chemical mechanical polishing (CMP) method used in a semiconductor device manufacturing process.
[0002]
[Prior art]
For example, the use of a Cu wiring layer having a lower resistance than that of an Al wiring layer for the purpose of improving the operation speed of a semiconductor device has been studied and partly put into practical use. This Cu wiring layer is formed by the CMP method for the purpose of eliminating the surface level difference. Specifically, a wiring-shaped groove is formed in an insulating film on a semiconductor substrate, a Cu film is deposited on the insulating film including the groove, and the Cu film is polished including polishing abrasives, an oxidizing agent, and water. A CMP process is performed using a slurry and a polishing apparatus, and a Cu film is left only in the groove to form a buried wiring layer.
[0003]
By the way, in the formation of the Cu wiring layer, CMP processing is continuously performed by switching to a plurality of polishing slurries containing the abrasive grains, the oxidant, and water and having different compositions between the start of polishing and the end of polishing. ing. Specifically, prior to depositing the Cu film in the groove formed in the insulating film of the semiconductor substrate, a copper diffusion prevention film such as TaN is deposited for the purpose of preventing Cu diffusion from the embedded Cu wiring. In this case, since the copper diffusion preventing film is exposed on the surface during the polishing of Cu, switching to a polishing slurry having a composition different from that of the polishing slurry for the Cu film is performed.
[0004]
However, even if the polishing slurry used first in the continuous CMP and the polishing slurry used next are not hindered by single polishing, the polishing abrasive grains in the subsequent polishing slurry can be polished continuously. May aggregate and scratches may occur on the polished surface (for example, Cu film surface).
[0005]
[Problems to be solved by the invention]
The present invention provides a chemical mechanical polishing method capable of preventing agglomeration of abrasive grains therein even when switching to a polishing slurry having a different composition during continuous polishing.
[0006]
[Means for Solving the Problems]
In the chemical mechanical polishing method according to the present invention, various coatings on a substrate are switched to a plurality of polishing slurries containing abrasive grains, an oxidizing agent, a surfactant and water and having different compositions between the start of polishing and the end of polishing. A continuous chemical mechanical polishing method,
In each of the polishing slurries, the surfactants have the same ionicity, and the abrasive grains in them have different materials , and the polarity of the zeta potential exhibited by the abrasive grains is the same. To do.
A method of manufacturing a semiconductor device according to the present invention includes a step of forming various films on a semiconductor substrate,
A process of performing chemical mechanical polishing continuously by switching to a plurality of polishing slurries containing polishing abrasive grains, an oxidizing agent, a surfactant and water and having different compositions between the start of polishing and the end of polishing of the various coating films. And
In each of the polishing slurries, the surfactants have the same ionicity, and the abrasive grains in them have different materials , and the polarity of the zeta potential exhibited by the abrasive grains is the same. To do.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the chemical mechanical polishing method according to the present invention will be described in detail.
[0008]
In this chemical mechanical polishing method, chemical mechanical polishing is continuously performed by switching to a plurality of polishing slurries containing abrasive grains, an oxidizing agent and water and having different compositions between the start of polishing and the end of polishing of various coatings on the substrate. In this case, the polishing slurry having the same zeta potential polarity as the polishing abrasive grains in the slurry is used as each of the polishing slurries.
[0009]
The various coatings on the substrate include, for example, a Cu film, a Cu alloy film, or one or more layers selected from TaN, TaNb, W, WN, TaN, TaSiN, Ta, Co, Zr, ZrN, and CuTa alloy. Examples thereof include a copper diffusion prevention film.
[0010]
Examples of the abrasive grains in the polishing slurry include silica (including colloidal silica), alumina (including colloidal alumina), cerium oxide, and the like.
[0011]
As the oxidizing agent in each polishing slurry, for example, hydrogen peroxide (H 2 O 2 ), sodium hypochlorite (NaClO), or the like can be used.
[0012]
A zwitterionic, anionic, or cationic surfactant is allowed to be further added to each of the polishing slurries. In the use of such a surfactant, those having the same ionicity are selected. Examples of the zwitterionic surfactant include imidazolibetaine. Examples of the anionic surfactant include sodium dodecyl sulfate and ammonium dodecyl sulfate. Examples of the cationic surfactant include stearic trimethyl ammonium chloride.
[0013]
A chelating agent is allowed to be further added to each of the polishing slurries. As this chelating agent, various organic acids can be used. Particularly when a Cu film or a Cu alloy film is used as various coatings, 2-quinolinecarboxylic acid (quinaldic acid), 2-pyridinecarboxylic acid, 2, 6-pyridinecarboxylic acid, quinone and the like are preferable.
[0014]
It is allowed that a pH adjuster such as lactic acid is further added to each of the polishing slurries.
[0015]
In the above-described CMP, for example, a polishing apparatus shown in FIG. 1 is used. That is, the turntable 1 is covered with a polishing pad 2 made of, for example, a cloth or a polyurethane foam having closed cells. A supply pipe 3 for supplying polishing slurry is disposed above the polishing pad 2. A substrate holder 5 having a support shaft 4 on its upper surface is disposed above the polishing pad 2 so as to be vertically movable and rotatable.
[0016]
In such a polishing apparatus, the holder 5 holds the substrate 6 so that the polishing surface (coating film) faces the polishing pad 2, and while supplying the polishing slurry 7 having the above-described composition from the supply pipe 3, The support shaft 4 applies a desired load to the substrate 6 toward the polishing pad 2, and the coating on the substrate 6 is polished by rotating the holder 5 and the turntable 1 in the same direction. .
[0017]
The chemical mechanical polishing method according to the present invention can be applied to the following semiconductor device manufacturing method.
[0018]
First, at least one embedding member selected from a groove corresponding to the shape of the wiring layer and an opening corresponding to the shape of the via fill is formed in the insulating film on the semiconductor substrate. A copper diffusion preventing film is formed on the insulating film including the inner surface of the embedding member. A wiring material film made of copper or a copper alloy is formed on the copper diffusion preventing film. The wiring material film is polished using a first polishing composition containing abrasive grains, an oxidizing agent, and water. In this polishing process, the surface is wetted with the first polishing composition immediately before or after the copper diffusion prevention film is exposed, and the second polishing composition containing abrasive grains, oxidant, and water is switched to the second polishing composition. The copper diffusion prevention film is polished to form a wiring layer (or via fill) embedded in the embedded member while being covered with the copper diffusion prevention film. In the formation of such a wiring layer or the like, the zeta potential indicated by the abrasive grains as the second polishing slurry and the zeta potential indicated by the abrasive grains in the first polishing slurry have the same polarity, and the first polishing composition A composition having a larger amount of oxidizing agent than the oxidizing agent in the product is used.
[0019]
Examples of the copper diffusion preventing film include one or more layers selected from TaN, TaNb, W, WN, TaN, TaSiN, Ta, Co, Zr, ZrN, and CuTa alloy.
[0020]
As the abrasive grains and the oxidizing agent in the first and second polishing slurries, the same ones as described above can be used.
[0021]
In the first and second polishing slurries, the above-described zwitterionic, anionic, and cationic surfactants, chelating agents, and pH adjusting agents are allowed to be added.
[0022]
The first polishing slurry exhibits high polishability for a Cu or Cu alloy wiring material film, and the second polishing slurry has a property of polishing both the wiring material film and the copper diffusion prevention film at substantially the same speed. .
[0023]
In polishing the wiring material film, the wiring material film, and the copper diffusion prevention film, the above-described polishing apparatus is used.
[0024]
In the chemical mechanical polishing method according to the present invention described above, various coatings on the substrate are switched to a plurality of polishing slurries containing polishing abrasive grains, an oxidizing agent and water and having different compositions between the start of polishing and the end of polishing. When performing continuous chemical mechanical polishing, the polishing slurry having the same zeta potential polarity shown in the slurry is used as each of the polishing slurries.
[0025]
According to such a method, when switching to a plurality of polishing slurries and continuously polishing between the start of polishing and the end of polishing, a polishing slurry in which the polarity of the zeta potential indicated by the abrasive grains in the slurry is the same. By using it, it is possible to prevent agglomeration of abrasive grains in the polishing slurry after the second polishing after the initial polishing, and thus it is possible to prevent the occurrence of scratches on various coatings on the substrate.
[0026]
【Example】
Hereinafter, preferred embodiments will be described in detail.
[0027]
Four types of polishing slurries A to D having the composition, pH, and zeta potential (the zeta potential that the abrasive grains show in the slurry) shown in Table 1 below were prepared.
[0028]
[Table 1]
Figure 0004077192
[0029]
Example 1
First, an 8-inch silicon wafer (silicon substrate) having a Cu film having a thickness of 1000 nm formed on the surface was prepared.
[0030]
Next, the substrate 6 is held by the above-mentioned polishing apparatus holder 5 shown in FIG. 1 so that the Cu film faces the polishing pad 2, and 200 cc / min of the polishing slurry A shown in Table 1 is supplied from the supply pipe 3. While, a load of 200 g / cm 2 is applied to the polishing pad 2 by the support shaft 4 and the holder 5 and the turntable 1 are rotated in the same direction at a speed of 60 rpm and 63 rpm, respectively. Then, the Cu film on the substrate 6 was polished for 30 seconds (first polishing). Subsequently, the supply of the polishing slurry A from the supply pipe 3 is stopped, and the polishing slurry C shown in Table 1 is supplied from the supply pipe 3 to the polishing pad 2 to which the polishing slurry A is adhered. The Cu film on the substrate 6 was polished for 30 seconds (second polishing). Thereafter, after washing with a pure water brush for 1 minute, spin drying was performed under the condition of 2000 rpm.
[0031]
(Example 2)
The Cu film on the substrate surface is continuously polished under the same conditions as in Example 1 except that the first polishing is performed using the polishing slurry B shown in Table 1 and the second polishing is performed using the polishing slurry D shown in Table 1. And washed and dried.
[0032]
(Comparative Example 1)
The Cu film on the substrate surface is continuously polished under the same conditions as in Example 1 except that the first polishing is performed using the polishing slurry A shown in Table 1 and the second polishing is performed using the polishing slurry B shown in Table 1. And washed and dried.
[0033]
(Comparative Example 2)
The Cu film on the substrate surface is continuously polished under the same conditions as in Example 1 except that the first polishing is performed using the polishing slurry A shown in Table 1 and the second polishing is performed using the polishing slurry D shown in Table 1. And washed and dried.
[0034]
After continuous polishing of Examples 1 and 2 and Comparative Examples 1 and 2, scratches of 1 μm or more on the surface of the Cu film were examined using an inspection apparatus (trade name, manufactured by KLA-Tencor; SFS6420) and an electron microscope. The results are shown in Table 2 below.
[0035]
[Table 2]
Figure 0004077192
[0036]
As apparent from Table 2, in Comparative Examples 1 and 2 using polishing slurries having different zeta potential polarities in the first and second Cu polishings, the number of scratches on the Cu film surface after continuous polishing increases to 35 and 18. I understand that. On the other hand, in Examples 1 and 2 using the polishing slurry having the same zeta potential polarity in the first and second Cu polishing, the number of scratches on the surface of the Cu film after continuous polishing is 1 or less and shows excellent polishing characteristics. I understand.
[0037]
(Example 3)
First, as shown in FIG. 2A, a SiO 2 film 12 having a thickness of, for example, 1000 nm as an interlayer insulating film is formed by CVD on a silicon substrate 11 on which diffusion layers such as source and drain (not shown) are formed on the surface. After the deposition, a plurality of grooves 13 having a depth of 500 nm having a shape corresponding to the wiring layer was formed in the SiO 2 film 12 by a photoetching technique. Subsequently, as shown in FIG. 2B, a copper diffusion prevention film 14 made of TaN having a thickness of 15 nm and a Cu film 15 having a thickness of 600 nm are formed on the SiO 2 film 12 including the groove 13 by sputtering deposition. Formed in order.
[0038]
Next, the substrate 11 shown in FIG. 2B is held upside down on the substrate holder 5 of the polishing apparatus shown in FIG. 1 described above, and the substrate is held by the Rodel company on the turntable 1 by the support shaft 4 of the holder 5. Product name: A load of 500 g / cm 2 is applied to the polishing pad 2 made of IC1000, and the first polishing slurry is supplied to the supply pipe 3 while rotating the turntable 1 and the holder 5 in the same direction at a speed of 103 rpm and 100 rpm, respectively. Then, the Cu film 15 supplied to the polishing pad 2 at a rate of 50 ml / min and formed on the substrate 11 was polished until the surface of the copper diffusion preventing film 14 on the SiO 2 film 12 was exposed. Here, as the first polishing slurry, 0.57% by weight of 2-quinolinecarboxylic acid (quinaldic acid), 3.78% by weight of hydrogen peroxide, 1.09% by weight of alumina, 0.67% by weight of lactic acid, ammonium dodecyl sulfate 1 Those having 0.000% by weight and water composition (pH: 3, zeta potential: -20 mV) were used.
[0039]
Next, the supply of the first polishing slurry from the supply pipe 3 is stopped, and the second polishing slurry having the following composition is supplied from the supply pipe 3 to the polishing pad 2 to which the first polishing slurry is attached, under the same conditions. The copper diffusion preventing film and the Cu film on the substrate 11 were continuously polished. Here, as the second polishing slurry, 0.57% by weight of 2-quinolinecarboxylic acid, 4.67% by weight of hydrogen peroxide, 5.0% by weight of colloidal silica, 0.67% by weight of lactic acid, and 1.00% by weight of ammonium dodecyl sulfate. And those having a water composition (pH; 3, zeta potential: -25 mV). By such polishing with the second polishing slurry, the copper diffusion prevention film 14 remains in the groove 13 as shown in FIG. 2C, and the groove 13 covered with the copper diffusion prevention film 14 Then, a buried Cu wiring layer 16 substantially flush with the surface of the SiO 2 film 12 was formed.
[0040]
Further, when the surface of the Cu wiring layer 16 was examined using an inspection device (trade name, manufactured by KLA-Tencor; SFS6420) and an electron microscope, almost no scratches were observed on the surface of the Cu wiring layer 16.
[0041]
【The invention's effect】
As described above in detail, according to the present invention, even when switching to a polishing slurry having a different composition during continuous polishing, it prevents agglomeration of abrasive grains therein and prevents generation of scratches on the polishing surface. It is possible to provide a chemical mechanical polishing method capable of
[Brief description of the drawings]
FIG. 1 is a schematic view showing a polishing apparatus used in a polishing process of the present invention.
FIG. 2 is a cross-sectional view showing a manufacturing process of a semiconductor device in Example 3 of the present invention.
[Explanation of symbols]
1 ... Turntable,
2 ... polishing pad,
3 ... supply pipe,
5 ... Holder,
11, ... silicon substrate,
13 ... Groove,
14 ... Copper diffusion prevention film,
15 ... Cu film,
16: Cu wiring layer.

Claims (8)

基板上の各種被膜を研磨開始から研磨終了までの間に研磨砥粒、酸化剤、界面活性剤および水を含み、かつ組成の異なる複数の研磨スラリーに切り替えて連続して化学機械研磨する方法であって、
前記各研磨スラリーは、前記各界面活性剤が同じイオン性を持ち、それらの中の研磨砥粒は互いに材料が異なると共に、各研磨砥粒が示すゼータ電位の極性が同一であることを特徴とする化学機械研磨方法。
A method of continuously chemically and mechanically polishing various coatings on a substrate by switching to a plurality of polishing slurries containing polishing abrasive grains, an oxidant, a surfactant, and water between the start of polishing and the end of polishing. There,
In each of the polishing slurries, the surfactants have the same ionicity, and the abrasive grains in them have different materials , and the polarity of the zeta potential exhibited by the abrasive grains is the same. Chemical mechanical polishing method.
前記各研磨スラリーは、さらにキレート剤を含有することを特徴とする請求項1記載の化学機械研磨方法。  2. The chemical mechanical polishing method according to claim 1, wherein each of the polishing slurries further contains a chelating agent. 前記各研磨スラリーは、さらにpH調整剤を含有することを特徴とする請求項1または2記載の化学機械研磨方法。 3. The chemical mechanical polishing method according to claim 1, wherein each of the polishing slurries further contains a pH adjusting agent. 前記各種被膜のいずれか一つは、Cuを有する膜であることを特徴とする請求項1ないしいずれか記載の化学機械研磨方法。Any one of the various coatings, claims 1 to 3 chemical mechanical polishing method of any characterized in that it is a film having a Cu. 半導体基板上に各種被膜を形成する工程と、
前記各種被膜を研磨開始から研磨終了までの間に、研磨砥粒、酸化剤、界面活性剤および水を含み、かつ組成の異なる複数の研磨スラリーに切り替えて、連続して化学機械研磨を行う工程とを有し、
前記各研磨スラリーは、前記各界面活性剤が同じイオン性を持ち、それらの中の研磨砥粒は互いに材料が異なると共に、各研磨砥粒が示すゼータ電位の極性が同一であることを特徴とする半導体装置の製造方法。
Forming various coatings on the semiconductor substrate;
A process of performing chemical mechanical polishing continuously by switching to a plurality of polishing slurries containing polishing abrasive grains, an oxidizing agent, a surfactant and water and having different compositions between the start of polishing and the end of polishing of the various coating films. And
In each of the polishing slurries, the surfactants have the same ionicity, and the abrasive grains in them have different materials , and the polarity of the zeta potential exhibited by the abrasive grains is the same. A method for manufacturing a semiconductor device.
前記各研磨スラリーは、さらにキレート剤を含有することを特徴とする請求項記載の半導体装置の製造方法。6. The method of manufacturing a semiconductor device according to claim 5 , wherein each of the polishing slurries further contains a chelating agent. 前記各研磨スラリーは、さらにpH調整剤を含有することを特徴とする請求項5または6記載の半導体装置の製造方法。7. The method of manufacturing a semiconductor device according to claim 5 , wherein each of the polishing slurries further contains a pH adjuster. 前記各種被膜は、Cuを有する膜および銅拡散膜であることを特徴とする請求項ないしいずれか記載の半導体装置の製造方法。The various coatings, the method of manufacturing a semiconductor device according to any one of claims 5 to 7, characterized in that a film and copper diffusion film having a Cu.
JP2001367798A 2001-11-30 2001-11-30 Chemical mechanical polishing method and semiconductor device manufacturing method Expired - Fee Related JP4077192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367798A JP4077192B2 (en) 2001-11-30 2001-11-30 Chemical mechanical polishing method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367798A JP4077192B2 (en) 2001-11-30 2001-11-30 Chemical mechanical polishing method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2003168661A JP2003168661A (en) 2003-06-13
JP4077192B2 true JP4077192B2 (en) 2008-04-16

Family

ID=19177493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367798A Expired - Fee Related JP4077192B2 (en) 2001-11-30 2001-11-30 Chemical mechanical polishing method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4077192B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11986922B2 (en) 2015-11-06 2024-05-21 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
US12023853B2 (en) 2014-10-17 2024-07-02 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI276171B (en) * 2004-04-12 2007-03-11 Hitachi Chemical Co Ltd Metal polishing slurry and polishing method thereof
JP2007301721A (en) * 2007-08-29 2007-11-22 Kao Corp Polishing liquid composition
JP5890088B2 (en) * 2010-07-26 2016-03-22 山口精研工業株式会社 Abrasive composition
WO2017111814A1 (en) * 2015-12-26 2017-06-29 Intel Corporation Low resistance interconnect
JP6262836B1 (en) * 2016-07-28 2018-01-17 株式会社バイコウスキージャパン Polishing abrasive grains, method for producing the same, polishing slurry containing the same, and polishing method using the same
CN111015535B (en) * 2019-12-04 2021-04-23 东莞金太阳研磨股份有限公司 Precise polishing film with special structure and preparation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11724362B2 (en) 2014-10-17 2023-08-15 Applied Materials, Inc. Polishing pads produced by an additive manufacturing process
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US11958162B2 (en) 2014-10-17 2024-04-16 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US12023853B2 (en) 2014-10-17 2024-07-02 Applied Materials, Inc. Polishing articles and integrated system and methods for manufacturing chemical mechanical polishing articles
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
US11986922B2 (en) 2015-11-06 2024-05-21 Applied Materials, Inc. Techniques for combining CMP process tracking data with 3D printed CMP consumables
US11772229B2 (en) 2016-01-19 2023-10-03 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11980992B2 (en) 2017-07-26 2024-05-14 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
US11524384B2 (en) 2017-08-07 2022-12-13 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
US11685014B2 (en) 2018-09-04 2023-06-27 Applied Materials, Inc. Formulations for advanced polishing pads

Also Published As

Publication number Publication date
JP2003168661A (en) 2003-06-13

Similar Documents

Publication Publication Date Title
US6046110A (en) Copper-based metal polishing solution and method for manufacturing a semiconductor device
JP4077192B2 (en) Chemical mechanical polishing method and semiconductor device manufacturing method
US7319072B2 (en) Polishing medium for chemical-mechanical polishing, and method of polishing substrate member
US6750128B2 (en) Methods of polishing, interconnect-fabrication, and producing semiconductor devices
US6267909B1 (en) Planarization composition for removing metal films
US20060118760A1 (en) Slurry composition and methods for chemical mechanical polishing
JP2000183003A (en) Polishing composition for copper metal and manufacture of semiconductor device
JP2009158810A (en) Slurry for chemical-mechanical polishing and manufacturing method of semiconductor device
JP3192968B2 (en) Polishing liquid for copper-based metal and method for manufacturing semiconductor device
US6858540B2 (en) Selective removal of tantalum-containing barrier layer during metal CMP
JP2005011932A (en) Slurry for cmp, polishing method, and method for manufacturing semiconductor device
US7494931B2 (en) Method for fabricating semiconductor device and polishing method
TWI294456B (en)
JPH0786216A (en) Manufacture of semiconductor device
JP2002155268A (en) Slurry for chemical and mechanical polishing and method for producing semiconductor device
JP4713767B2 (en) Cleaning liquid and method for manufacturing semiconductor device
JP6737894B2 (en) Chemical mechanical polishing method
JP2004022855A (en) Process for producing semiconductor device
KR0166404B1 (en) Polishing method and polishing apparatus
JP2002270566A (en) Cleaning liquid and method of manufacturing semiconductor device
JP2004152785A (en) Abrasive composition for copper diffusion preventive film and method for manufacturing semiconductor device
Nolan et al. Chemical mechanical polish for nanotechnology
JP2009094450A (en) Polishing liquid for polishing aluminum film, and polishing method of substrate
JP4263332B2 (en) Polishing abrasive grains, chemical mechanical polishing slurry, and copper metal polishing method
JP2004123931A (en) Polishing solution and polishing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R151 Written notification of patent or utility model registration

Ref document number: 4077192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees