JP4263332B2 - Polishing abrasive grains, chemical mechanical polishing slurry, and copper metal polishing method - Google Patents

Polishing abrasive grains, chemical mechanical polishing slurry, and copper metal polishing method Download PDF

Info

Publication number
JP4263332B2
JP4263332B2 JP2000055761A JP2000055761A JP4263332B2 JP 4263332 B2 JP4263332 B2 JP 4263332B2 JP 2000055761 A JP2000055761 A JP 2000055761A JP 2000055761 A JP2000055761 A JP 2000055761A JP 4263332 B2 JP4263332 B2 JP 4263332B2
Authority
JP
Japan
Prior art keywords
polishing
abrasive grains
inorganic compound
hard inorganic
compound particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000055761A
Other languages
Japanese (ja)
Other versions
JP2001240848A (en
Inventor
直明 桜井
幹夫 野中
俊連 長
英明 平林
哲也 金丸
和久 大野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Tama Chemical Co Ltd
Shiseido Co Ltd
Original Assignee
Toshiba Corp
Tama Chemical Co Ltd
Shiseido Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tama Chemical Co Ltd, Shiseido Co Ltd filed Critical Toshiba Corp
Priority to JP2000055761A priority Critical patent/JP4263332B2/en
Publication of JP2001240848A publication Critical patent/JP2001240848A/en
Application granted granted Critical
Publication of JP4263332B2 publication Critical patent/JP4263332B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Chemical Vapour Deposition (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、金属を始めとする各種の物質を研磨するための研磨砥粒、化学機械研磨(Chemical Mechanical Polishing ;CMP)スラリーおよび銅系金属の研磨方法に関する。
【0002】
【従来の技術】
研磨砥粒は、半導体ウェハ表面の研磨、半導体ウェハ表面にAl,Cuなどの埋め込み配線を形成するための配線材料層の研磨、または光ディスクの研磨等に使用されている。
【0003】
ところで、例えば半導体ウェハの研磨をおいては、従来よりコロイダルシリカ、ヒュームドシリカ、アルミナ、酸化マンガン等の無機酸化物粒子からなる研磨砥粒を水に分散させ、必要に応じて界面活性剤、酸化剤、キレート剤を混合した研磨スラリーを用い、前記半導体ウェハを発泡性パッド上に押圧して回転させるとともに、前記研磨スラリーを前記パッド上に供給して研磨を実施している。また、前記研磨砥粒を前記発泡性パッドに分散、固定し、このパッド上に前記半導体ウェハを押圧して回転させるとともに、研磨砥粒を含まず、前記界面活性剤等を含む水溶液を別途前記パッド上に供給して研磨を実施している。
【0004】
【発明が解決しようとする課題】
しかしながら、前記研磨スラリーは前記研磨砥粒表面の活性によってそのpHや砥粒の分散状態が経時的に変化したり、逆に周囲に存在する酸化剤等の添加物の影響で砥粒の性質が変化したりする。また、研磨砥粒を研磨パッドに分散、固定する場合にも前記研磨砥粒表面の活性によって別途供給される水溶液のpHが変化したり、逆に別途供給される水溶液中の酸化剤等の添加物の影響で砥粒の性質が変化したりする。その結果、研磨特性が低下する等の問題が生じる。
【0005】
さらに、特にアルミナからなる比較的硬質の研磨砥粒は研磨後に被処理物に付着した場合、シリカからなる研磨砥粒に比べて著しく洗浄性が低く、ブラシ洗浄などの機械的洗浄でも除去し難いという問題があった。
【0006】
本発明は、併存する物質の影響による経時的な性質の変化がなく、かつ研磨後の被処理物からの洗浄が容易な研磨砥粒を提供しようとするものである。
【0007】
また、本発明は前記特性を有する研磨砥粒を含有し、前記研磨砥粒によるpH等の変動を抑制するとともにそれ自身の分散性が良好で、かつ周囲に存在する酸化剤等の添加物の影響を受け難いためにAl,Cuなどの金属を始めとする各種の物質を化学機械研磨するにあたって、優れた研磨性能を発揮でき、さらに研磨後の被処理物の洗浄が容易な化学機械研磨(CMP)スラリーを提供しようとするものである。
【0008】
【課題を解決するための手段】
本発明に係る研磨砥粒は、チャンバ内で硬質無機化合物粒子に2,4,6,8−テトラメチルシクロテトラシロキサンを化学蒸着とSi−H基の付加反応を行い、さらに加熱処理を施し、前記硬質無機化合物粒子の表面全体に親水性のポリシロキサン被膜を形成してなるものである。
【0009】
本発明に係る別の研磨砥粒は、チャンバ内で硬質無機化合物粒子に2,4,6,8−テトラメチルシクロテトラシロキサンを化学蒸着とSi−H基の付加反応を行い、さらにエチレンオキシドをヒドロシリル反応させて、前記硬質無機化合物粒子の表面全体に親水性のポリシロキサン被膜を形成してなるものである。
【0010】
本発明に係るCMPスラリーは、前記各研磨砥粒のいずれかの研磨砥粒を含有することを特徴とするものである。
本発明に係る銅系金属の研磨方法は、前記各研磨砥粒のいずれかの研磨砥粒、2−キノリンカルボン酸、酸化剤および水を含む化学機械研磨スラリーで銅系金属を研磨することを特徴とするものである。
【0011】
【発明の実施の形態】
以下、本発明に係わる研磨砥粒を詳細に説明する。
【0012】
この研磨砥粒は、硬質無機化合物粒子の表面全体にポリシロキサン被膜を形成してなる。
【0013】
前記硬質無機化合物としては、例えばα−アルミナ、γ−アルミナ、θ−アルミナ、酸化セリウム等を挙げることができる。前記θ−アルミナは、例えばアンモニウムドウソナイト(NH4AlCo3(OH)2)を1300℃で熱分解することにより製造される。このようなθ−アルミナは他のアルミナに比べて水和度が低いためにより硬質であるという特徴を有する反面、表面活性やアルカリ物質を徐々に放出する性質を有する。
【0014】
前記硬質無機化合物粒子は、0.02〜0.1μmの平均粒径を有し、球状もしくは球に近似した形状を有することが好ましい。
【0015】
前記ポリシロキサン被膜は、1〜30nmの厚さを有することが好ましい。
【0016】
前記ポリシロキサン被膜は、次のような方法により形成されることが好ましい。すなわち、チャンバ内に前記硬質無機化合物粒子を収納するとともに、前記チャンバ内にシロキサン系化合物、例えば2,4,6,8−テトラメチルシクロテトラシロキサンを所望の温度に加熱して供給し、前記硬質無機化合物粒子への化学蒸着とSi−H基への付加反応の二段階により被覆する手法を採用することが好ましい。このような2,4,6,8−テトラメチルシクロテトラシロキサンによるCVDにおいて、2,4,6,8−テトラメチルシクロテトラシロキサンの分子は前記硬質無機化合物粒子の表面全体で重合が進行し、網目構造のポリメチルシロキサン(PMS)が形成される。このPMS被膜は、単分子から二分子層に相当する例えば厚さ1nm以下の均一な薄膜であり、前記硬質無機化合物粒子の表面活性を封じる作用等を有するものの、疎水性を示す。このため、前記PMS被膜を例えば500〜1000℃で加熱して親水性のポリシロキサン被膜にするか、もしくはヒドロシリル化反応を行って親水性のポリシロキサン被膜に変換する。
【0017】
前記ポリシロキサン被膜は、各種の官能基で修飾することを許容する。
【0018】
本発明に係る研磨砥粒は、例えば次に説明する図1の研磨装置に適用して研磨することができる。
【0019】
すなわち、図1のターンテーブル1上には例えば発泡樹脂から作られた研磨パッド2が被覆されている。研磨スラリー(または水等)を供給するための供給管3は、前記研磨パッド2の上方に配置されている。上面に支持軸4を有する基板ホルダ5は、研磨パッド2の上方に上下動自在でかつ回転自在に配置されている。
【0020】
本発明に係る研磨砥粒は、以下に説明する(1)研磨砥粒を含む研磨スラリー、(2)研磨パッド内への研磨砥粒の分散・固定、の2つの形態で前述した研磨装置に適用することができる。
【0021】
(1)研磨砥粒を含む研磨スラリー
この研磨スラリーは、ポリシロキサン被膜で表面が覆われた硬質無機化合物粒子からなる研磨砥粒が水に分散されたものの他に、次のような1−1)銅系金属用化学機械研磨(CMP)スラリー、1−2)アルミニウム系CMPスラリーおよび1−3)タングステン用CMPスラリーが挙げられる。
【0022】
1−1)銅系金属用CMPスラリー
この銅系金属用CMPスラリーは、2−キノリンカルボン酸、酸化剤、ポリシロキサン被膜で表面が覆われた硬質無機化合物粒子からなる研磨砥粒および水とを含有する。
【0023】
前記酸化剤としては、例えば過酸化水素(H2 2 )、次亜塩素酸ソーダ(NaClO)等を用いることができる。
【0024】
前記研磨砥粒の含有量は、0.1〜50重量%にすることが好ましい。
【0025】
前記研磨対象であるCu合金としては、例えばCu−Si合金、Cu−Al合金、Cu−Si−Al合金、Cu−Ag合金等を用いることができる。
【0026】
1−2)アルミニウム系金属用CMPスラリー
このアルミニウム系金属用CMPスラリーは、トリメチルアンモニウムヒドロキシド、トリメチルヒドロキシド、リン酸−硫酸−酢酸の混酸および塩化第二鉄から選ばれる少なくとも1つの研磨促進剤と、酸化剤と、ポリシロキサン被膜で表面が覆われた硬質無機化合物粒子からなる研磨砥粒と、水とを含む組成を有する。
【0027】
前記酸化剤としては、例えば過酸化水素(H2 2 )、次亜塩素酸ソーダ(NaClO)等を用いることができる。
【0028】
前記研磨砥粒の含有量は、0.1〜50重量%にすることが好ましい。
【0029】
前記研磨対象であるAl合金としては、例えばAl−Si合金、Al−Cu−Si合金等を用いることができる。
【0030】
1−3)タングステン用CMPスラリー
このタングステン用CMPスラリーは、塩化第二鉄および硝酸第二鉄から選ばれる少なくとも1つの研磨促進剤と、酸化剤と、ポリシロキサン被膜で表面が覆われた硬質無機化合物粒子からなる研磨砥粒と、水とを含む組成を有する。
【0031】
前記酸化剤としては、例えばフェロシアン化カリウム、過酸化水素(H2 2 )等を用いることができる。
【0032】
前記研磨砥粒の含有量は、0.04〜20重量%にすることが好ましい。
【0033】
前記各研磨スラリーを前述した図1に示す研磨装置に適用して研磨するには、ホルダ5により半導体ウェハのような基板6をその研磨面(例えば金属膜)がパッド2に対向するように保持する。つづいて、供給管3から前述した組成の研摩スラリー7を供給しながら、支持軸4により前記基板6を前記研磨パッド2に向けて所望の加重を与え、さらに前記ホルダ5およびターンテーブル1を同方向に回転させることにより前記基板上の金属膜が研磨される。
【0034】
(2)研磨パッド内への研磨砥粒の分散・固定
この形態では、発泡硬質ポリウレンタン樹脂のような発泡樹脂からなる研磨パッド内にポリシロキサン被膜で表面が覆われた硬質無機化合物粒子からなる研磨砥粒を均一に分散・固定される。
【0035】
このような研磨砥粒が分散・固定された研磨パッドを組み込んだ前述した図1に示す研磨装置で研磨するには、ホルダ5により基板6をその研磨面(例えば金属膜)が研磨パッド2に対向するように保持する。つづいて、供給管3から水または所望の添加剤を含む水溶液(例えば銅系金属の研磨の場合は2−キノリンカルボン酸、酸化剤を含み、これらが溶解された水溶液)7を供給しながら、支持軸4により前記基板6を前記研磨パッド2に向けて所望の加重を与え、さらに前記ホルダ5およびターンテーブル1を同方向に回転させる。このとき、前記基板の研磨面は前記研磨パッド表面に露出した研磨砥粒および供給された水または所望の添加剤を含む水溶液の存在で研磨される。
【0036】
以上説明したように本発明に係る研磨砥粒は、硬質無機化合物粒子の表面全体にポリシロキサン被膜を形成してなり、前記ポリシロキサン被膜が優れたバリア膜として作用するため、併存する物質の影響による経時的な性質の変化や逆に前記硬質無機化合物粒子自身のから併存する物質への影響を防ぐことができる。その結果、研磨砥粒の素材である硬質無機化合物粒子本来の性質により良好な研磨を行うことができる。また、この研磨砥粒は被処理物を研磨した後の被処理物への食い込みを前記ポリシロキサン被膜により緩和できるため、前記被処理物を容易に洗浄することができる。
【0037】
特に、チャンバ内に硬質無機化合物粒子を収納するとともに、前記チャンバ内に例えば2,4,6,8−テトラメチルシクロテトラシロキサンのようなシロキサン系化合物を供給して前記硬質無機化合物粒子への化学蒸着とSi−H基への付加反応の二段階により被覆し、さらに所望の温度での加熱またはヒドロシリル化反応により親水性のポリシロキサン被膜を形成した研磨砥粒は、硬質無機化合物粒子の表面全体に均一かつ薄い(例えば1nm以下)ポリシロキサン薄膜が形成されるため、前記硬質無機化合物粒子の優れた研磨特性を維持しつつ、前記ポリシロキサン薄膜の優れたバリア性を発揮できる。
【0038】
また、硬質無機化合物粒子としてのθ−アルミナ粒子は極めて硬質で高い研磨性能を有するものの、その製造に由来してアルカリ分が徐々に滲み出すという性質を有する。このため、前記θ−アルミナ粒子を所定のpHの範囲で良好な研磨性能が発揮される系の研磨スラリーに適用した場合、前記θ−アルミナ粒子からのアルカリ分の滲み出しによりpH値が変動して研磨性能が著しく損なわれる虞がある。
【0039】
一方、研磨パッドにθ−アルミナ粒子を研磨砥粒として分散・固定させた場合にも、研磨パッドに別途供給される水または水溶液のpHが変動して研磨性能が著しく損なわれる虞がある。
【0040】
本発明は、前述した性質を有するθ−アルミナ粒子の表面全体にポリシロキサン被膜を被覆することによって、θ−アルミナ粒子自身の優れた研磨性能を維持しつつ、前記ポリシロキサン被膜の優れたバリア作用により前記θ−アルミナからのアルカリ分の滲み出しを阻止することが可能な研磨砥粒を得ることができる。その結果、この研磨砥粒は所定のpHの範囲で良好な研磨性能が発揮される系の研磨スラリー、研磨パッドへの分散・固定方式に有効に適用することができる。
【0041】
さらに、前述した研磨砥粒を含有するCMPスラリーは前記研磨砥粒によるpH等の変動を抑制できるとともに、それ自身の分散性が良好で、かつ周囲に存在する酸化剤等の添加物の影響を受け難いためにAl,Cuなどの金属を始めとする各種の物質を化学機械研磨するにあたって、優れた研磨性能を発揮できる。その上、前記CMPスラリーで被処理物、例えば半導体ウェハ表面のAl膜,Cu膜を研磨する際、前記研磨砥粒がその表面のポリシロキサン被膜の緩衝作用により前記Al膜等への食い込みを抑制することができる。その結果、研磨後の被処理物の研磨砥粒を例えば純水ブラシ洗浄により容易に除去できるため、高い洗浄性を有する。
【0042】
したがって、本発明のCMPスラリーは半導体装置のCu,Al,W等からなる埋め込み配線を形成するための前記金属配線材料膜の研磨(エッチバック)に有効に利用することができる。
【0043】
【実施例】
以下、本発明の好ましい実施例を前述した図面を参照して詳細に説明する。
【0044】
(実施例1)
まず、一次粒子径が10〜20nmのθ−アルミナ粒子10gをフラスコ内に入れた後、このフラスコ内に2,4,6,8−テトラメチルシクロテトラシロキサンを80℃に加熱して導入することにより前記θ−アルミナ粒子の表面全体に橋かけ網状ポリマーを形成した。つづいて、このθ−アルミナ粒子を600℃、1時間の加熱処理を施してθ−アルミナ粒子の表面全体を親水性のポリシロキサン被膜で覆ったシリカコートθ−アルミナ粒子(研磨砥粒)を製造した。
【0045】
(実施例2)
実施例1と同様な方法によりθ−アルミナ粒子の表面全体に橋かけ網状ポリマーを形成し、さらにエタノールを添加し、触媒とした塩化白金酸0.5mgを加えた後、下記化1に示す構造式を持つ化合物でヒドロシリル化反応を付加して親水性のポリシロキサン被膜で覆ったEOコートθ−アルミナ粒子(研磨砥粒)を製造した。
【0046】
【化1】

Figure 0004263332
【0047】
得られた実施例1のシリカコートθ−アルミナ粒子(研磨砥粒)、実施例2のEOコートθ−アルミナ粒子(研磨砥粒)および一次粒子径が10〜20nmのθ−アルミナ粒子からなる研磨砥粒(比較例1)のゼータ電位と二次粒子径を測定した。その結果を下記表1に示す。なお、ゼータ電位と二次粒子径は、前記各砥粒を酸の添加によりpH3に調節した状態(各粒子が良好に分散した状態)でDispertion Technology社製商品名;DT−1200型粒度分布計を用いて測定した。
【0048】
【表1】
Figure 0004263332
【0049】
前記表1から明らかなように実施例1,2の研磨砥粒は、比較例1の研磨砥粒に比べてゼータ電位が低く、かつ二次粒子径も1/2〜1/3に小さくなることがわかる。
【0050】
(実施例3)
まず、2−キノリンカルボン酸0.57重量%、過酸化水素3.78重量%、実施例1で得られたシリカコートθ−アルミナ粒子(研磨砥粒)1.09重量%、界面活性剤1重量%、乳酸(pH調整剤)および残部純水からなるCMPスラリー(pH3)を調製した。
【0051】
次いで、8インチシリコンウェハ上にスパッタ蒸着によりCu膜を堆積した。つづいて、前述した図1に示す研磨装置の基板ホルダ5に前記ウェハ6をそのCu膜がローデル・ニッタ社製商品名;IC1000/SUBA400からなる研磨パッド2と対向するように保持した。つづいて、前記ホルダ5の支持軸4により前記ウェハ6をターンテーブル1上の研磨パッド2に500g/cm2 の加重を与え、前記ターンテーブル1およびホルダ5をそれぞれ100rpm、103rpmの速度で同方向に回転させながら、前記研磨スラリーを供給管3から20ml/分の速度で前記研磨パッド2に供給して前記ウェハ6に堆積したCu膜を1分間研磨した。その後、純水ブラシ洗浄を1分間行い、さらにスピン乾燥を30秒間実施した。
【0052】
(実施例4)
CMPスラリーとして、2−キノリンカルボン酸0.57重量%、過酸化水素3.78重量%、実施例2で得られたEOコートθ−アルミナ粒子(研磨砥粒)1.09重量%、界面活性剤1重量%、乳酸(pH調整剤)および残部純水からなるpH3のものを用いた以外、実施例1と同様にシリコンウェハに堆積したCu膜を研磨し、純水ブラシ洗浄を1分間行い、さらにスピン乾燥を30秒間実施した。
【0053】
(比較例2)
CMPスラリーとして、2−キノリンカルボン酸0.57重量%、過酸化水素3.78重量%、二次粒子径0.7μmのコロイダルシリカ(研磨砥粒)10重量%、界面活性剤1重量%、乳酸(pH調整剤)および残部純水からなるpH3のものを用いた以外、実施例1と同様にシリコンウェハに堆積したCu膜を研磨し、純水ブラシ洗浄を1分間行い、さらにスピン乾燥を30秒間実施した。
【0054】
(比較例3)
CMPスラリーとして、2−キノリンカルボン酸0.57重量%、過酸化水素3.78重量%、二次粒子径1.2μmのθ−アルミナ(研磨砥粒)1.09重量%、界面活性剤1重量%、乳酸(pH調整剤)および残部純水からなるpH3のものを用いた以外、実施例1と同様にシリコンウェハに堆積したCu膜を研磨し、純水ブラシ洗浄を1分間行い、さらにスピン乾燥を30秒間実施した。
【0055】
実施例3,4および比較例2,3によるCu膜の研磨、純水ブラシ洗浄、さらにスピン乾燥を行った後のパーティクル数(粒径0.208μm以上)をTencor社製商品名;SURFASCAN6420を用いて測定した。
【0056】
また、実施例3,4および比較例2,3によるCu膜の研磨速度を測定した。
【0057】
これらの結果を下記表2に示す。
【0058】
【表2】
Figure 0004263332
【0059】
前記表2から明らかなように実施例3,4の研磨スラリーは、コロイダルシリカ粒子を研磨砥粒として含む比較例2の研磨スラリーとほぼ同様な残留パーティクル数であり、研磨後においてCu膜表面を良好に洗浄できることがわかる。
【0060】
また、実施例3,4の研磨スラリーはθ−アルミナ粒子を研磨砥粒として含む比較例3の研磨スラリーに比べて研磨速度が若干低くなるものの、コロイダルシリカ粒子を研磨砥粒として含む比較例2の研磨スラリーに比べて研磨速度が格段に高くなることがわかる。
【0061】
したかって、シリカコートθ−アルミナ粒子、EOコートθ−アルミナ粒子を研磨砥粒として含む実施例3,4の研磨スラリーはコロイダルシリカ粒子を研磨砥粒として用いた場合と同様な優れた洗浄性能と、θ−アルミナ粒子を研磨砥粒として用いた場合と遜色のない研磨性能とを有することがわかる。
【0062】
【発明の効果】
以上説明したように、本発明によれば併存する物質の影響による経時的な性質の変化がなく、かつ研磨後の被処理物からの洗浄が容易な研磨砥粒を提供することができる。
【0063】
また、本発明によれば前記特性を有する研磨砥粒を含有し、前記研磨砥粒によるpH等の変動を抑制するとともにそれ自身の分散性が良好で、かつ周囲に存在する酸化剤等の添加物の影響を受け難いためにAl,Cuなどの金属を始めとする各種の物質を化学機械研磨するにあたって、優れた研磨性能を発揮でき、さらに研磨後の被処理物の洗浄が容易で、半導体装置の埋め込み配線の形成等に有用な化学機械研磨(CMP)スラリーを提供することができる。
【図面の簡単な説明】
【図1】本発明の研磨砥粒を用いる研磨に適用される研磨装置を示す概略図。
【符号の説明】
1…ターンテーブル、
2…研磨パッド、
3…供給管、
5…ホルダ。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a polishing abrasive for polishing various substances including metal, a chemical mechanical polishing (CMP) slurry, and a method for polishing a copper-based metal .
[0002]
[Prior art]
Polishing abrasive grains are used for polishing the surface of a semiconductor wafer, polishing a wiring material layer for forming embedded wiring such as Al and Cu on the surface of a semiconductor wafer, polishing an optical disk, and the like.
[0003]
By the way, in polishing semiconductor wafers, for example, conventionally, abrasive grains made of inorganic oxide particles such as colloidal silica, fumed silica, alumina, manganese oxide are dispersed in water, and if necessary, a surfactant, A polishing slurry in which an oxidizing agent and a chelating agent are mixed is used to press and rotate the semiconductor wafer onto a foamable pad, and the polishing slurry is supplied onto the pad for polishing. In addition, the abrasive grains are dispersed and fixed on the foamable pad, and the semiconductor wafer is pressed and rotated on the pad, and an aqueous solution containing the surfactant and the like without containing abrasive grains is separately added. Polishing is performed by supplying on the pad.
[0004]
[Problems to be solved by the invention]
However, the pH of the polishing slurry and the dispersion state of the abrasive grains change over time due to the activity of the polishing abrasive grain surface, and conversely, the properties of the abrasive grains are influenced by the influence of additives such as oxidizing agents present in the surroundings. Or change. In addition, when dispersing and fixing the abrasive grains on the polishing pad, the pH of the aqueous solution supplied separately varies depending on the activity of the surface of the abrasive grains, or conversely, addition of an oxidizing agent or the like in the aqueous solution supplied separately. The properties of the abrasive grains change due to the influence of the object. As a result, problems such as degradation of polishing characteristics occur.
[0005]
Furthermore, when relatively hard abrasive grains made of alumina adhere to the object to be processed after polishing, they are significantly less cleanable than abrasive grains made of silica and are difficult to remove even by mechanical cleaning such as brush cleaning. There was a problem.
[0006]
An object of the present invention is to provide abrasive grains that do not change over time due to the influence of coexisting substances and that can be easily cleaned from an object to be processed after polishing.
[0007]
Further, the present invention contains abrasive grains having the above-mentioned characteristics, suppresses fluctuations in pH and the like due to the abrasive grains, has good dispersibility of itself, and is an additive such as an oxidizing agent present in the surroundings. Because it is not easily affected by chemical mechanical polishing of various materials including metals such as Al and Cu, it can exhibit excellent polishing performance, and chemical mechanical polishing that makes it easy to clean the workpiece after polishing ( CMP) slurry is to be provided.
[0008]
[Means for Solving the Problems]
The abrasive grain according to the present invention is a chemical vapor deposition and addition reaction of Si-H group with 2,4,6,8-tetramethylcyclotetrasiloxane to hard inorganic compound particles in the chamber, and further subjected to heat treatment, A hydrophilic polysiloxane film is formed on the entire surface of the hard inorganic compound particles .
[0009]
Another abrasive grain according to the present invention comprises chemical vapor deposition of 2,4,6,8-tetramethylcyclotetrasiloxane and addition reaction of Si-H groups to hard inorganic compound particles in a chamber, and further, ethylene oxide is hydrosilylated. By reacting, a hydrophilic polysiloxane film is formed on the entire surface of the hard inorganic compound particles.
[0010]
The CMP slurry according to the present invention is characterized by containing any one of the abrasive grains .
The method for polishing a copper-based metal according to the present invention comprises polishing the copper-based metal with a chemical mechanical polishing slurry containing any one of the polishing abrasive grains, 2-quinolinecarboxylic acid, an oxidizing agent, and water. It is a feature.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the abrasive grains according to the present invention will be described in detail.
[0012]
The abrasive grains are formed by forming a polysiloxane film over the entire surface of the hard inorganic compound particles.
[0013]
Examples of the hard inorganic compound include α-alumina, γ-alumina, θ-alumina, cerium oxide, and the like. The θ-alumina is produced, for example, by thermally decomposing ammonium dowsonite (NH 4 AlCo 3 (OH) 2 ) at 1300 ° C. Such θ-alumina is characterized by being harder because of its lower hydration degree than other aluminas, but has the property of gradually releasing surface activity and alkaline substances.
[0014]
The hard inorganic compound particles preferably have a mean particle size of 0.02 to 0.1 μm and have a spherical shape or a shape close to a sphere.
[0015]
The polysiloxane film preferably has a thickness of 1 to 30 nm.
[0016]
The polysiloxane film is preferably formed by the following method. That is, the hard inorganic compound particles are stored in a chamber, and a siloxane compound, for example, 2,4,6,8-tetramethylcyclotetrasiloxane, is heated to a desired temperature and supplied to the chamber. It is preferable to employ a technique of coating in two steps, chemical vapor deposition on inorganic compound particles and addition reaction to Si—H groups. In such CVD with 2,4,6,8-tetramethylcyclotetrasiloxane, polymerization of 2,4,6,8-tetramethylcyclotetrasiloxane molecules proceeds on the entire surface of the hard inorganic compound particles, A polymethylsiloxane (PMS) having a network structure is formed. This PMS film is a uniform thin film having a thickness of, for example, 1 nm or less corresponding to a monomolecular to bimolecular layer, and has a function of sealing the surface activity of the hard inorganic compound particles, but exhibits hydrophobicity. For this reason, the PMS film is heated to, for example, 500 to 1000 ° C. to form a hydrophilic polysiloxane film, or converted to a hydrophilic polysiloxane film by performing a hydrosilylation reaction.
[0017]
The polysiloxane coating is allowed to be modified with various functional groups.
[0018]
The polishing abrasive grains according to the present invention can be polished by applying to the polishing apparatus of FIG.
[0019]
That is, a polishing pad 2 made of, for example, foamed resin is coated on the turntable 1 of FIG. A supply pipe 3 for supplying polishing slurry (or water or the like) is disposed above the polishing pad 2. A substrate holder 5 having a support shaft 4 on its upper surface is disposed above the polishing pad 2 so as to be vertically movable and rotatable.
[0020]
The polishing abrasive according to the present invention is applied to the polishing apparatus described above in two forms: (1) polishing slurry containing polishing abrasive; and (2) dispersion and fixation of polishing abrasive in a polishing pad. Can be applied.
[0021]
(1) Polishing Slurry Containing Polishing Abrasive Grain This polishing slurry is prepared by dispersing abrasive grains composed of hard inorganic compound particles whose surfaces are covered with a polysiloxane film in water, and the following 1-1 ) Chemical mechanical polishing (CMP) slurry for copper-based metal, 1-2) Aluminum-based CMP slurry, and 1-3) CMP slurry for tungsten.
[0022]
1-1) CMP slurry for copper-based metal This CMP slurry for copper-based metal comprises abrasive grains made of hard inorganic compound particles whose surface is covered with 2-quinolinecarboxylic acid, an oxidizing agent, and a polysiloxane film, and water. contains.
[0023]
As the oxidizing agent, for example, hydrogen peroxide (H 2 O 2 ), sodium hypochlorite (NaClO), or the like can be used.
[0024]
The content of the abrasive grains is preferably 0.1 to 50% by weight.
[0025]
As the Cu alloy to be polished, for example, a Cu-Si alloy, a Cu-Al alloy, a Cu-Si-Al alloy, a Cu-Ag alloy, or the like can be used.
[0026]
1-2) CMP slurry for aluminum-based metal The CMP slurry for aluminum-based metal is at least one polishing accelerator selected from trimethylammonium hydroxide, trimethylhydroxide, phosphoric acid-sulfuric acid-acetic acid mixed acid and ferric chloride. And an oxidizing agent, a polishing abrasive grain composed of hard inorganic compound particles whose surface is covered with a polysiloxane film, and water.
[0027]
As the oxidizing agent, for example, hydrogen peroxide (H 2 O 2 ), sodium hypochlorite (NaClO), or the like can be used.
[0028]
The content of the abrasive grains is preferably 0.1 to 50% by weight.
[0029]
As the Al alloy to be polished, for example, an Al—Si alloy, an Al—Cu—Si alloy, or the like can be used.
[0030]
1-3) CMP slurry for tungsten This CMP slurry for tungsten is a hard inorganic material whose surface is covered with at least one polishing accelerator selected from ferric chloride and ferric nitrate, an oxidizing agent, and a polysiloxane film. It has the composition containing the abrasive grain which consists of compound particles, and water.
[0031]
As the oxidizing agent, for example, potassium ferrocyanide, hydrogen peroxide (H 2 O 2 ) or the like can be used.
[0032]
The content of the abrasive grains is preferably 0.04 to 20% by weight.
[0033]
In order to polish each polishing slurry by applying it to the polishing apparatus shown in FIG. 1 described above, a holder 6 holds a substrate 6 such as a semiconductor wafer so that its polishing surface (for example, a metal film) faces the pad 2. To do. Subsequently, while supplying the polishing slurry 7 having the above-described composition from the supply pipe 3, a desired load is applied to the polishing pad 2 by the support shaft 4, and the holder 5 and the turntable 1 are connected together. The metal film on the substrate is polished by rotating in the direction.
[0034]
(2) Dispersion / fixation of abrasive grains in the polishing pad In this embodiment, polishing composed of hard inorganic compound particles whose surface is covered with a polysiloxane film in a polishing pad made of foamed resin such as foamed hard polyurethane resin. Abrasive grains are uniformly dispersed and fixed.
[0035]
In order to perform polishing with the polishing apparatus shown in FIG. 1 described above incorporating a polishing pad in which such polishing abrasive grains are dispersed and fixed, the polishing surface (for example, a metal film) of the substrate 6 is fixed to the polishing pad 2 by the holder 5. Hold to face each other. Subsequently, while supplying water or an aqueous solution containing a desired additive (for example, an aqueous solution containing 2-quinolinecarboxylic acid and an oxidizer and dissolved in the case of polishing a copper-based metal) 7 from the supply pipe 3, A desired load is applied by the support shaft 4 toward the polishing pad 2 and the holder 5 and the turntable 1 are rotated in the same direction. At this time, the polishing surface of the substrate is polished in the presence of abrasive grains exposed on the surface of the polishing pad and supplied water or an aqueous solution containing a desired additive.
[0036]
As described above, the abrasive grains according to the present invention are formed by forming a polysiloxane film on the entire surface of the hard inorganic compound particles, and the polysiloxane film acts as an excellent barrier film, and therefore the influence of the coexisting substances. It is possible to prevent the change in properties over time due to, and conversely the influence on the coexisting substances from the hard inorganic compound particles themselves. As a result, good polishing can be performed due to the inherent properties of the hard inorganic compound particles that are the raw material of the abrasive grains. Moreover, since this abrasive grain can relieve biting into the object to be processed after polishing the object to be processed by the polysiloxane film, the object to be processed can be easily washed.
[0037]
In particular, the hard inorganic compound particles are accommodated in the chamber, and a siloxane compound such as 2,4,6,8-tetramethylcyclotetrasiloxane is supplied into the chamber to chemistry the hard inorganic compound particles. Abrasive grains coated with two steps of vapor deposition and addition reaction to Si-H groups, and further formed with a hydrophilic polysiloxane film by heating at a desired temperature or hydrosilylation reaction, the entire surface of hard inorganic compound particles A uniform and thin (for example, 1 nm or less) polysiloxane thin film is formed, so that the excellent barrier property of the polysiloxane thin film can be exhibited while maintaining the excellent polishing characteristics of the hard inorganic compound particles.
[0038]
Moreover, although the θ-alumina particles as the hard inorganic compound particles are extremely hard and have high polishing performance, the alkali component gradually oozes out from the production. Therefore, when the θ-alumina particles are applied to a polishing slurry of a system that exhibits good polishing performance within a predetermined pH range, the pH value fluctuates due to leaching of alkali components from the θ-alumina particles. As a result, the polishing performance may be significantly impaired.
[0039]
On the other hand, even when θ-alumina particles are dispersed and fixed as polishing abrasive grains on the polishing pad, the pH of water or an aqueous solution separately supplied to the polishing pad may fluctuate and the polishing performance may be significantly impaired.
[0040]
The present invention provides an excellent barrier action of the polysiloxane coating while maintaining the excellent polishing performance of the θ-alumina particles by coating the entire surface of the θ-alumina particles having the above-described properties with the polysiloxane coating. Thus, it is possible to obtain abrasive grains capable of preventing the alkali component from seeping out from the θ-alumina. As a result, the polishing abrasive grains can be effectively applied to a polishing slurry of a system that exhibits good polishing performance within a predetermined pH range, and a dispersion / fixing method to a polishing pad.
[0041]
Further, the CMP slurry containing the abrasive grains described above can suppress fluctuations in pH and the like due to the abrasive grains, has good dispersibility in itself, and is influenced by additives such as oxidants present in the surroundings. Since it is difficult to receive, excellent polishing performance can be exhibited in chemical mechanical polishing of various materials including metals such as Al and Cu. In addition, when polishing an object to be processed, such as an Al film or Cu film on the surface of a semiconductor wafer, with the CMP slurry, the abrasive grains suppress biting into the Al film or the like by the buffering action of the polysiloxane film on the surface. can do. As a result, the abrasive grains of the object to be processed after polishing can be easily removed by, for example, pure water brush cleaning, and thus has high cleaning properties.
[0042]
Therefore, the CMP slurry of the present invention can be effectively used for polishing (etching back) the metal wiring material film for forming a buried wiring made of Cu, Al, W or the like of a semiconductor device.
[0043]
【Example】
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.
[0044]
(Example 1)
First, 10 g of θ-alumina particles having a primary particle diameter of 10 to 20 nm are placed in a flask, and then 2,4,6,8-tetramethylcyclotetrasiloxane is heated to 80 ° C. and introduced into the flask. Thus, a crosslinked network polymer was formed on the entire surface of the θ-alumina particles. Subsequently, the θ-alumina particles were subjected to heat treatment at 600 ° C. for 1 hour to produce silica-coated θ-alumina particles (polishing abrasive grains) in which the entire surface of the θ-alumina particles was covered with a hydrophilic polysiloxane film. did.
[0045]
(Example 2)
A crosslinked network polymer is formed on the entire surface of the θ-alumina particles by the same method as in Example 1, ethanol is added, 0.5 mg of chloroplatinic acid as a catalyst is added, and the structure shown in the following chemical formula 1 EO-coated θ-alumina particles (abrasive grains) covered with a hydrophilic polysiloxane film by adding a hydrosilylation reaction with a compound having the formula were produced.
[0046]
[Chemical 1]
Figure 0004263332
[0047]
Polishing comprising the silica-coated θ-alumina particles (polishing abrasive grains) of Example 1 obtained, the EO-coated θ-alumina particles (polishing abrasive grains) of Example 2 and θ-alumina particles having a primary particle diameter of 10 to 20 nm. The zeta potential and secondary particle diameter of the abrasive grains (Comparative Example 1) were measured. The results are shown in Table 1 below. The zeta potential and the secondary particle size are the product name of DT-1200 type particle size distribution meter manufactured by Dispertion Technology in a state where each of the abrasive grains is adjusted to pH 3 by addition of acid (a state in which each particle is well dispersed). It measured using.
[0048]
[Table 1]
Figure 0004263332
[0049]
As apparent from Table 1, the abrasive grains of Examples 1 and 2 have a lower zeta potential and a secondary particle diameter of 1/2 to 1/3 than the abrasive grains of Comparative Example 1. I understand that.
[0050]
(Example 3)
First, 0.57% by weight of 2-quinolinecarboxylic acid, 3.78% by weight of hydrogen peroxide, 1.09% by weight of silica-coated θ-alumina particles (polishing abrasive grains) obtained in Example 1, Surfactant 1 A CMP slurry (pH 3) consisting of% by weight, lactic acid (pH adjusting agent) and the remaining pure water was prepared.
[0051]
Next, a Cu film was deposited on the 8-inch silicon wafer by sputter deposition. Subsequently, the wafer 6 was held on the substrate holder 5 of the polishing apparatus shown in FIG. 1 so that the Cu film faced the polishing pad 2 made of Rodel Nitta's product name; IC1000 / SUBA400. Subsequently, a load of 500 g / cm 2 is applied to the polishing pad 2 on the turntable 1 by the support shaft 4 of the holder 5, and the turntable 1 and the holder 5 are rotated in the same direction at a speed of 100 rpm and 103 rpm, respectively. The Cu slurry deposited on the wafer 6 was polished for 1 minute by supplying the polishing slurry from the supply pipe 3 to the polishing pad 2 at a rate of 20 ml / min. Thereafter, pure water brush cleaning was performed for 1 minute, and spin drying was further performed for 30 seconds.
[0052]
(Example 4)
As a CMP slurry, 0.57% by weight of 2-quinolinecarboxylic acid, 3.78% by weight of hydrogen peroxide, 1.09% by weight of EO-coated θ-alumina particles (polishing abrasive grains) obtained in Example 2, surface activity The Cu film deposited on the silicon wafer was polished in the same manner as in Example 1 except that 1% by weight of the agent, lactic acid (pH adjusting agent) and the remaining pure water having a pH of 3 were used. Further, spin drying was performed for 30 seconds.
[0053]
(Comparative Example 2)
As CMP slurry, 0.57% by weight of 2-quinolinecarboxylic acid, 3.78% by weight of hydrogen peroxide, 10% by weight of colloidal silica (polishing abrasive) having a secondary particle diameter of 0.7 μm, 1% by weight of surfactant, The Cu film deposited on the silicon wafer was polished in the same manner as in Example 1 except that lactic acid (pH adjusting agent) and the remaining pure water having a pH of 3 were used, followed by pure water brush cleaning for 1 minute, and spin drying. Conducted for 30 seconds.
[0054]
(Comparative Example 3)
As CMP slurry, 0.57% by weight of 2-quinolinecarboxylic acid, 3.78% by weight of hydrogen peroxide, 1.09% by weight of θ-alumina (abrasive abrasive) having a secondary particle diameter of 1.2 μm, surfactant 1 The Cu film deposited on the silicon wafer was polished in the same manner as in Example 1 except that the pH 3 consisting of wt%, lactic acid (pH adjuster) and the remaining pure water was used, and the pure water brush was washed for 1 minute. Spin drying was performed for 30 seconds.
[0055]
The number of particles (particle size of 0.208 μm or more) after Cu film polishing, pure water brush cleaning, and spin drying according to Examples 3 and 4 and Comparative Examples 2 and 3 was used as a trade name of Tencor; SURFASCAN6420 Measured.
[0056]
Further, the polishing rate of the Cu film according to Examples 3 and 4 and Comparative Examples 2 and 3 was measured.
[0057]
These results are shown in Table 2 below.
[0058]
[Table 2]
Figure 0004263332
[0059]
As apparent from Table 2, the polishing slurries of Examples 3 and 4 have substantially the same number of residual particles as the polishing slurry of Comparative Example 2 containing colloidal silica particles as polishing abrasive grains. It turns out that it can wash | clean well.
[0060]
Further, the polishing slurry of Examples 3 and 4 has a slightly lower polishing rate than the polishing slurry of Comparative Example 3 containing θ-alumina particles as abrasive grains, but Comparative Example 2 containing colloidal silica particles as abrasive grains. It can be seen that the polishing rate is remarkably higher than that of the polishing slurry.
[0061]
Accordingly, the polishing slurries of Examples 3 and 4 containing silica-coated θ-alumina particles and EO-coated θ-alumina particles as abrasive grains have excellent cleaning performance similar to that when colloidal silica particles are used as abrasive grains. , Θ-alumina particles are used as polishing abrasive grains, and the polishing performance is comparable to that of the abrasive grains.
[0062]
【The invention's effect】
As described above, according to the present invention, it is possible to provide polishing abrasive grains that do not change over time due to the influence of coexisting substances and can be easily cleaned from the object to be processed after polishing.
[0063]
In addition, according to the present invention, the polishing abrasive grains having the above characteristics are contained, and the dispersion of pH and the like due to the polishing abrasive grains is suppressed and the dispersion itself is good, and the addition of an oxidizing agent or the like present in the surroundings Because it is not easily affected by materials, it can exhibit excellent polishing performance in chemical mechanical polishing of various materials including metals such as Al and Cu, and it is easy to clean the workpiece after polishing. A chemical mechanical polishing (CMP) slurry useful for forming embedded wiring of a device can be provided.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a polishing apparatus applied to polishing using polishing abrasive grains of the present invention.
[Explanation of symbols]
1 ... Turntable,
2 ... polishing pad,
3 ... supply pipe,
5 ... Holder.

Claims (8)

チャンバ内で硬質無機化合物粒子に2,4,6,8−テトラメチルシクロテトラシロキサンを化学蒸着とSi−H基の付加反応を行い、さらに加熱処理を施し、前記硬質無機化合物粒子の表面全体に親水性のポリシロキサン被膜を形成してなる研磨砥粒。 In the chamber, 2,4,6,8-tetramethylcyclotetrasiloxane is subjected to chemical vapor deposition and Si—H group addition reaction to the hard inorganic compound particles, and further subjected to heat treatment, so that the entire surface of the hard inorganic compound particles is applied. Polishing abrasive grains formed by forming a hydrophilic polysiloxane film . 前記硬質無機化合物粒子は、アルミナであることを特徴とする請求項1記載の研磨砥粒。  The abrasive grain according to claim 1, wherein the hard inorganic compound particles are alumina. 前記硬質無機化合物粒子は、θ−アルミナであることを特徴とする請求項1記載の研磨砥粒。  The abrasive grain according to claim 1, wherein the hard inorganic compound particles are θ-alumina. チャンバ内で硬質無機化合物粒子に2,4,6,8−テトラメチルシクロテトラシロキサンを化学蒸着とSi−H基の付加反応を行い、さらにエチレンオキシドをヒドロシリル反応させて、前記硬質無機化合物粒子の表面全体に親水性のポリシロキサン被膜を形成してなる研磨砥粒。The surface of the hard inorganic compound particle is subjected to chemical vapor deposition of 2,4,6,8-tetramethylcyclotetrasiloxane and addition reaction of Si-H group to the hard inorganic compound particle in the chamber, and further subjected to hydrosilyl reaction with ethylene oxide. Polishing abrasive grains formed by forming a hydrophilic polysiloxane film on the whole. 前記硬質無機化合物粒子は、アルミナであることを特徴とする請求項4記載の研磨砥粒。The abrasive grain according to claim 4, wherein the hard inorganic compound particles are alumina. 前記硬質無機化合物粒子は、θ−アルミナであることを特徴とする請求項4記載の研磨砥粒。The abrasive grain according to claim 4, wherein the hard inorganic compound particles are θ-alumina. 請求項1〜6いずれか記載の研磨砥粒を含むことを特徴とする化学機械研磨スラリー。A chemical mechanical polishing slurry comprising the abrasive grains according to claim 1. 請求項1〜6いずれか記載の研磨砥粒、2−キノリンカルボン酸、酸化剤および水を含む化学機械研磨スラリーで銅系金属を研磨することを特徴とする銅系金属の研磨方法。A method for polishing a copper-based metal, comprising polishing a copper-based metal with a chemical mechanical polishing slurry containing the abrasive grains according to any one of claims 1 to 6, 2-quinolinecarboxylic acid, an oxidizing agent, and water.
JP2000055761A 2000-03-01 2000-03-01 Polishing abrasive grains, chemical mechanical polishing slurry, and copper metal polishing method Expired - Lifetime JP4263332B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000055761A JP4263332B2 (en) 2000-03-01 2000-03-01 Polishing abrasive grains, chemical mechanical polishing slurry, and copper metal polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000055761A JP4263332B2 (en) 2000-03-01 2000-03-01 Polishing abrasive grains, chemical mechanical polishing slurry, and copper metal polishing method

Publications (2)

Publication Number Publication Date
JP2001240848A JP2001240848A (en) 2001-09-04
JP4263332B2 true JP4263332B2 (en) 2009-05-13

Family

ID=18576828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000055761A Expired - Lifetime JP4263332B2 (en) 2000-03-01 2000-03-01 Polishing abrasive grains, chemical mechanical polishing slurry, and copper metal polishing method

Country Status (1)

Country Link
JP (1) JP4263332B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008307676A (en) * 2007-06-18 2008-12-25 Kao Corp Polishing liquid composition for hard disk substrate
CN114657772A (en) * 2022-03-22 2022-06-24 安徽中恩化工有限公司 Bionic scale super wear-resistant agent for textile leather

Also Published As

Publication number Publication date
JP2001240848A (en) 2001-09-04

Similar Documents

Publication Publication Date Title
TW524836B (en) Composition and method for planarizing surfaces
US6267909B1 (en) Planarization composition for removing metal films
JP6719452B2 (en) Polishing composition
KR100445447B1 (en) Aqueous dispersion for chemical mechanical polishing
JP5361306B2 (en) Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP4078787B2 (en) Aqueous dispersion for chemical mechanical polishing
JP4130614B2 (en) Manufacturing method of semiconductor device
JP4012180B2 (en) CMP slurry, polishing method, and semiconductor device manufacturing method
US20070037892A1 (en) Aqueous slurry containing metallate-modified silica particles
JP2006519499A (en) Modular barrier removal polishing slurry
TW200927902A (en) Cmp polishing slurry and polishing method for substrate using the polishing slurry
TW201000261A (en) Semiconductor device manufacturing method
JP4077192B2 (en) Chemical mechanical polishing method and semiconductor device manufacturing method
WO2002056351A2 (en) Polishing of semiconductor substrates
KR101273705B1 (en) Polishing solution for cmp, and method for polishing substrate using the polishing solution for cmp
TWI819019B (en) Neutral to alkaline chemical mechanical polishing compositions and methods for tungsten
JP2007335847A (en) Silicon nitride film abrasive powder and abrading method
CN1598062A (en) Particle-free polishing fluid for nickel-based coating planarization
JP2001152135A (en) Process for preparing aqueous dispersion for grinding chemical machine
TWI413679B (en) Polishing liquid
KR102410159B1 (en) Method of polishing semiconductor substrate
JP4263332B2 (en) Polishing abrasive grains, chemical mechanical polishing slurry, and copper metal polishing method
JP2019537244A (en) Chemical mechanical polishing method for tungsten
JP4713767B2 (en) Cleaning liquid and method for manufacturing semiconductor device
JP2009094450A (en) Polishing liquid for polishing aluminum film, and polishing method of substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070228

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20071210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20071210

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080819

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081020

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4263332

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120220

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130220

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140220

Year of fee payment: 5

EXPY Cancellation because of completion of term