JP2003168661A - Chemical mechanical polishing method - Google Patents

Chemical mechanical polishing method

Info

Publication number
JP2003168661A
JP2003168661A JP2001367798A JP2001367798A JP2003168661A JP 2003168661 A JP2003168661 A JP 2003168661A JP 2001367798 A JP2001367798 A JP 2001367798A JP 2001367798 A JP2001367798 A JP 2001367798A JP 2003168661 A JP2003168661 A JP 2003168661A
Authority
JP
Japan
Prior art keywords
polishing
film
slurry
chemical mechanical
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001367798A
Other languages
Japanese (ja)
Other versions
JP4077192B2 (en
Inventor
Naoaki Sakurai
直明 桜井
Toshihide Hayashi
俊秀 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Shibaura Mechatronics Corp
Original Assignee
Toshiba Corp
Shibaura Mechatronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Shibaura Mechatronics Corp filed Critical Toshiba Corp
Priority to JP2001367798A priority Critical patent/JP4077192B2/en
Publication of JP2003168661A publication Critical patent/JP2003168661A/en
Application granted granted Critical
Publication of JP4077192B2 publication Critical patent/JP4077192B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a chemical mechanical polishing method for preventing polishing abrasives in polishing slurry from being aggregated even if the slurry is changed to the polishing slurry having a different composition in process of continuous polishing. <P>SOLUTION: In the chemical mechanical polishing method for containing a polishing abrasive, oxidizer, and water during a period from the start of polishing of each kind of covering on a substrate to the end, and at the same time for changing to a plurality of pieces of polishing slurries having different compositions to continuously carry out chemical mechanical polishing, the polarity of zeta potential indicated by the polishing abrasive in each polishing slurry is the same in each polishing slurry. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
工程に用いられる化学機械研磨(CMP; ChemicalMechani
cal Polishing)方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chemical mechanical polishing (CMP) used in a semiconductor device manufacturing process.
cal Polishing) method.

【0002】[0002]

【従来の技術】例えば、半導体装置の動作速度の向上化
等を目的としてAl配線層に比べてより低抵抗であるC
u配線層を用いることが検討され、一部実用化されてい
る。このCu配線層は、表面の段差を解消する目的でC
MP方法により形成されている。具体的には、半導体基
板上の絶縁膜に配線形状の溝を形成し、前記溝を含む前
記絶縁膜上にCu膜を堆積し、前記Cu膜を研磨砥粒、
酸化剤および水を含む研磨スラリーとポリシング装置と
を用いてCMP処理し、前記溝内のみにCu膜を残存さ
せて埋め込み配線層を形成する。
2. Description of the Related Art For example, for the purpose of improving the operating speed of a semiconductor device, C having a lower resistance than an Al wiring layer is used.
The use of the u wiring layer has been studied and partially put into practical use. This Cu wiring layer is made of C for the purpose of eliminating steps on the surface.
It is formed by the MP method. Specifically, a wiring-shaped groove is formed in an insulating film on a semiconductor substrate, a Cu film is deposited on the insulating film including the groove, and the Cu film is polished with abrasive grains.
CMP treatment is performed using a polishing slurry containing an oxidant and water and a polishing device to leave a Cu film only in the groove to form a buried wiring layer.

【0003】ところで、Cu配線層の形成において研磨
開始から研磨終了までの間に前記研磨砥粒、酸化剤およ
び水を含み、かつ組成の異なる複数の研磨スラリーに切
り替えて連続してCMP処理することが行われている。
具体的には、Cu膜を半導体基板の絶縁膜に形成した溝
に堆積するに先立って、埋込まれたCu配線からのCu
の拡散を防止する目的でTaNのような銅拡散防止膜を
堆積した場合、Cuの研磨途中で銅拡散防止膜が表面に
露出するため、Cu膜の研磨スラリーと異なる組成の研
磨スラリーに切り替えることが行われている。
By the way, in the formation of the Cu wiring layer, a plurality of polishing slurries containing the above-mentioned polishing abrasive grains, an oxidizer and water and having different compositions are continuously switched from the polishing start to the polishing end for continuous CMP treatment. Is being done.
Specifically, prior to depositing the Cu film in the groove formed in the insulating film of the semiconductor substrate, Cu from the embedded Cu wiring is
When a copper diffusion preventive film such as TaN is deposited for the purpose of preventing the diffusion of Cu, the copper diffusion preventive film is exposed on the surface during the polishing of Cu. Therefore, it is necessary to switch to a polishing slurry having a composition different from the polishing slurry of the Cu film. Is being done.

【0004】しかしながら、前記連続的なCMPにおい
て始めに使用する研磨スラリーと次に使用する研磨スラ
リーをそれぞれ単体で研磨を行っても支障がない場合で
も、連続して研磨すると後続の研磨スラリー中の研磨砥
粒が凝集して研磨面(例えばCu膜表面)にスクラッチ
が生じる虞があった。
However, even if there is no problem in polishing the polishing slurry used first and the polishing slurry used next in the continuous CMP individually, if the polishing is continuously performed, the polishing slurry in the subsequent polishing slurry is There is a possibility that the polishing abrasive particles may aggregate to cause scratches on the polishing surface (eg, Cu film surface).

【0005】[0005]

【発明が解決しようとする課題】本発明は、連続的な研
磨途中で組成の異なる研磨スラリーに切り替えてもその
中の研磨砥粒の凝集を防止することが可能な化学機械研
磨方法を提供するものである。
DISCLOSURE OF THE INVENTION The present invention provides a chemical mechanical polishing method capable of preventing the agglomeration of polishing abrasive grains therein even when the polishing slurry is changed to a polishing slurry having a different composition during continuous polishing. It is a thing.

【0006】[0006]

【課題を解決するための手段】本発明に係る化学機械研
磨方法は、基板上の各種被膜を研磨開始から研磨終了ま
での間に研磨砥粒、酸化剤および水を含み、かつ組成の
異なる複数の研磨スラリーに切り替えて連続して化学機
械研磨する方法において、前記各研磨スラリーは、それ
らの中の研磨砥粒が示すゼータ電位の極性が同一である
ことを特徴とするものである。
A chemical mechanical polishing method according to the present invention comprises a plurality of coatings containing polishing abrasive grains, an oxidizer and water and having different compositions from the start to the end of polishing. In the method of switching to the polishing slurry and continuously performing chemical mechanical polishing, each of the polishing slurries has the same polarity of zeta potential indicated by the polishing abrasive grains therein.

【0007】[0007]

【発明の実施の形態】以下、本発明に係る化学機械研磨
方法を詳細に説明する。
BEST MODE FOR CARRYING OUT THE INVENTION The chemical mechanical polishing method according to the present invention will be described in detail below.

【0008】この化学機械研磨方法は、基板上の各種被
膜を研磨開始から研磨終了までの間に研磨砥粒、酸化剤
および水を含み、かつ組成の異なる複数の研磨スラリー
に切り替えて連続して化学機械研磨するに際し、前記各
研磨スラリーとしてそれらの中の研磨砥粒がスラリー中
で示すゼータ電位の極性を同一にしたものを用いる。
In this chemical mechanical polishing method, various coatings on a substrate are continuously switched by switching to a plurality of polishing slurries containing polishing abrasive grains, an oxidizing agent and water and having different compositions from the start to the end of polishing. In the chemical mechanical polishing, as the above-mentioned respective polishing slurries, those in which the polishing abrasive grains in them have the same zeta potential polarity in the slurry are used.

【0009】前記基板上の各種被膜としては、例えばC
u膜、Cu合金膜、またはTaN、TaNb、W,W
N,TaN,TaSiN,Ta,Co,Zr,ZrNお
よびCuTa合金から選ばれる1層または2層以上の銅
拡散防止膜等を挙げることができる。
Examples of various coatings on the substrate include C
u film, Cu alloy film, or TaN, TaNb, W, W
Examples thereof include one or two or more layers of copper diffusion preventive film selected from N, TaN, TaSiN, Ta, Co, Zr, ZrN and CuTa alloys.

【0010】前記研磨スラリー中の研磨砥粒としては、
例えばシリカ(コロイダルシリカを含む)、アルミナ
(コロイダルアルミナを含む)、酸化セリウム等を挙げ
ることができる。
The abrasive grains in the polishing slurry are:
Examples thereof include silica (including colloidal silica), alumina (including colloidal alumina), cerium oxide and the like.

【0011】前記各研磨スラリー中の前記酸化剤として
は、例えば過酸化水素(H2 2 )、次亜塩素酸ソーダ
(NaClO)等を用いることができる。
Hydrogen peroxide (H 2 O 2 ), sodium hypochlorite (NaClO) and the like can be used as the oxidizing agent in each polishing slurry.

【0012】前記各研磨スラリー中には、さらに両性イ
オン性、陰イオン性、陽イオン性の界面活性剤が添加さ
れることを許容する。このような界面活性剤の使用にお
いては、同じイオン性を持つものが選ばれる。前記両性
イオン性界面活性剤としては、例えばイミダゾリベタイ
ン等を挙げることができる。前記陰イオン性界面活性剤
としては、例えばドデシル硫酸ナトリウム、ドデシル硫
酸アンモニウム等を挙げることができる。前記陽イオン
性界面活性剤としては、例えばステアリントリメチルア
ンモニウムクロライド等を挙げることができる。
It is allowed that a zwitterionic, anionic or cationic surfactant is further added to each of the polishing slurries. In using such a surfactant, those having the same ionic property are selected. Examples of the zwitterionic surfactant include imidazolibetaine. Examples of the anionic surfactant include sodium dodecyl sulfate and ammonium dodecyl sulfate. Examples of the cationic surfactant include stearin trimethyl ammonium chloride.

【0013】前記各研磨スラリー中には、さらにキレー
ト剤が添加されることを許容する。このキレート剤とし
ては、各種の有機酸を用いることができるが、特に各種
被膜としてCu膜またはCu合金膜を用いる場合には2
−キノリンカルボン酸(キナルジン酸)、2−ピリジン
カルボン酸、2,6−ピリジンカルボン酸、キノン等が
好ましい。
A chelating agent may be added to each of the polishing slurries. As the chelating agent, various organic acids can be used, but especially when a Cu film or Cu alloy film is used as various coatings,
-Quinolinecarboxylic acid (quinaldic acid), 2-pyridinecarboxylic acid, 2,6-pyridinecarboxylic acid, quinone and the like are preferable.

【0014】前記各研磨スラリー中には、さらに乳酸等
のpH調整剤が添加されることを許容する。
A pH adjusting agent such as lactic acid may be added to each of the polishing slurries.

【0015】前述したCMPにあたっては、例えば図1
に示すポリシング装置が用いられる。すなわち、ターン
テーブル1上には例えば布、独立気泡を有するポリウレ
タン発泡体から作られた研磨パッド2が被覆されてい
る。研磨スラリーを供給するための供給管3は、前記研
磨パッド2の上方に配置されている。上面に支持軸4を
有する基板ホルダ5は、研磨パッド2の上方に上下動自
在でかつ回転自在に配置されている。
In the above-mentioned CMP, for example, FIG.
The polishing apparatus shown in is used. That is, the turntable 1 is covered with a polishing pad 2 made of, for example, cloth or polyurethane foam having closed cells. A supply pipe 3 for supplying the polishing slurry is arranged above the polishing pad 2. The substrate holder 5 having the support shaft 4 on the upper surface is arranged above the polishing pad 2 so as to be vertically movable and rotatable.

【0016】このようなポリシング装置において、前記
ホルダ5により基板6をその研磨面(被膜)が前記研磨
パッド2に対向するように保持し、前記供給管3から前
述した組成の研摩スラリー7を供給しながら、前記支持
軸4により前記基板6を前記研磨パッド2に向けて所望
の加重を与え、さらに前記ホルダ5および前記ターンテ
ーブル1をそれぞれ同方向に回転させることにより前記
基板6上の被膜が研磨される。
In such a polishing apparatus, the holder 5 holds the substrate 6 so that its polishing surface (coating) faces the polishing pad 2, and the polishing slurry 7 having the above-mentioned composition is supplied from the supply pipe 3. However, a desired weight is applied to the substrate 6 toward the polishing pad 2 by the support shaft 4, and the holder 5 and the turntable 1 are rotated in the same direction, respectively. To be polished.

【0017】本発明に係る化学機械研磨方法は、次のよ
うな半導体装置の製造方法に適用することができる。
The chemical mechanical polishing method according to the present invention can be applied to the following semiconductor device manufacturing method.

【0018】まず、半導体基板上の絶縁膜に配線層の形
状に相当する溝およびビアフィルの形状に相当する開口
部から選ばれる少なくとも1つの埋込み用部材を形成す
る。この埋込み用部材の内面を含む前記絶縁膜上に銅拡
散防止膜を形成する。この銅拡散防止膜上に銅または銅
合金からなる配線材料膜を形成する。研磨砥粒と酸化剤
と水とを含有する第1研磨組成物を用いて前記配線材料
膜を研磨する。この研磨過程で前記銅拡散防止膜が露出
する直前もしくは直後に表面が前記第1研磨組成物によ
り濡れた状態で研磨砥粒と酸化剤と水とを含有する第2
研磨組成物に切り替えて前記銅拡散防止膜を研磨して前
記埋込み部材内に前記銅拡散防止膜で覆われた状態で埋
込まれた配線層(またはビアフィル)を形成する。この
ような配線層等の形成において、第2研磨スラリーとし
てその研磨砥粒が示すゼータ電位と前記第1研磨スラリ
ー中で研磨砥粒が示すゼータ電位とが同一極性で、かつ
前記第1研磨組成物中の酸化剤より多い量の酸化剤を含
む組成のものを用いる。
First, at least one embedding member selected from a groove corresponding to the shape of a wiring layer and an opening corresponding to the shape of a via fill is formed in an insulating film on a semiconductor substrate. A copper diffusion preventing film is formed on the insulating film including the inner surface of the embedding member. A wiring material film made of copper or a copper alloy is formed on the copper diffusion prevention film. The wiring material film is polished using a first polishing composition containing abrasive grains, an oxidizing agent, and water. In this polishing process, immediately before or after the copper diffusion barrier film is exposed, a second surface containing abrasive grains, an oxidizing agent, and water in a state in which the surface is wet with the first polishing composition.
By switching to a polishing composition, the copper diffusion preventing film is polished to form a wiring layer (or a via fill) embedded in the embedded member while being covered with the copper diffusion preventing film. In the formation of such a wiring layer or the like, the zeta potential of the polishing abrasive grains as the second polishing slurry and the zeta potential of the polishing abrasive grains in the first polishing slurry have the same polarity, and the first polishing composition is the same. The composition having a larger amount of oxidizer than the oxidizer in the product is used.

【0019】前記銅拡散防止膜としては、例えばTa
N、TaNb、W,WN,TaN,TaSiN,Ta,
Co,Zr,ZrNおよびCuTa合金から選ばれる1
層または2層以上のものを挙げることができる。
The copper diffusion preventive film is, for example, Ta.
N, TaNb, W, WN, TaN, TaSiN, Ta,
1 selected from Co, Zr, ZrN and CuTa alloys
A layer or two or more layers can be mentioned.

【0020】前記第1,第2の研磨スラリー中の研磨砥
粒、酸化剤は、前述したのと同様なものを用いることが
できる。
As the abrasive grains and oxidizing agent in the first and second polishing slurries, the same ones as described above can be used.

【0021】前記第1,第2の研磨スラリー中には、さ
らに前述した両性イオン性、陰イオン性、陽イオン性の
界面活性剤、キレート剤、pH調整剤が添加されること
を許容する。
The above-mentioned zwitterionic, anionic, and cationic surfactants, chelating agents, and pH adjusters may be added to the first and second polishing slurries.

【0022】前記第1研磨スラリーは、CuまたはCu
合金の配線材料膜に対した高い研磨性を示し、前記第2
研磨スラリーは配線材料膜と銅拡散防止膜の両者を略同
じ速度で研磨する性質を有する。
The first polishing slurry is Cu or Cu.
It has a high polishing property with respect to an alloy wiring material film.
The polishing slurry has a property of polishing both the wiring material film and the copper diffusion preventing film at substantially the same rate.

【0023】前記配線材料膜、配線材料膜と銅拡散防止
膜の研磨にあたっては、前述したポリシング装置が用い
られる。
The polishing apparatus described above is used for polishing the wiring material film, the wiring material film and the copper diffusion preventing film.

【0024】以上説明した本発明に係る化学機械研磨方
法は、基板上の各種被膜を研磨開始から研磨終了までの
間に研磨砥粒、酸化剤および水を含み、かつ組成の異な
る複数の研磨スラリーに切り替えて連続して化学機械研
磨するに際し、前記各研磨スラリーとしてそれらの中の
研磨砥粒がスラリー中で示すゼータ電位の極性を同一に
したものを用いる。
The chemical mechanical polishing method according to the present invention described above includes a plurality of polishing slurries each containing polishing abrasive grains, an oxidizer and water and having different compositions from the start to the end of polishing of various coatings on a substrate. When the chemical mechanical polishing is continuously performed by switching to, the polishing slurry having the same zeta potential polarity in the slurry is used as the polishing slurry.

【0025】このような方法によれば、研磨開始から研
磨終了までの間に複数の研磨スラリーに切り替えて連続
的に研磨するに際し、研磨砥粒がスラリー中で示すゼー
タ電位の極性を同一にした研磨スラリーを用いることに
よって、初期研磨後の第2研磨以降において研磨スラリ
ー中の研磨砥粒の凝集を防止できるため、基板上の各種
被膜にスクラッチが発生するのを防止できる。
According to such a method, when the polishing slurry is switched to a plurality of polishing slurries and continuously polished between the start of polishing and the end of polishing, the polishing abrasive grains have the same zeta potential polarity in the slurry. By using the polishing slurry, it is possible to prevent agglomeration of the polishing abrasive grains in the polishing slurry after the second polishing after the initial polishing, and thus it is possible to prevent scratches from forming on various coatings on the substrate.

【0026】[0026]

【実施例】以下、好ましい実施例を詳細に説明する。The preferred embodiment will be described in detail below.

【0027】下記表1に示す組成、pHおよびゼータ電
位(研磨砥粒がスラリー中で示すゼータ電位)を有する
4種の研磨スラリーA〜研磨スラリーDを調製した。
Four types of polishing slurries A to polishing slurries D having compositions, pHs and zeta potentials (zeta potentials exhibited by the polishing abrasive grains in the slurry) shown in Table 1 below were prepared.

【0028】[0028]

【表1】 [Table 1]

【0029】(実施例1)まず、表面に厚さ1000n
mのCu膜を成膜した8インチシリコンウェハ(シリコ
ン基板)を用意した。
(Example 1) First, a thickness of 1000 n was formed on the surface.
An 8-inch silicon wafer (silicon substrate) having a Cu film of m was prepared.

【0030】次いで、前述した図1に示すポリシング装
置のホルダ5により前記基板6をそのCu膜が研磨パッ
ド2に対向するように保持し、供給管3から前記表1の
研磨スラリーAを200cc/分を供給しながら、支持
軸4により前記基板6を前記研磨パッド2に向けて20
0g/cm2の荷重を与え、さらに前記ホルダ5および
前記ターンテーブル1をそれぞれ60rpm,63rp
mの速度で同方向に回転させることにより前記基板6上
Cu膜を30秒間研磨した(第1研磨)。つづいて、供
給管3から前記研磨スラリーAの供給を停止し、供給管
3から前記表1に示す研磨スラリーCを研磨スラリーA
が付着された研磨パッド2に供給しながら、同様な条件
で前記基板6のCu膜を30秒間研磨した(第2研
磨)。その後、純水ブラシで1分間洗浄した後に200
0rpmの条件でスピン乾燥を行った。
Then, the substrate 6 is held by the holder 5 of the polishing apparatus shown in FIG. 1 so that its Cu film faces the polishing pad 2, and 200 cc / g of the polishing slurry A shown in Table 1 is supplied from the supply pipe 3. The substrate 6 is directed toward the polishing pad 2 by the support shaft 4 while supplying the amount.
A load of 0 g / cm 2 is applied, and the holder 5 and the turntable 1 are further rotated at 60 rpm and 63 rp, respectively.
The Cu film on the substrate 6 was polished for 30 seconds by rotating in the same direction at a speed of m (first polishing). Subsequently, the supply of the polishing slurry A from the supply pipe 3 is stopped, and the polishing slurry C shown in Table 1 is supplied from the supply pipe 3 to the polishing slurry A.
The Cu film on the substrate 6 was polished for 30 seconds under the same conditions while being supplied to the polishing pad 2 to which was attached (second polishing). Then, after cleaning with a pure water brush for 1 minute, 200
Spin drying was performed under the condition of 0 rpm.

【0031】(実施例2)第1研磨を前記表1に示す研
磨スラリーB、第2研磨を前記表1に示す研磨スラリー
Dを用いて行った以外、実施例1と同様な条件で基板表
面のCu膜を連続して研磨し、洗浄、乾燥した。
Example 2 A substrate surface was prepared under the same conditions as in Example 1 except that the first polishing was performed using the polishing slurry B shown in Table 1 above and the second polishing was performed using the polishing slurry D shown in Table 1 above. Cu film was continuously polished, washed and dried.

【0032】(比較例1)第1研磨を前記表1に示す研
磨スラリーA、第2研磨を前記表1に示す研磨スラリー
Bを用いて行った以外、実施例1と同様な条件で基板表
面のCu膜を連続して研磨し、洗浄、乾燥した。
(Comparative Example 1) Substrate surface under the same conditions as in Example 1 except that the first polishing was performed using the polishing slurry A shown in Table 1 above and the second polishing was performed using the polishing slurry B shown in Table 1 above. Cu film was continuously polished, washed and dried.

【0033】(比較例2)第1研磨を前記表1に示す研
磨スラリーA、第2研磨を前記表1に示す研磨スラリー
Dを用いて行った以外、実施例1と同様な条件で基板表
面のCu膜を連続して研磨し、洗浄、乾燥した。
(Comparative Example 2) Substrate surface under the same conditions as in Example 1 except that the first polishing was performed using the polishing slurry A shown in Table 1 above and the second polishing was performed using the polishing slurry D shown in Table 1 above. Cu film was continuously polished, washed and dried.

【0034】実施例1,2および比較例1,2の連続研
磨後にCu膜表面の1μm以上のスクラッチを検査装置
(KLA-Tencor社製商品名;SFS6420)と電子顕微鏡を用い
て調べた。その結果を下記表2に示す。
After continuous polishing of Examples 1 and 2 and Comparative Examples 1 and 2, scratches of 1 μm or more on the Cu film surface were examined by using an inspection device (trade name: SFS6420 manufactured by KLA-Tencor) and an electron microscope. The results are shown in Table 2 below.

【0035】[0035]

【表2】 [Table 2]

【0036】前記表2から明らかなように第1,第2の
Cu研磨においてゼータ電位の極性が異なる研磨スラリ
ーを用いる比較例1,2では連続研磨後のCu膜表面の
スクラッチ数が35,18と多くなることがわかる。こ
れに対し、第1,第2のCu研磨においてゼータ電位の
極性が同じ研磨スラリーを用いる実施例1,2では連続
研磨後のCu膜表面のスクラッチ数が1以下と優れた研
磨特性を示すことがわかる。
As is clear from Table 2, in Comparative Examples 1 and 2 which use polishing slurries having different zeta potential polarities in the first and second Cu polishing, the number of scratches on the Cu film surface after continuous polishing is 35,18. It turns out that it will increase. On the other hand, in Examples 1 and 2 in which the polishing slurries having the same polarity of zeta potential were used in the first and second Cu polishing, the number of scratches on the Cu film surface after continuous polishing was 1 or less, which is excellent polishing property. I understand.

【0037】(実施例3)まず、図2の(A)に示すよ
うに表面に図示しないソース、ドレイン等の拡散層が形
成されたシリコン基板11上にCVD法により層間絶縁
膜としての例えば厚さ1000nmのSiO2 膜12を
堆積した後、前記SiO2 膜12にフォトエッチング技
術により配線層に相当する形状を有する深さ500nm
の複数の溝13を形成した。つづいて、図2の(B)に
示すように前記溝13を含む前記SiO2 膜12上にス
パッタ蒸着により厚さ15nmのTaNからなる銅拡散
防止膜14および厚さ600nmのCu膜15をこの順
序で形成した。
(Embodiment 3) First, as shown in FIG. 2A, a silicon substrate 11 having a diffusion layer (not shown) such as a source and a drain formed on the surface thereof is formed by CVD, for example, as an interlayer insulating film. After depositing a SiO 2 film 12 having a thickness of 1000 nm, a depth of 500 nm having a shape corresponding to a wiring layer is formed on the SiO 2 film 12 by a photoetching technique.
A plurality of grooves 13 were formed. Subsequently, as shown in FIG. 2B, a 15 nm-thick copper diffusion preventing film 14 made of TaN and a 600 nm-thick Cu film 15 are formed on the SiO 2 film 12 including the groove 13 by sputter deposition. Formed in order.

【0038】次いで、前述した図1に示すポリシング装
置の基板ホルダ5に図2の(B)に示す基板11を逆さ
にして保持し、前記ホルダ5の支持軸4により前記基板
をターンテーブル1上のローデル社製商品名;IC10
00からなる研磨パッド2に500g/cm2 の荷重を
与え、前記ターンテーブル1およびホルダ5をそれぞれ
103rpm、100rpmの速度で同方向に回転させ
ながら、第1研磨スラリーを供給管3から50ml/分
の速度で前記研磨パッド2に供給して前記基板11に形
成したCu膜15を前記SiO2 膜12上の前記銅拡散
防止膜14の表面が露出するまで研磨した。ここで、前
記第1研磨スラリーとして2−キノリンカルボン酸(キ
ナルジン酸)0.57重量%、過酸化水素3.78重量
%、アルミナ1.09重量%、乳酸0.67重量%、ド
デシル硫酸アンモニウム1.00重量%および水の組成
(pH;3、ゼータ電位;−20mV)を有するものを
用いた。
Next, the substrate 11 shown in FIG. 2B is held upside down on the substrate holder 5 of the polishing apparatus shown in FIG. 1, and the substrate is mounted on the turntable 1 by the support shaft 4 of the holder 5. Product name of Rodel Co .; IC10
A load of 500 g / cm 2 is applied to the polishing pad 2 made of 00, while the turntable 1 and the holder 5 are rotated in the same direction at speeds of 103 rpm and 100 rpm, respectively, and the first polishing slurry is supplied from the supply pipe 3 at 50 ml / min. The Cu film 15 formed on the substrate 11 by being supplied to the polishing pad 2 at the rate of was polished until the surface of the copper diffusion preventing film 14 on the SiO 2 film 12 was exposed. Here, as the first polishing slurry, 2-quinolinecarboxylic acid (quinaldic acid) 0.57% by weight, hydrogen peroxide 3.78% by weight, alumina 1.09% by weight, lactic acid 0.67% by weight, ammonium dodecyl sulfate 1 Those having a composition of 0.000% by weight and water (pH; 3, zeta potential; -20 mV) were used.

【0039】次いで、前記供給管3から前記第1研磨ス
ラリーの供給を停止し、供給管3から下記組成の第2研
磨スラリーを第1研磨スラリーが付着された研磨パッド
2に供給しながら、同様な条件で前記基板11の銅拡散
防止膜およびCu膜を連続的に研磨した。ここで前記第
2研磨スラリーとして2−キノリンカルボン酸0.57
重量%、過酸化水素4.67重量%、コロイダルシリカ
5.0重量%、乳酸0.67重量%、ドデシル硫酸アン
モニウム1.00重量%および水の組成(pH;3、ゼ
ータ電位;−25mV)を有するものを用いた。このよ
うな第2研磨スラリーによる研磨によって、図2の
(C)に示すように前記溝13内に銅拡散防止膜14が
残存すると共に、前記銅拡散防止膜14で覆われた前記
溝13内に前記SiO2 膜12表面とほぼ面一な埋め込
みCu配線層16が形成された。
Then, the supply of the first polishing slurry from the supply pipe 3 is stopped, and the second polishing slurry having the following composition is supplied from the supply pipe 3 to the polishing pad 2 to which the first polishing slurry is adhered. The copper diffusion prevention film and the Cu film of the substrate 11 were continuously polished under various conditions. Here, 2-quinolinecarboxylic acid 0.57 is used as the second polishing slurry.
%, Hydrogen peroxide 4.67% by weight, colloidal silica 5.0% by weight, lactic acid 0.67% by weight, ammonium dodecylsulfate 1.00% by weight and water composition (pH; 3, zeta potential; -25 mV). The one which has was used. By the polishing with the second polishing slurry, the copper diffusion preventive film 14 remains in the groove 13 as shown in FIG. 2C, and the inside of the groove 13 covered with the copper diffusion preventive film 14 is removed. A buried Cu wiring layer 16 which is substantially flush with the surface of the SiO 2 film 12 is formed on the surface.

【0040】また、前記Cu配線層16表面を検査装置
(KLA-Tencor社製商品名;SFS6420)と電子顕微鏡を用い
て調べたところ、前記Cu配線層16表面へのスクラッ
チの発生は殆ど認められなかった。
When the surface of the Cu wiring layer 16 was examined with an inspection device (KLA-Tencor, trade name; SFS6420) and an electron microscope, almost no scratches were found on the surface of the Cu wiring layer 16. There wasn't.

【0041】[0041]

【発明の効果】以上詳述したように本発明によれば、連
続的な研磨途中で組成の異なる研磨スラリーに切り替え
てもその中の研磨砥粒の凝集を防止して研磨表面へのス
クラッチの発生を防止することが可能な化学機械研磨方
法を提供することができる。
As described above in detail, according to the present invention, even if the polishing slurry having a different composition is switched during the continuous polishing, the agglomeration of the polishing abrasive grains in the slurry is prevented and the scratch on the polishing surface is prevented. A chemical mechanical polishing method capable of preventing the occurrence can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の研磨工程に使用されるポリシング装置
を示す概略図。
FIG. 1 is a schematic view showing a polishing apparatus used in a polishing process of the present invention.

【図2】本発明の実施例3における半導体装置の製造工
程を示す断面図。
FIG. 2 is a sectional view showing a manufacturing process of a semiconductor device according to a third embodiment of the invention.

【符号の説明】[Explanation of symbols]

1…ターンテーブル、 2…研磨パッド、 3…供給管、 5…ホルダ、 11,…シリコン基板、 13…溝、 14…銅拡散防止膜、 15…Cu膜、 16…Cu配線層。 1 ... turntable, 2 ... polishing pad, 3 ... Supply pipe, 5 ... Holder, 11, ... Silicon substrate, 13 ... groove, 14 ... Copper diffusion preventive film, 15 ... Cu film, 16 ... Cu wiring layer.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) C09K 3/14 C09K 3/14 550Z (72)発明者 林 俊秀 神奈川県横浜市栄区笠間二丁目5番1号 芝浦メカトロニクス株式会社横浜事業所内 Fターム(参考) 3C047 FF08 GG15 3C058 AA07 CB03 CB07 DA02 DA13 DA17 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) C09K 3/14 C09K 3/14 550Z (72) Inventor Toshihide Hayashi 2-5-1, Kasama, Sakae-ku, Yokohama-shi, Kanagawa No. Shibaura Mechatronics Co., Ltd. Yokohama Office F-term (reference) 3C047 FF08 GG15 3C058 AA07 CB03 CB07 DA02 DA13 DA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 基板上の各種被膜を研磨開始から研磨終
了までの間に研磨砥粒、酸化剤および水を含み、かつ組
成の異なる複数の研磨スラリーに切り替えて連続して化
学機械研磨する方法において、 前記各研磨スラリーは、それらの中の研磨砥粒が示すゼ
ータ電位の極性が同一であることを特徴とする化学機械
研磨方法。
1. A method of continuously performing chemical mechanical polishing of various coatings on a substrate by switching to a plurality of polishing slurries containing polishing abrasive grains, an oxidizer and water and having different compositions from the start of polishing to the end of polishing. In the chemical mechanical polishing method, each of the polishing slurries has the same polarity of zeta potential indicated by the polishing abrasive grains therein.
【請求項2】 前記各研磨スラリーは、さらに同じイオ
ン性を持つ界面活性剤を含有することを特徴とする請求
項1記載の化学機械研磨方法。
2. The chemical mechanical polishing method according to claim 1, wherein each of the polishing slurries further contains a surfactant having the same ionicity.
【請求項3】 前記各研磨スラリーは、さらにキレート
剤を含有することを特徴とする請求項1または2記載の
化学機械研磨方法。
3. The chemical mechanical polishing method according to claim 1, wherein each of the polishing slurries further contains a chelating agent.
【請求項4】 前記各研磨スラリーは、さらにpH調整
剤を含有することを特徴とする請求項1ないし3いずれ
か記載の化学機械研磨方法。
4. The chemical mechanical polishing method according to claim 1, wherein each of the polishing slurries further contains a pH adjusting agent.
JP2001367798A 2001-11-30 2001-11-30 Chemical mechanical polishing method and semiconductor device manufacturing method Expired - Fee Related JP4077192B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001367798A JP4077192B2 (en) 2001-11-30 2001-11-30 Chemical mechanical polishing method and semiconductor device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001367798A JP4077192B2 (en) 2001-11-30 2001-11-30 Chemical mechanical polishing method and semiconductor device manufacturing method

Publications (2)

Publication Number Publication Date
JP2003168661A true JP2003168661A (en) 2003-06-13
JP4077192B2 JP4077192B2 (en) 2008-04-16

Family

ID=19177493

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001367798A Expired - Fee Related JP4077192B2 (en) 2001-11-30 2001-11-30 Chemical mechanical polishing method and semiconductor device manufacturing method

Country Status (1)

Country Link
JP (1) JP4077192B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005101474A1 (en) * 2004-04-12 2005-10-27 Hitachi Chemical Co., Ltd. Metal polishing liquid and polishing method using it
JP2007301721A (en) * 2007-08-29 2007-11-22 Kao Corp Polishing liquid composition
JP2012025873A (en) * 2010-07-26 2012-02-09 Yamaguchi Seiken Kogyo Kk Abrasive composition
WO2017111814A1 (en) * 2015-12-26 2017-06-29 Intel Corporation Low resistance interconnect
WO2018020931A1 (en) * 2016-07-28 2018-02-01 株式会社バイコウスキージャパン Abrasive grains, manufacturing method therefor, polishing slurry containing said abrasive grains, and polishing method using said polishing slurry
CN108290267A (en) * 2015-10-30 2018-07-17 应用材料公司 Form the apparatus and method for of the polished product with desired zeta potential
CN111015535A (en) * 2019-12-04 2020-04-17 东莞金太阳研磨股份有限公司 Precise polishing film with special structure and preparation method thereof

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9873180B2 (en) 2014-10-17 2018-01-23 Applied Materials, Inc. CMP pad construction with composite material properties using additive manufacturing processes
US11745302B2 (en) 2014-10-17 2023-09-05 Applied Materials, Inc. Methods and precursor formulations for forming advanced polishing pads by use of an additive manufacturing process
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
US10391605B2 (en) 2016-01-19 2019-08-27 Applied Materials, Inc. Method and apparatus for forming porous advanced polishing pads using an additive manufacturing process
US11471999B2 (en) 2017-07-26 2022-10-18 Applied Materials, Inc. Integrated abrasive polishing pads and manufacturing methods
WO2019032286A1 (en) 2017-08-07 2019-02-14 Applied Materials, Inc. Abrasive delivery polishing pads and manufacturing methods thereof
CN112654655A (en) 2018-09-04 2021-04-13 应用材料公司 Advanced polishing pad formulations

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2005101474A1 (en) * 2004-04-12 2007-08-16 日立化成工業株式会社 Polishing liquid for metal and polishing method using the same
JP4775260B2 (en) * 2004-04-12 2011-09-21 日立化成工業株式会社 Polishing liquid for metal and polishing method using the same
WO2005101474A1 (en) * 2004-04-12 2005-10-27 Hitachi Chemical Co., Ltd. Metal polishing liquid and polishing method using it
JP2007301721A (en) * 2007-08-29 2007-11-22 Kao Corp Polishing liquid composition
JP2012025873A (en) * 2010-07-26 2012-02-09 Yamaguchi Seiken Kogyo Kk Abrasive composition
US11964359B2 (en) 2015-10-30 2024-04-23 Applied Materials, Inc. Apparatus and method of forming a polishing article that has a desired zeta potential
CN108290267A (en) * 2015-10-30 2018-07-17 应用材料公司 Form the apparatus and method for of the polished product with desired zeta potential
US10446439B2 (en) 2015-12-26 2019-10-15 Intel Corporation Low resistance interconnect
WO2017111814A1 (en) * 2015-12-26 2017-06-29 Intel Corporation Low resistance interconnect
WO2018020931A1 (en) * 2016-07-28 2018-02-01 株式会社バイコウスキージャパン Abrasive grains, manufacturing method therefor, polishing slurry containing said abrasive grains, and polishing method using said polishing slurry
TWI664279B (en) * 2016-07-28 2019-07-01 日商日本百考基股份有限公司 Abrasive particles, manufacturing method thereof, polishing slurry containing the same, and polishing method using the same
JP2018024814A (en) * 2016-07-28 2018-02-15 株式会社バイコウスキージャパン Abrasive grain, production method therefor, polishing slurry including the same and polishing method using the polishing slurry
CN111015535A (en) * 2019-12-04 2020-04-17 东莞金太阳研磨股份有限公司 Precise polishing film with special structure and preparation method thereof

Also Published As

Publication number Publication date
JP4077192B2 (en) 2008-04-16

Similar Documents

Publication Publication Date Title
EP1211717B1 (en) Method for chemical-mechanical polishing of a substrate
JP5539934B2 (en) Chemical mechanical polishing slurry useful for copper substrate
JP4095731B2 (en) Semiconductor device manufacturing method and semiconductor device
US5993685A (en) Planarization composition for removing metal films
Matijević et al. Colloid aspects of chemical–mechanical planarization
KR100214749B1 (en) Polishing chemical for cu metal and fabricating method of semiconductor device thereby
US6524167B1 (en) Method and composition for the selective removal of residual materials and barrier materials during substrate planarization
TWI267111B (en) Method and composition for the removal of residual materials during substrate planarization
TW517296B (en) Method for manufacturing a semiconductor device
JP2000183003A (en) Polishing composition for copper metal and manufacture of semiconductor device
JP4077192B2 (en) Chemical mechanical polishing method and semiconductor device manufacturing method
JP3192968B2 (en) Polishing liquid for copper-based metal and method for manufacturing semiconductor device
JP2009158810A (en) Slurry for chemical-mechanical polishing and manufacturing method of semiconductor device
JP3895949B2 (en) CMP slurry and method for manufacturing semiconductor device using the same
KR102312219B1 (en) Chemical mechanical polishing tungsten buffing slurries
JP2005011932A (en) Slurry for cmp, polishing method, and method for manufacturing semiconductor device
TWI294456B (en)
US7494931B2 (en) Method for fabricating semiconductor device and polishing method
TW202000845A (en) Tungsten chemical mechanical polishing compositions
US6302765B1 (en) Process for mechanical chemical polishing of a layer in a copper-based material
JP4713767B2 (en) Cleaning liquid and method for manufacturing semiconductor device
JP6737894B2 (en) Chemical mechanical polishing method
JP2004022855A (en) Process for producing semiconductor device
JP2004152785A (en) Abrasive composition for copper diffusion preventive film and method for manufacturing semiconductor device
Nolan et al. Chemical mechanical polish for nanotechnology

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041130

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20041207

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070606

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070612

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071105

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20071109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080131

R151 Written notification of patent or utility model registration

Ref document number: 4077192

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110208

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120208

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130208

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140208

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees