JP2003133267A - Polishing particle and polishing material - Google Patents

Polishing particle and polishing material

Info

Publication number
JP2003133267A
JP2003133267A JP2001331748A JP2001331748A JP2003133267A JP 2003133267 A JP2003133267 A JP 2003133267A JP 2001331748 A JP2001331748 A JP 2001331748A JP 2001331748 A JP2001331748 A JP 2001331748A JP 2003133267 A JP2003133267 A JP 2003133267A
Authority
JP
Japan
Prior art keywords
polishing
particles
primary particles
particle group
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2001331748A
Other languages
Japanese (ja)
Other versions
JP4278020B2 (en
Inventor
Hiroyasu Nishida
広泰 西田
Yuichiro Taguma
祐一郎 田熊
Kazuhiro Nakayama
和洋 中山
Michio Komatsu
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001331748A priority Critical patent/JP4278020B2/en
Publication of JP2003133267A publication Critical patent/JP2003133267A/en
Application granted granted Critical
Publication of JP4278020B2 publication Critical patent/JP4278020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

PROBLEM TO BE SOLVED: To flatly polish a substrate surface by suppressing dishing (excessive polishing). SOLUTION: A deformed particle group is not a particle group in a normal state that primary particles are aggregated to be in the form of a sphere or cohered in the form of a lump, but in a deformed state that two or more primary particles are coupled in the form of a chain, a fiber or the like. In other words, one of the deformed particle groups can be contact on a plane (polished substrate) and two points, or the particle group can be contacted on a line or plane. As shown in the figure, as a coupled state of the primary particles, it can be mentioned that two primary particles are joined, three or more chained primary particles are joined, the three particles are joined at three points, four primary particles are two-dimensionally joined or in the form of a tetrapod, and similarly five or more primary particles joined.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の技術分野】本発明は、平均粒子径が5〜300
nmの範囲にある粒子が2個以上結合することによって
形成された、鎖状その他の異形の粒子群を含む研磨用粒
子、および該研磨用粒子を含む研磨材に関するものであ
る。
TECHNICAL FIELD The present invention has an average particle size of 5 to 300.
The present invention relates to a polishing particle containing a chain or other irregularly shaped particle group formed by bonding two or more particles in the range of nm, and an abrasive containing the polishing particle.

【0002】[0002]

【発明の技術的背景】コンピューター、各種電子機器に
は各種の集積回路が用いられており、これらの小型化、
高性能化に伴い回路の高密度化と高性能化が求められて
いる。この中で、例えば半導体集積回路は、従来、半導
体集積回路の集積度を高めるために多層配線が用いられ
ており、このような多層配線は、通常、シリコンなどの
基板上に、第1絶縁膜としての熱酸化膜を形成した後、
アルミニウム膜などからなる第1配線層を形成し、この
上にCVD法あるいはプラズマCVD法等によって、シ
リカ膜、窒化ケイ素膜などの層間絶縁膜を被着させ、こ
の層間絶縁膜上に、該層間絶縁膜を平坦化するためのシ
リカ絶縁膜をSOG法により形成し、このシリカ絶縁膜
上に必要に応じてさらに第2絶縁膜を被着させた後、第
2配線層を形成することによって、製造されている。上
記アルミニウム膜からなる配線は、多層配線を形成する
際のスパッタリング時にアルミニウム等の配線が酸化さ
れて抵抗値が増大して導電不良を起こすことがあった。
また、配線幅を小さくすることができないためにより高
密度の集積回路を形成するには限界があった。さらに、
近年クロック線やデータバス線のような長距離配線で
は、チップサイズ増大に伴い配線抵抗が増大し電気信号
の伝播遅延時間(RC遅延時間=抵抗×容量)の増大が
問題となっている。このため配線をより低抵抗の材料に
置き換えていく必要が生じている。
BACKGROUND OF THE INVENTION Various integrated circuits are used in computers and various electronic devices.
With higher performance, higher circuit density and higher performance are required. Among them, for example, in a semiconductor integrated circuit, conventionally, a multi-layer wiring has been used in order to increase the integration degree of the semiconductor integrated circuit. Such a multi-layer wiring is usually formed on a substrate such as silicon on a first insulating film. After forming the thermal oxide film as
A first wiring layer made of an aluminum film or the like is formed, and an interlayer insulating film such as a silica film or a silicon nitride film is deposited on the first wiring layer by a CVD method or a plasma CVD method. By forming a silica insulating film for flattening the insulating film by the SOG method, further depositing a second insulating film on the silica insulating film as needed, and then forming a second wiring layer, Being manufactured. In the wiring made of the aluminum film, the wiring made of aluminum or the like may be oxidized during the sputtering when forming the multilayer wiring, and the resistance value may increase to cause a conductive failure.
Further, there is a limit to forming a high-density integrated circuit because the wiring width cannot be reduced. further,
In recent years, in long-distance wiring such as a clock line and a data bus line, the wiring resistance increases as the chip size increases, and the propagation delay time (RC delay time = resistance × capacitance) of an electric signal increases. Therefore, it is necessary to replace the wiring with a material having a lower resistance.

【0003】従来のAlやAl合金による配線に代えて
Cu配線を行うことも提案されており、例えば、基板上
の絶縁膜に予め配線溝を形成した後、電解メッキ法、C
VD法等によりCu配線を形成する方法が公知である。
この銅等の配線パターン形成においては、ドライエッチ
プロセスによる加工が困難なため、化学機械研磨方法
(以下、CMPと言うこともある。)を用いたダマシン
プロセスが適用されており、基板上の絶縁膜に予め配線
溝を形成し、電解メッキ法やCVD法等により銅を配線
溝に埋め込んだ後、CMPにより上端面を研磨し、平坦
化して配線を形成している。具体的には、例えば、図2
(A)に示すように、シリコンウェハー等の基材上に配
線層間膜(絶縁膜)を成膜し、その配線層間膜(絶縁
膜)上に金属配線用の溝パターンを形成し、必要に応じ
てスパッタリング法などによってTaN等のバリアメタ
ル層を形成し、ついで金属配線用の銅をCVD法等によ
り成膜する。ここで、TaN等のバリアメタル層を設け
た場合には層間絶縁膜への銅や不純物などの拡散や浸食
に伴う層間絶縁膜の絶縁性の低下などを防止することが
でき、また層間絶縁膜と銅の接着性を高めることができ
る。
It has been proposed to use Cu wiring instead of the conventional wiring made of Al or Al alloy. For example, after forming a wiring groove in an insulating film on a substrate in advance, electrolytic plating, C
A method of forming Cu wiring by the VD method or the like is known.
In forming a wiring pattern of copper or the like, a damascene process using a chemical mechanical polishing method (hereinafter, also referred to as CMP) is applied because processing by a dry etching process is difficult, and insulation on a substrate is applied. A wiring groove is formed in advance in the film, copper is embedded in the wiring groove by an electrolytic plating method, a CVD method, or the like, and then an upper end surface is polished by CMP and flattened to form a wiring. Specifically, for example, FIG.
As shown in (A), a wiring interlayer film (insulating film) is formed on a substrate such as a silicon wafer, and a groove pattern for metal wiring is formed on the wiring interlayer film (insulating film). Accordingly, a barrier metal layer such as TaN is formed by a sputtering method or the like, and then copper for metal wiring is formed by a CVD method or the like. Here, when a barrier metal layer such as TaN is provided, it is possible to prevent the insulation property of the interlayer insulating film from being deteriorated due to the diffusion or erosion of copper or impurities into the interlayer insulating film, and to prevent the interlayer insulating film from being formed. And the adhesion of copper can be increased.

【0004】次いで、CMPにより、溝内以外に成膜さ
れた不要な銅及びバリアメタル(図2(A)中の矢印で
示す共面より上の部分)を研磨して除去するとともに上
部表面を可能な限り平坦化して、溝内にのみ金属膜を残
して銅の配線・回路パターンを形成する(図2(B)参
照)。CMPは、一般的に回転機構を有する円形プラテ
ン上に研磨パッドを搭載し、研磨パッドの中心上部から
研磨材を滴下供給した状態で、図2(A)に示すような
被研磨材を回転させ、加重を掛けながら研磨パッドに接
触させることによって、共面の上部部分の銅及びバリア
メタルを研磨して除去するものである。また、CMPで
使用される研磨材は、通常、シリカ、アルミナ等の金属
酸化物からなる平均粒子径が200nm程度の球状の研
磨用粒子と、配線・回路用金属の研磨速度を早めるため
の酸化剤、有機酸等の添加剤及び純水などの溶媒から構
成されている。
Then, by CMP, unnecessary copper and barrier metal (a portion above the coplanar surface shown by an arrow in FIG. 2 (A) in FIG. 2 (A) in FIG. 2 (A)) formed outside the groove are polished and removed, and the upper surface is removed. The wiring / circuit pattern of copper is formed by flattening as much as possible and leaving the metal film only in the groove (see FIG. 2B). In CMP, a polishing pad is generally mounted on a circular platen having a rotating mechanism, and a polishing material as shown in FIG. By contacting the polishing pad while applying a weight, the copper and the barrier metal in the upper portion of the coplanar surface are polished and removed. The polishing agent used in CMP is usually spherical polishing particles made of a metal oxide such as silica and alumina and having an average particle diameter of about 200 nm, and an oxide for increasing the polishing rate of the wiring / circuit metal. It is composed of an agent, an additive such as an organic acid, and a solvent such as pure water.

【0005】前記図2(A)に示すように、被研磨材の
表面には下地の絶縁膜に形成した配線用の溝パターンに
起因した段差(凹凸)が存在するので、主に凸部を研磨
除去しながら共面まで研磨し、平坦な研磨面とすること
が求められている。しかしながら、従来の球状の研磨用
粒子では共面より上の部分を研磨した際に、凹部の下部
にあった配線溝内の回路用金属が共面以下まで研磨され
る問題(ディッシングと呼ばれている。)があった。こ
のようなディッシング(過研磨)が起きると配線の厚み
が減少して配線抵抗が増加したり、また、この上に形成
される絶縁膜の平坦性が低下するなどの問題が生じるの
で、ディッシングを抑制することが求められている。
As shown in FIG. 2A, since the surface of the material to be polished has a step (unevenness) due to the groove pattern for wiring formed in the underlying insulating film, the convex portion is mainly formed. It is required to polish the coplanar surface while removing it by polishing to form a flat polished surface. However, in the case of the conventional spherical polishing particles, when the portion above the coplanar surface is polished, the circuit metal in the wiring groove located under the recess is polished to the level below the coplanar surface (known as dishing). There was). If such dishing (over-polishing) occurs, the thickness of the wiring is reduced, the wiring resistance is increased, and the flatness of the insulating film formed on the wiring is lowered. It is required to suppress it.

【0006】[0006]

【発明の目的】本発明は、前記いわゆるディッシングを
抑制し、基板表面を平坦に研磨することのできる研磨用
粒子および該研磨用粒子を含んでなる研磨材を提供する
ことを目的とするものである。
SUMMARY OF THE INVENTION It is an object of the present invention to provide polishing particles capable of suppressing the so-called dishing and polishing the surface of a substrate flat and an abrasive containing the polishing particles. is there.

【0007】[0007]

【発明の概要】本発明の研磨用粒子は、平均粒子径が5
〜300nmの範囲にある1次粒子が2個以上結合した
異形粒子群を含むことを特徴とするものであり、研磨用
粒子中の全1次粒子の粒子数に占める、前記異形粒子群
を構成する1次粒子の粒子数は5〜100%の範囲にあ
ることが好ましい。前記1次粒子は、シリカ、アルミ
ナ、ジルコニア、チタニア、セリアなどの無機酸化物及
び/又はシリカ・アルミナ、シリカ・ジルコニアなどの
無機複合酸化物からなることが好ましい。本発明の研磨
材は、水系分散媒に前記研磨用粒子が2〜50重量%分
散してなることを特徴とするものである。
SUMMARY OF THE INVENTION The polishing particles of the present invention have an average particle size of 5
To 300 nm of primary particles in the range of 2 or more are bonded to each other to form a modified particle group, and the modified particle group accounts for the total number of primary particles in the polishing particles. It is preferable that the number of primary particles is 5 to 100%. The primary particles are preferably made of an inorganic oxide such as silica, alumina, zirconia, titania or ceria and / or an inorganic composite oxide such as silica / alumina or silica / zirconia. The polishing material of the present invention is characterized in that the polishing particles are dispersed in an aqueous dispersion medium in an amount of 2 to 50% by weight.

【0008】[0008]

【発明の具体的説明】研磨用粒子 本発明において異形粒子群とは、1次粒子が集合して球
状となったり、または凝集して塊状となった通常の形態
の粒子群ではなく、2個以上の1次粒子が結合して鎖
状、繊維状、その他、異形の形態にある粒子群をいう。
即ち、異形粒子群1個が平面(被研磨基板)と2点以上
の点で接触できるか、線または面で接触できる粒子群を
意味している。この異形粒子群における1次粒子の結合
態様として、図1に示すように、1次粒子が2個接合し
たもの、3個以上鎖状に接合したもの、3個が3点で接
合したもの、4個が平面的にあるいはテトラポット型に
接合したもの、同様に5個以上の粒子が接合したもの、
などの他、さらにこれら異形粒子群同士が結合した異形
粒子群を挙げることができる。
DETAILED DESCRIPTION OF THE INVENTION Abrasive Particles In the present invention, the irregular-shaped particle group is not a particle group in a normal form in which primary particles are aggregated into a spherical shape or aggregated into a lump, and two particles are included. It refers to a group of particles in which the above-mentioned primary particles are bound to each other and have a chain shape, a fibrous shape, or other irregular shape.
That is, it means a particle group in which one deformed particle group can contact a flat surface (substrate to be polished) at two or more points, or a line or a surface. As the binding mode of the primary particles in this irregularly shaped particle group, as shown in FIG. 1, two primary particles are bonded, three or more are bonded in a chain, and three are bonded at three points, Four bonded in a planar or tetrapot type, similarly bonded with five or more particles,
In addition to the above, an odd-shaped particle group in which these odd-shaped particle groups are bonded to each other can be mentioned.

【0009】上記異形粒子群を構成する1次粒子は2個
以上、好ましくは2〜20個、特に好ましくは3〜10
個、互いに結合している。1次粒子の数が2個未満、即
ち1個の場合は前記したようにディッシングを惹起し易
く、他方、1次粒子が20個を越えて結合していると、
結合形態にもよるが、異形粒子群が破壊されることがあ
り、このためスクラッチ(傷)が発生することがあり、
また、鎖状の長い異形粒子群の場合は研磨速度が低下す
ることがある。なお、1次粒子が塊状に凝集している場
合は後述するチキソトロピー性が発現しないことがあ
り、単に大きい球状粒子と異なるところが無く、ディッ
シングを抑制する効果が充分得られない。更にこの場合
も、スクラッチが発生することがある。1次粒子が2〜
20個の範囲で結合した異形粒子群は、凹凸を有する被
研磨面の凹部底面において異形粒子群と底面とが多点接
触していたり、異形粒子群がチキソトロピー性を有して
いるので研磨時に凹部に堆積した異形粒子群が凹部から
容易に移動することがないので凹部の底面は研磨される
ことがなく、このためディッシングを抑制することがで
きる。
The number of primary particles constituting the irregular shaped particle group is 2 or more, preferably 2 to 20, particularly preferably 3 to 10.
Individually, they are connected to each other. When the number of primary particles is less than 2, that is, when the number of primary particles is one, it is easy to cause dishing as described above, while when the number of primary particles exceeds 20, they are bonded.
Depending on the bonding form, irregular shaped particle groups may be destroyed, which may cause scratches (scratches).
Further, in the case of a chain-shaped irregularly shaped particle group, the polishing rate may decrease. When the primary particles are aggregated in a lump, the thixotropy described below may not be exhibited, and there is no difference from the large spherical particles, and the effect of suppressing dishing cannot be sufficiently obtained. Further, in this case as well, scratches may occur. 2 to 1 primary particles
The irregular-shaped particle group bonded in the range of 20 particles has multi-point contact between the irregular-shaped particle group and the bottom surface on the concave bottom surface of the surface to be polished having irregularities, or the irregular-shaped particle group has thixotropic properties, and therefore, during polishing. Since the irregular-shaped particle group deposited in the concave portion does not easily move from the concave portion, the bottom surface of the concave portion is not polished, and thus dishing can be suppressed.

【0010】異形粒子群を構成する1次粒子は必ずしも
球状である必要はなく、卵状、サイコロ状、棒状であっ
てもよい。また、1次粒子の粒子径は互いに異なってい
ても良く、さらに接合部分の大きさは1次粒子の粒子径
と同程度、即ち、括れが無くても良い。このような1次
粒子として、シリカ、アルミナ、ジルコニア、チタニ
ア、セリアなどの無機酸化物、および/または、シリカ
・アルミナ、シリカ・ジルコニアなどの無機複合酸化物
からなる粒子が好適である。
The primary particles constituting the irregular-shaped particle group do not necessarily have to be spherical, and may be egg-shaped, dice-shaped, or rod-shaped. Further, the particle diameters of the primary particles may be different from each other, and the size of the bonded portion may be approximately the same as the particle diameter of the primary particles, that is, there may be no constriction. As such primary particles, particles made of inorganic oxides such as silica, alumina, zirconia, titania, and ceria, and / or inorganic composite oxides such as silica / alumina and silica / zirconia are suitable.

【0011】上記1次粒子の平均粒子径は5〜300n
m、好ましくは20〜80nmの範囲にある。平均粒子
径が5nm未満の場合は、1次粒子が凝集して得られる
粒子群が塊状になる傾向があり、このためチキソトロピ
ー性が発現せずディッシングを抑制する効果が得難い。
平均粒子径が300nmを越えると、粒子が大きすぎて
研磨速度が低下したり、研磨面にスクラッチ(傷)が発
生することがある。
The average particle size of the primary particles is 5 to 300 n.
m, preferably in the range of 20-80 nm. When the average particle diameter is less than 5 nm, the particles obtained by aggregating the primary particles tend to be aggregated, and thus thixotropic properties are not expressed and it is difficult to obtain the effect of suppressing dishing.
If the average particle size exceeds 300 nm, the particles may be too large and the polishing rate may decrease, or scratches may occur on the polished surface.

【0012】前記異形粒子群を構成する1次粒子の粒子
数は、研磨用粒子中の全ての1次粒子の粒子数に対し
て、5〜100%、特に10〜80%の範囲にあること
が好ましい。この割合が5%未満の場合は、異形粒子群
以外の単分散粒子によって異形粒子群が随伴され、配線
溝凹部に滞留しなくなるのでディッシングを抑制する効
果が得られないことがある。異形粒子群を構成する1次
粒子の割合は、研磨用粒子の透過型電子顕微鏡写真を撮
影し、任意エリア中の全粒子について、1次粒子の総数
と1次粒子のみからなる粒子(単分散粒子ということが
ある。)の数を夫々求め、1次粒子の総数から単分散粒
子数を減じることによって求めることができる。粒子数
の計測は、1次粒子の総数が約500個となるようなエ
リアについて測定するのがよい。
The number of primary particles constituting the irregular-shaped particle group is in the range of 5 to 100%, particularly 10 to 80% with respect to the number of all the primary particles in the polishing particles. Is preferred. When this ratio is less than 5%, the irregular-shaped particle group is accompanied by the monodispersed particles other than the irregular-shaped particle group and does not stay in the wiring groove concave portion, so that the effect of suppressing dishing may not be obtained. The proportion of the primary particles constituting the irregular-shaped particle group is determined by taking a transmission electron micrograph of the polishing particles, and regarding all the particles in an arbitrary area, the total number of the primary particles and particles consisting of only the primary particles (monodisperse). The number of monodisperse particles can be obtained by subtracting the number of monodisperse particles from the total number of primary particles. The number of particles is preferably measured in an area where the total number of primary particles is about 500.

【0013】異形粒子群を製造するには、(1)従来公
知のシリカ、アルミナ、ジルコニア、チタニア、セリア
などの酸化物、シリカ・アルミナ、シリカ・ジルコニア
などの複合酸化物からなる単分散粒子あるいはゾルを、
高濃度下で水熱処理したり、あるいは、(2)前記単分
散粒子分散液あるいはゾルにバインダー成分を加え、加
熱処理して単分散粒子を接合させることによって得るこ
とができる。この場合も必要に応じて水熱処理すること
ができる。(3)また、本願出願人の出願による特開平
11−61043号公報に開示した短繊維状シリカ等も
好適に用いることができる。さらに、(4)常用される
ヒュームドシリカあるいはヒュームドアルミナを得る際
の1次粒子が融着して形成された異形粒子群を分級等し
て得ることもできる。このような異形粒子群は、必要に
応じて得られた異形粒子群分散液を分離・分級して単分
散粒子を除いたり、場合によっては単分散粒子を添加す
ることによって異形粒子群の大きさ、研磨用粒子中の異
形粒子群の割合を所望の程度に調整して用いることがで
きる。
To produce a group of irregularly shaped particles, (1) monodisperse particles composed of conventionally known oxides of silica, alumina, zirconia, titania, ceria, etc., or composite oxides of silica / alumina, silica / zirconia, etc. The sol
It can be obtained by hydrothermal treatment under a high concentration, or (2) by adding a binder component to the monodisperse particle dispersion liquid or sol and heat-treating it to bond the monodisperse particles. Also in this case, hydrothermal treatment can be carried out if necessary. (3) Further, the short fiber silica or the like disclosed in JP-A No. 11-61043 filed by the applicant of the present application can also be suitably used. Further, (4) a deformed particle group formed by fusing primary particles in obtaining commonly used fumed silica or fumed alumina can be obtained by classification. Such irregular-shaped particle group is obtained by separating / classifying the irregular-shaped particle group dispersion liquid obtained as necessary to remove monodisperse particles, or in some cases, by adding monodisperse particles, the size of the irregular-shaped particle group is increased. The proportion of the irregular-shaped particles in the polishing particles can be adjusted to a desired level before use.

【0014】研磨材 本発明の研磨材は前記異形粒子群を含む研磨用粒子が水
系分散媒に分散している。水系分散媒とは、水分散媒の
他、メチルアルコール、エチルアルコール、イソプロピ
ルアルコール等のアルコール類や、エーテル類、エステ
ル類、ケトン類など水溶性の有機溶媒と水との混合溶媒
をいう。研磨材中の研磨用粒子の濃度は2〜50重量
%、特に5〜30重量%の範囲にあることが好ましい。
濃度が2重量%未満の場合は、研磨用粒子の濃度が低す
ぎて充分な研磨速度が得られないことがある。研磨用粒
子の濃度が50重量%を越えると、研磨材の安定性が不
充分となり、また研磨剤を供給する工程で乾燥物が生成
して付着することがあり、これがスクラッチ発生の原因
となることがある。
Abrasive Material In the abrasive material of the present invention, polishing particles containing the irregular-shaped particle group are dispersed in an aqueous dispersion medium. The aqueous dispersion medium refers to, in addition to the water dispersion medium, alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, and mixed solvents of water and water-soluble organic solvents such as ethers, esters, and ketones. The concentration of polishing particles in the abrasive is preferably in the range of 2 to 50% by weight, particularly 5 to 30% by weight.
If the concentration is less than 2% by weight, the concentration of the polishing particles may be too low to obtain a sufficient polishing rate. If the concentration of the abrasive particles exceeds 50% by weight, the stability of the abrasive becomes insufficient, and a dried product may be produced and adhered in the step of supplying the abrasive, which causes scratches. Sometimes.

【0015】本発明の研磨材はが前記した異形粒子群を
含んでいるので、前記凹凸を有する基板のCMPにおい
て、先ず凸部が研磨され、凹部は凸部の研磨が進行する
までは加重もかからず異形粒子群も凹部に流入しにくい
ので凹部は研磨されることがない。凸部の研磨が進行し
て行くと、異形粒子群が凹部に流入するようになるもの
の異形粒子群は多点で基板と接しており、かつ鎖状粒子
または繊維状粒子としてのチキソトロピー性を有してい
るために容易に移動することがなく、また、新たな異形
粒子群と置換することもなく、このため凹部の研磨は進
行しない。次いで、さらに凸部の研磨が進行して凸部の
上面と凹部底面とが近接してくると(段差が縮小してく
ると)、凹部に滞留していた異形粒子群に基板荷重がか
かり始め、凸部と同じ研磨速度で凹部の研磨が始まるこ
とになる。CMPでは基材上に形成された絶縁膜などの
上端面上の金属部分が無くなるまで研磨するが、このと
き凸部の研磨速度と凹部の研磨速度は同じとなり、しか
も凸部の上面と凹部底面とが近接したままで研磨される
ので、ディッシングが起きることはなく、研磨終了時点
では絶縁膜などの上端面と研磨後の回路の上端面が一致
するとともに平坦性に優れた共面を有する状態に研磨す
ることができる。特に凹部の幅が広い場合においては、
通常の研磨用粒子は凹部に流入しやすく、また研磨パッ
ドと接触し易いために凸部の研磨と同時に凹部の研磨が
進行し、ディッシングが顕著になる。しかしながら、本
発明に用いる異形粒子群は前記したチキソトロピーを有
しているために凹部の幅が広い場合あるいは配線溝の幅
が広い場合においてもディッシングを抑制することがで
きる。
Since the abrasive of the present invention contains the above-mentioned irregular-shaped particle group, in CMP of the substrate having the unevenness, the convex portion is first polished, and the concave portion is also weighted until the polishing of the convex portion progresses. Since the irregular shaped particle group does not easily flow into the concave portion, the concave portion is not polished. As the polishing of the convex portion progresses, the irregular-shaped particle group flows into the concave portion, but the irregular-shaped particle group is in contact with the substrate at multiple points and has thixotropic properties as chain particles or fibrous particles. Therefore, it does not move easily and is not replaced with a new group of irregularly shaped particles. Therefore, the polishing of the recess does not proceed. Then, when the polishing of the convex portion further progresses and the upper surface of the convex portion and the bottom surface of the concave portion come close to each other (when the step decreases), the substrate load starts to be applied to the irregular-shaped particle group retained in the concave portion. The polishing of the concave portion starts at the same polishing rate as the convex portion. In CMP, polishing is performed until there is no metal portion on the upper end surface such as an insulating film formed on the base material. At this time, the polishing rate of the convex portion is the same as that of the concave portion, and the top surface of the convex portion and the bottom surface of the concave portion are the same. Since polishing is performed in close proximity to each other, dishing does not occur, and at the end of polishing, the upper end face of the insulating film and the upper end face of the circuit after polishing match and have a coplanar surface with excellent flatness. Can be polished to. Especially when the width of the recess is wide,
Ordinary polishing particles easily flow into the recesses and easily come into contact with the polishing pad, so that the polishing of the recesses simultaneously with the polishing of the protrusions causes remarkable dishing. However, since the irregular-shaped particle group used in the present invention has the above-mentioned thixotropy, it is possible to suppress dishing even when the width of the recess is wide or the width of the wiring groove is wide.

【0016】本発明の研磨材には、金属の研磨速度を向
上すべく、さらに、被研磨材の種類に応じて、過酸化水
素、過酢酸、過酸化尿素など、またはこれらの混合物を
添加して用いることができる。また、複数種の被研磨材
の研磨速度を調整するために、硫酸、硝酸、リン酸、フ
ッ酸等の酸、あるいはこれら酸のナトリウム塩、カリウ
ム塩、アンモニウム塩およびこれらの混合物などを添加
して用いることができる。その他の添加剤として、例え
ば、金属被研磨材表面に不動態層あるいは溶解抑制層を
形成して基材の浸食を防止するためにイミダゾール、ベ
ンゾトリアゾール、ベンゾチアゾールなどを用いること
ができる。また、上記不動態層を攪乱するためにクエン
酸、乳酸、酢酸、シュウ酸などの錯体形成材を用いるこ
ともできる。研磨材スラリーの分散性や安定性を向上さ
せるためにカチオン系、アニオン系、ノニオン系、両性
系の界面活性剤を適宜選択して添加することができる。
さらに、上記各添加剤の効果を高める等のために、酸ま
たは塩基を添加して研磨材スラリーのpHを約2〜1
1、好ましくは4〜9、さらに好ましくは5〜8に調節
してもよい。また、被研磨材がシリカ酸化膜などの場合
には、アルカリ金属珪酸塩水溶液を添加して用いると研
磨速度を高めることができる。
In order to improve the metal polishing rate, hydrogen peroxide, peracetic acid, urea peroxide, etc., or a mixture thereof is added to the polishing material of the present invention depending on the type of the material to be polished. Can be used. Further, in order to adjust the polishing rate of a plurality of materials to be polished, acids such as sulfuric acid, nitric acid, phosphoric acid, and hydrofluoric acid, or sodium salts, potassium salts, ammonium salts of these acids, and mixtures thereof are added. Can be used. As other additives, for example, imidazole, benzotriazole, benzothiazole or the like can be used in order to form a passivation layer or a dissolution suppressing layer on the surface of the material to be polished to prevent erosion of the substrate. Further, a complex-forming material such as citric acid, lactic acid, acetic acid or oxalic acid can be used to disturb the passivation layer. In order to improve the dispersibility and stability of the abrasive slurry, cationic, anionic, nonionic and amphoteric surfactants can be appropriately selected and added.
Furthermore, in order to enhance the effect of each of the above additives, an acid or a base is added to adjust the pH of the abrasive slurry to about 2-1.
It may be adjusted to 1, preferably 4 to 9, more preferably 5 to 8. Further, when the material to be polished is a silica oxide film or the like, the polishing rate can be increased by adding and using an aqueous alkali metal silicate solution.

【0017】[0017]

【発明の効果】本発明の研磨用粒子は、異形粒子群を含
んでいるので、凹凸を有する基材の研磨において、凸部
の上端面が凹部の底面と同レベルになるまで凹部の研磨
が抑制され、凸部の上端面が凹部の底面と同レベルまで
研磨された後は凸部、凹部ともに同じ研磨速度で研磨で
きるので、ディッシング(過研磨)が起きることがな
く、研磨後の表面は凹凸が無く平坦性に優れている。本
発明の研磨剤によれば、半導体集積回路の形成などにお
ける研磨においてディッシングが起きることがないの
で、得られる集積回路の回路抵抗を増加させることもな
く、研磨後の表面は平坦性に優れているので効率的に積
層集積回路を形成することができる。
EFFECTS OF THE INVENTION Since the abrasive particles of the present invention contain a group of irregularly shaped particles, when polishing a base material having irregularities, the concave portions are polished until the upper end surface of the convex portions is at the same level as the bottom surface of the concave portions. After being suppressed and the upper end surface of the convex portion is polished to the same level as the bottom surface of the concave portion, both the convex portion and the concave portion can be polished at the same polishing rate, so that dishing (over polishing) does not occur and the surface after polishing is Excellent in flatness without unevenness. According to the polishing agent of the present invention, since dishing does not occur in polishing such as formation of a semiconductor integrated circuit, the surface resistance of the obtained integrated circuit does not increase and the surface after polishing has excellent flatness. Therefore, the laminated integrated circuit can be efficiently formed.

【0018】[0018]

【実施例】以下、本発明を実施例により説明するが、本
発明はこれら実施例に限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited to these examples.

【0019】[0019]

【実施例1】研磨用粒子(A)の製造 純水139. 1gとメタノール169. 9gとを混合し
た混合溶媒を60℃に保持し、これにテトラエトキシシ
ラン(多摩化学(株)製:エチルシリケート28、Si
2 =28重量%)の水−メタノール溶媒(水/メタノ
ール(重量比2/8)混合溶媒2450gにテトラエト
キシシランを532. 5g溶解したもの)2982. 5
gおよび濃度0. 25重量%のアンモニア水596. 4
gを同時に20時間かけて添加した。添加終了後、さら
にこの温度で3時間熟成した。その後、限外濾過膜で未
反応のテトラエトキシシラン、メタノール、アンモニア
をほぼ完全に除去し、純水を添加してシリカ濃度1重量
%に調製した。次いで、300℃のオートクレーブ中で
10時間、水熱処理を行った。水熱処理後、両イオン交
換樹脂で精製し、濃縮し、平均粒子径20nmの粒子が
2〜5個、平均的に4個鎖状に連結した異形粒子群から
なり、固形分濃度20重量%の研磨用粒子(A)の分散
液を得た。異形粒子群の性状を表1に、研磨用粒子
(A)における異形粒子群の割合を表2に、夫々示す。
Example 1 Production of Abrasive Particles (A) A mixed solvent prepared by mixing 139.1 g of pure water and 169.9 g of methanol was maintained at 60 ° C., and tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl) was added thereto. Silicate 28, Si
O 2 = 28 wt%) water-methanol solvent (532.5 g of tetraethoxysilane dissolved in 2450 g of water / methanol (weight ratio 2/8) mixed solvent) 2982.5
g and 0.25% by weight of ammonia water 596.4
g were added simultaneously over 20 hours. After the addition was completed, the mixture was aged at this temperature for 3 hours. Then, unreacted tetraethoxysilane, methanol, and ammonia were almost completely removed by an ultrafiltration membrane, and pure water was added to adjust the silica concentration to 1% by weight. Then, hydrothermal treatment was performed in an autoclave at 300 ° C. for 10 hours. After hydrothermal treatment, it was purified with both ion exchange resins, concentrated, and consisted of 2 to 5 particles having an average particle diameter of 20 nm, and an average of 4 chains of irregularly shaped particles, with a solid content concentration of 20% by weight. A dispersion liquid of polishing particles (A) was obtained. The properties of the irregular-shaped particle group are shown in Table 1, and the ratio of the irregular-shaped particle group in the polishing particles (A) is shown in Table 2.

【0020】研磨 (1)研磨材 研磨用粒子(A)の分散液500gに、濃度30重量%
の過酸化水素水333g、蓚酸アンモニウム5gおよび
水162gを混合して、粒子濃度10重量%、過酸化水
素10重量%、蓚酸アンモニウム0. 5重量%の研磨材
(A)を調製した。 (2)研磨用基板 絶縁膜として、窒化ケイ素からなる絶縁膜(厚さ0. 2
μm)の表面に、シリカからなる絶縁膜(厚さ0. 4μ
m)が積層され、さらに窒化ケイ素からなる絶縁膜(厚
さ0. 2μm)が順次形成されたシリコンウェーハー
(8インチウェーハー)基板上にポジ型フォトレジスト
を塗布し、0. 3μmのラインアンドスペースの露光処
理を行った。テトラメチルアンモニウムハイドライド
(TMAH)の現像液で露光部分を除去した後、CF4
とCHF3 の混合ガスを用いて、下層の絶縁膜にパター
ンを形成し、ついでO2 プラズマによりレジストを除去
し、幅(WC )が0. 3μmで、深さが0. 6μmの配
線溝を形成した。次に、配線溝を形成した基板にCVD
法で薄層の銅(Cu)を製膜し、さらに電解メッキ法で
製膜を行い絶縁膜上の銅層(犠牲層)の合計の厚さが
0. 2μmの銅の製膜を行い、研磨用基板を準備した。
Polishing (1) Abrasive material In a dispersion of polishing particles (A) 500 g, a concentration of 30% by weight
Was mixed with 333 g of hydrogen peroxide solution, 5 g of ammonium oxalate and 162 g of water to prepare an abrasive (A) having a particle concentration of 10% by weight, hydrogen peroxide of 10% by weight, and ammonium oxalate of 0.5% by weight. (2) An insulating film made of silicon nitride (having a thickness of 0.2
Insulating film made of silica (thickness 0.4 μm)
m) is laminated, and a positive type photoresist is applied on a silicon wafer (8 inch wafer) substrate on which an insulating film (thickness 0.2 μm) made of silicon nitride is sequentially formed, and a line and space of 0.3 μm is applied. Exposure processing was performed. After removing the exposed portion with a developer of tetramethylammonium hydride (TMAH), CF 4
A mixed gas of CHF 3 and CHF 3 is used to form a pattern on the lower insulating film, and then the resist is removed by O 2 plasma to form a wiring groove having a width (W C ) of 0.3 μm and a depth of 0.6 μm. Was formed. Next, CVD is performed on the substrate on which the wiring groove is formed.
Method to form a thin layer of copper (Cu), and further to form a film by electrolytic plating to form a copper layer having a total thickness of 0.2 μm on the insulating film (sacrificial layer), A polishing substrate was prepared.

【0021】(3)研磨試験 研磨用基板を用い、研磨装置(ナノファクター(株)
製:NF300)にセットし、基板加重5psi、テー
ブル回転速度50rpm、スピンドル速度60rpm
で、上記研磨剤(A)を60ml/分の速度で絶縁膜上
の犠牲層(厚さ0.2μm)がなくなるまで研磨を行っ
た。このときの研磨所要時間は120秒であり、研磨面
にスクラッチは認められなかった。また、配線溝部を配
線方向に垂直に切断し、切断面の写真を撮影し、銅表面
のディッシングを観察し、以下の基準で評価した。評価
結果とこのときの研磨速度を表2に示した。 ○:深さ50nm未満のディッシングが認められた。 △:深さ50〜100nm未満のディッシングが認めら
れた。 ×:深さ100nm以上のディッシングが認められた。
(3) Polishing test Using a polishing substrate, a polishing apparatus (Nano Factor Co., Ltd.)
(Manufactured by: NF300), substrate load 5 psi, table rotation speed 50 rpm, spindle speed 60 rpm
Then, the polishing agent (A) was polished at a rate of 60 ml / min until the sacrificial layer (thickness: 0.2 μm) on the insulating film disappeared. The time required for polishing at this time was 120 seconds, and no scratch was observed on the polished surface. Further, the wiring groove portion was cut perpendicularly to the wiring direction, a photograph of the cut surface was taken, and the dishing on the copper surface was observed and evaluated according to the following criteria. Table 2 shows the evaluation results and the polishing rate at this time. ◯: Dishing with a depth of less than 50 nm was recognized. Δ: Dishing with a depth of 50 to less than 100 nm was recognized. X: Dishing with a depth of 100 nm or more was recognized.

【0022】[0022]

【実施例2】研磨用粒子(B)の製造 実施例1において、純水を添加してシリカ濃度0. 5重
量%に調製した以外は実施例1と同様にして固形分濃度
20重量%の研磨用粒子(B)の分散液を得た。得られ
た研磨用粒子(B)は、平均粒子径20nmの粒子が1
〜4個、平均的に3個鎖状に連結した異形粒子群からな
っていた。研磨 研磨用粒子(B)の分散液を用いた以外は実施例1と同
様にして研磨材(B)を調製した。研磨材(B)を用
い、実施例1で用いたと同様の研磨用基板を同様に研磨
した。このときの研磨所要時間は100秒であり、研磨
面にスクラッチは認められなかった。
Example 2 Production of Abrasive Particles (B) A solid content of 20% by weight was obtained in the same manner as in Example 1 except that pure water was added to adjust the silica concentration to 0.5% by weight. A dispersion of polishing particles (B) was obtained. The polishing particles (B) thus obtained are 1 particle having an average particle diameter of 20 nm.
.About.4, on average, 3 chains composed of irregularly shaped particles. Polishing Abrasive (B) was prepared in the same manner as in Example 1 except that the dispersion liquid of polishing particles (B) was used. A polishing substrate similar to that used in Example 1 was similarly polished using the abrasive (B). The time required for polishing at this time was 100 seconds, and no scratch was observed on the polished surface.

【0023】[0023]

【実施例3】研磨用粒子(C)の製造 実施例1において、純水を添加してシリカ濃度2. 5重
量%に調製した以外は実施例1と同様にして固形分濃度
20重量%の研磨用粒子(C)の分散液を得た。得られ
た研磨用粒子(C)は、平均粒子径20nmの粒子が2
〜8個、平均的に6個鎖状に連結した異形粒子群からな
っていた。研磨 研磨用粒子(C)の分散液を用いた以外は実施例1と同
様にして研磨材(C)を調製した。研磨材(C)を用
い、実施例1で用いたと同様の研磨用基板を同様に研磨
した。このときの研磨所要時間は150秒であり、研磨
面にスクラッチは認められなかった。
Example 3 Production of Abrasive Particles (C) A solid content of 20% by weight was obtained in the same manner as in Example 1 except that pure water was added to adjust the silica concentration to 2.5% by weight. A dispersion liquid of polishing particles (C) was obtained. The polishing particles (C) thus obtained contained 2 particles having an average particle diameter of 20 nm.
.About.8, and on average 6 consisted of a group of irregularly shaped particles connected in a chain. Polishing An abrasive (C) was prepared in the same manner as in Example 1 except that the dispersion liquid of the polishing particles (C) was used. A polishing substrate similar to that used in Example 1 was similarly polished using the abrasive (C). The time required for polishing at this time was 150 seconds, and no scratch was observed on the polished surface.

【0024】[0024]

【実施例4】研磨用粒子(D)の製造 シリカゾル(触媒化成工業(株)製:カタロイドSI−
50,平均粒子径25nm、SiO2 濃度48重量%)
をSiO2 濃度2重量%に希釈し、ついで、250℃の
オートクレーブ中で10時間、水熱処理を行った。水熱
処理後、両性イオン交換樹脂で精製し、ついで濃縮し、
平均粒子径25nmの粒子が1〜6個、平均的に4個鎖
状あるいはテトラポット状に連結した異形粒子群からな
り、固形分濃度20重量%の研磨用粒子(D)の分散液
を得た。研磨 研磨用粒子(D)の分散液を用いた以外は実施例1と同
様にして研磨材(D)を調製した。研磨材(D)を用
い、実施例1で用いたと同様の研磨用基板を同様に研磨
した。このときの研磨所要時間は110秒であり、研磨
面にスクラッチは認められなかった。
[Example 4] Production of abrasive particles (D) Silica sol ( manufactured by Catalysts & Chemicals Industry: Cataloid SI-
50, average particle diameter 25 nm, SiO 2 concentration 48% by weight)
Was diluted to a SiO 2 concentration of 2% by weight, and then hydrothermally treated in an autoclave at 250 ° C. for 10 hours. After hydrothermal treatment, purified with amphoteric ion exchange resin, then concentrated,
A dispersion liquid of polishing particles (D) having a solid content of 20% by weight, which is composed of a group of irregularly shaped particles in which 1 to 6 particles having an average particle diameter of 25 nm are connected in an average of 4 chains or tetrapots, is obtained. It was Polishing An abrasive (D) was prepared in the same manner as in Example 1 except that the dispersion liquid of the polishing particles (D) was used. A polishing substrate similar to that used in Example 1 was similarly polished using the abrasive (D). The time required for polishing at this time was 110 seconds, and no scratch was observed on the polished surface.

【0025】[0025]

【比較例1】研磨用粒子(E)の製造 実施例1において、限外濾過膜で未反応のテトラエトキ
シシラン、メタノール、アンモニアをほぼ完全に除去し
た後、濃縮して固形分濃度20重量%の研磨用粒子
(E)の分散液を得た。研磨用粒子(E)は平均粒子径
20nmの単分散粒子であった。研磨 研磨用粒子(E)の分散液を用いた以外は実施例1と同
様にして研磨材(E)を調製した。研磨材(E)を用
い、実施例1で用いたと同様の研磨用基板を同様に研磨
した。このときの研磨所要時間は80秒であり、研磨面
にスクラッチは認められなかった。
Comparative Example 1 Production of Abrasive Particles (E) In Example 1, the unreacted tetraethoxysilane, methanol, and ammonia were almost completely removed by an ultrafiltration membrane, and then concentrated to obtain a solid content concentration of 20% by weight. A dispersion of polishing particles (E) was obtained. The polishing particles (E) were monodisperse particles having an average particle diameter of 20 nm. Polishing An abrasive (E) was prepared in the same manner as in Example 1 except that the dispersion liquid of the polishing particles (E) was used. A polishing substrate similar to that used in Example 1 was similarly polished using the abrasive (E). The time required for polishing at this time was 80 seconds, and no scratch was observed on the polished surface.

【0026】[0026]

【比較例2】研磨用粒子(F)としてシリカゾル(触媒
化成工業(株)製:カタロイドSI−50、平均粒子径
25nm、SiO2 濃度48重量%)をSiO2 濃度2
0重量%に希釈して用いた以外は実施例1と同様にして
研磨材(F)を調製した。研磨材(F)を用い、実施例
1で用いたと同様の研磨用基板を同様に研磨した。この
ときの研磨所要時間は85秒であり、研磨面にスクラッ
チは認められなかった。
Comparative Example 2 Silica sol (manufactured by Catalysts & Chemicals Industry Co., Ltd .: Cataloid SI-50, average particle diameter 25 nm, SiO 2 concentration 48% by weight) was used as SiO 2 concentration 2 as polishing particles (F).
An abrasive (F) was prepared in the same manner as in Example 1 except that it was diluted to 0% by weight. A polishing substrate similar to that used in Example 1 was similarly polished using the abrasive (F). The time required for polishing at this time was 85 seconds, and no scratch was observed on the polished surface.

【0027】[0027]

【比較例3】研磨用粒子(G)の製造 シリカゾル(触媒化成工業(株)製:カタロイドSI−
50,平均粒子径25nm、SiO2 濃度48重量%:
pH9.2)をSiO2 濃度2重量%に希釈した後、イ
オン交換樹脂で脱イオンしてpH5.5とした。このシ
リカゾルを実施例4と同様に水熱処理し、両性イオン交
換樹脂で精製した後濃縮し、平均粒子径25nmの粒子
が10〜20個、平均的に16個塊状に連結した粒子群
からなり、固形分濃度20重量%の研磨用粒子(G)の
分散液を得た。研磨 研磨用粒子(G)の分散液を用いた以外は実施例1と同
様にして研磨材(G)を調製した。研磨材(G)を用
い、実施例1で用いたと同様の研磨用基板を同様に研磨
した。このときの研磨所要時間は180秒であり、研磨
面にスクラッチは認められなかった。
Comparative Example 3 Production of Abrasive Particles (G) Silica Sol (Catalyst Kasei Co., Ltd .: Cataloid SI-
50, average particle diameter 25 nm, SiO 2 concentration 48% by weight:
The pH 9.2) was diluted to a SiO 2 concentration of 2% by weight and then deionized with an ion exchange resin to adjust the pH to 5.5. This silica sol was hydrothermally treated in the same manner as in Example 4, purified with an amphoteric ion exchange resin, and then concentrated to consist of 10 to 20 particles having an average particle diameter of 25 nm, and an average of 16 particles connected in a lump form, A dispersion liquid of polishing particles (G) having a solid content concentration of 20% by weight was obtained. Polishing An abrasive (G) was prepared in the same manner as in Example 1 except that a dispersion liquid of polishing particles (G) was used. The same polishing substrate as that used in Example 1 was similarly polished using the abrasive (G). The time required for polishing at this time was 180 seconds, and no scratch was observed on the polished surface.

【0028】[0028]

【表1】 異形粒子群 1 次 粒 子 結 合 数 形 状 等 組成 形状 粒子径 範囲 平均 (nm) 実施例1 SiO2 球 20 2〜5 4 鎖状 実施例2 SiO2 球 20 1〜4 3 鎖状 実施例3 SiO2 球 20 2〜8 6 鎖状 実施例4 SiO2 球 25 1〜6 4 鎖状・テトラポット状 比較例1 SiO2 球 20 − − 球状・単分散 比較例2 SiO2 球 25 − − 球状・単分散 比較例3 SiO2 球 25 10〜20 16 塊状[Table 1] Irregular particle group Primary particle Bonding Number shape Equal composition shape Particle size range Average (nm) Example 1 SiO 2 spheres 20 2 to 5 4 Chain-like example 2 SiO 2 spheres 20 1 to 4 3 Chained Example 3 SiO 2 spheres 20 2 to 8 6 Chained Example 4 SiO 2 spheres 25 1 to 6 4 Chained / tetrapod-shaped Comparative Example 1 SiO 2 spheres 20−− Spherical / monodispersed Comparative Example 2 SiO 2 Sphere 25 − − Spherical / monodisperse Comparative Example 3 SiO 2 sphere 25 10 to 20 16 lump

【0029】[0029]

【表2】 研磨用粒子 研磨結果 異形粒子群 単分散粒子 ディッ 研磨 の割合 の割合 シング 速度 (%) (%) (nm/min) 実施例1 100 0 ○ 100 実施例2 95 5 ○ 120 実施例3 100 0 ○ 80 実施例4 80 20 ○ 110 比較例1 0 100 × 150 比較例2 0 100 × 140 比較例3 100 0 △ 67Table 2 proportion single rate (%) percentage of the abrasive particles polishing results irregular particles monodisperse particles Extended polishing (%) (nm / min) Example 1 100 0 ○ 100 Example 2 95 5 ○ 120 Example 3 100 0 ○ 80 Example 4 80 20 ○ 110 Comparative Example 1 0 100 × 150 Comparative Example 2 0 100 × 140 Comparative Example 3 100 0 Δ 67

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の異形粒子群における1次粒子の結合態
様を示す説明図である。
FIG. 1 is an explanatory view showing a bonding mode of primary particles in a modified particle group of the present invention.

【図2】従来のCMPによる研磨前(A)と研磨後
(B)の状態を示す、被研磨材の断面図である。
FIG. 2 is a cross-sectional view of a material to be polished showing a state before (A) and after (B) polishing by conventional CMP.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中山 和洋 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 (72)発明者 小松 通郎 福岡県北九州市若松区北湊町13−2 触媒 化成工業株式会社若松工場内 Fターム(参考) 3C058 AA07 CB01 DA02 DA17    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Kazuhiro Nakayama             13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka             Kasei Industry Co., Ltd. Wakamatsu factory (72) Inventor Toshiro Komatsu             13-2 Kitaminato-cho, Wakamatsu-ku, Kitakyushu, Fukuoka             Kasei Industry Co., Ltd. Wakamatsu factory F-term (reference) 3C058 AA07 CB01 DA02 DA17

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径が5〜300nmの範囲にあ
る1次粒子が2個以上結合した異形粒子群を含むことを
特徴とする研磨用粒子。
1. A polishing particle comprising a deformed particle group in which two or more primary particles having an average particle diameter in the range of 5 to 300 nm are bonded.
【請求項2】 研磨用粒子中の全1次粒子の粒子数に占
める、前記異形粒子群を構成する1次粒子の粒子数が5
〜100%の範囲にある請求項1記載の研磨用粒子。
2. The number of primary particles constituting the irregular-shaped particle group in the total number of primary particles in the polishing particles is 5
The polishing particles according to claim 1, which are in the range of -100%.
【請求項3】 前記1次粒子が、シリカ、アルミナ、ジ
ルコニア、チタニア、セリアなどの無機酸化物及び/又
はシリカ・アルミナ、シリカ・ジルコニアなどの無機複
合酸化物からなる請求項1または請求項2記載の研磨用
粒子。
3. The method according to claim 1, wherein the primary particles are made of an inorganic oxide such as silica, alumina, zirconia, titania or ceria and / or an inorganic composite oxide such as silica / alumina or silica / zirconia. The abrasive particles described.
【請求項4】 水系分散媒に請求項1〜請求項3のいず
れか記載の研磨用粒子が2〜50重量%分散してなる研
磨材。
4. An abrasive comprising 2 to 50% by weight of the polishing particles according to any one of claims 1 to 3 dispersed in an aqueous dispersion medium.
JP2001331748A 2001-10-30 2001-10-30 Abrasive particles and method for producing abrasives Expired - Lifetime JP4278020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331748A JP4278020B2 (en) 2001-10-30 2001-10-30 Abrasive particles and method for producing abrasives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331748A JP4278020B2 (en) 2001-10-30 2001-10-30 Abrasive particles and method for producing abrasives

Publications (2)

Publication Number Publication Date
JP2003133267A true JP2003133267A (en) 2003-05-09
JP4278020B2 JP4278020B2 (en) 2009-06-10

Family

ID=19147258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331748A Expired - Lifetime JP4278020B2 (en) 2001-10-30 2001-10-30 Abrasive particles and method for producing abrasives

Country Status (1)

Country Link
JP (1) JP4278020B2 (en)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080406A (en) * 2004-09-13 2006-03-23 Catalysts & Chem Ind Co Ltd Composition for polishing
WO2006129411A1 (en) * 2005-06-02 2006-12-07 Asahi Glass Company, Limited DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
JP2009054935A (en) * 2007-08-29 2009-03-12 Nippon Chem Ind Co Ltd Polishing composition for semiconductor wafer, and polishing method
JP2009516928A (en) * 2005-11-22 2009-04-23 キャボット マイクロエレクトロニクス コーポレイション Friction reduction aid for CMP
JP2009155180A (en) * 2007-12-27 2009-07-16 Jgc Catalysts & Chemicals Ltd Particle-linked alumina-silica composite sol and method for manufacturing the same
JP2010192904A (en) * 2010-03-01 2010-09-02 Jgc Catalysts & Chemicals Ltd Composition for polishing
US8118898B2 (en) 2006-10-12 2012-02-21 Jgc Catalysts And Chemicals Ltd. Spinous silica-based sol and method of producing the same
US8187351B2 (en) 2006-11-30 2012-05-29 Jgc Catalysts And Chemicals Ltd. Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol
KR20130009584A (en) 2011-07-06 2013-01-23 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
JP2013040081A (en) * 2011-08-18 2013-02-28 Fuji Xerox Co Ltd Silica particle and method of producing the same
JP2013197212A (en) * 2012-03-16 2013-09-30 Fujimi Inc Polishing composition
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US9272916B2 (en) 2007-11-30 2016-03-01 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US9416015B2 (en) 2010-06-23 2016-08-16 Fuji Xerox Co., Ltd. Method of producing silica particles
US9688884B2 (en) 2011-11-25 2017-06-27 Fujimi Incorporated Polishing composition
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JP2018070870A (en) * 2016-10-19 2018-05-10 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Aqueous composition of low abrasive silica particle
WO2018135585A1 (en) * 2017-01-20 2018-07-26 日揮触媒化成株式会社 Silica particle liquid dispersion and production method therefor
CN109414209A (en) * 2016-06-30 2019-03-01 拓自达电线株式会社 Chlorination silver paste
KR20200101925A (en) 2017-12-27 2020-08-28 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing chain-shaped particle dispersion and dispersion of chain-shaped particles
WO2021111863A1 (en) * 2019-12-03 2021-06-10 Jsr株式会社 Composition for chemical mechanical polishing and chemical mechanical polishing method
US11490846B2 (en) 2016-06-30 2022-11-08 Tatsuta Electric Wire & Cable Co., Ltd. Bioelectrode and method for producing bioelectrode
US11542167B2 (en) 2019-09-30 2023-01-03 Jgc Catalysts And Chemicals Ltd. Silica particle dispersion liquid and production method thereof

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080406A (en) * 2004-09-13 2006-03-23 Catalysts & Chem Ind Co Ltd Composition for polishing
WO2006129411A1 (en) * 2005-06-02 2006-12-07 Asahi Glass Company, Limited DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION, AND SUBSTRATE WITH ANTIREFLECTION COATING FILM
JP2006335881A (en) * 2005-06-02 2006-12-14 Asahi Glass Co Ltd DISPERSION CONTAINING HOLLOW SiO2, COATING COMPOSITION AND SUBSTRATE HAVING REFLECTION-PREVENTING COATING
JP2009516928A (en) * 2005-11-22 2009-04-23 キャボット マイクロエレクトロニクス コーポレイション Friction reduction aid for CMP
US8118898B2 (en) 2006-10-12 2012-02-21 Jgc Catalysts And Chemicals Ltd. Spinous silica-based sol and method of producing the same
US8187351B2 (en) 2006-11-30 2012-05-29 Jgc Catalysts And Chemicals Ltd. Sol of spinous inorganic oxide particles, method of producing the sol, and polishing agent containing the sol
JP2009054935A (en) * 2007-08-29 2009-03-12 Nippon Chem Ind Co Ltd Polishing composition for semiconductor wafer, and polishing method
US10160894B2 (en) 2007-11-30 2018-12-25 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
US9272916B2 (en) 2007-11-30 2016-03-01 Jgc Catalysts And Chemicals Ltd. Non-spherical silica sol, process for producing the same, and composition for polishing
JP2009155180A (en) * 2007-12-27 2009-07-16 Jgc Catalysts & Chemicals Ltd Particle-linked alumina-silica composite sol and method for manufacturing the same
JP2010192904A (en) * 2010-03-01 2010-09-02 Jgc Catalysts & Chemicals Ltd Composition for polishing
US9416015B2 (en) 2010-06-23 2016-08-16 Fuji Xerox Co., Ltd. Method of producing silica particles
US9187502B2 (en) 2010-06-24 2015-11-17 Fuji Xerox Co., Ltd. Silica particles and method for producing the same
US8871344B2 (en) 2010-06-25 2014-10-28 Fuji Xerox Co., Ltd. Hydrophobization treatment of silica particles
US9394413B2 (en) 2011-01-19 2016-07-19 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
US8962139B2 (en) 2011-01-20 2015-02-24 Fuji Xerox Co., Ltd. Resin particle and method for producing the same
KR20130009584A (en) 2011-07-06 2013-01-23 후지제롯쿠스 가부시끼가이샤 Silica particles, manufacturing method thereof and resin particles
US8431633B2 (en) 2011-07-06 2013-04-30 Fuji Xerox Co., Ltd. Silica particles, manufacturing method thereof and resin particles
JP2013040081A (en) * 2011-08-18 2013-02-28 Fuji Xerox Co Ltd Silica particle and method of producing the same
US9688884B2 (en) 2011-11-25 2017-06-27 Fujimi Incorporated Polishing composition
US9708191B2 (en) 2011-12-01 2017-07-18 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
JP2013197212A (en) * 2012-03-16 2013-09-30 Fujimi Inc Polishing composition
US9243145B2 (en) 2013-01-28 2016-01-26 Fuji Xerox Co., Ltd. Silica composite particles and method of preparing the same
US11490846B2 (en) 2016-06-30 2022-11-08 Tatsuta Electric Wire & Cable Co., Ltd. Bioelectrode and method for producing bioelectrode
CN109414209A (en) * 2016-06-30 2019-03-01 拓自达电线株式会社 Chlorination silver paste
JP7002907B2 (en) 2016-10-19 2022-01-20 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Aqueous composition of low-abrasive silica particles
JP2018070870A (en) * 2016-10-19 2018-05-10 ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド Aqueous composition of low abrasive silica particle
US11254580B2 (en) 2017-01-20 2022-02-22 Jgc Catalysts And Chemicals Ltd. Silica particle liquid dispersion and production method therefor
TWI781135B (en) * 2017-01-20 2022-10-21 日商日揮觸媒化成股份有限公司 Silica particle dispersion and method for producing the same
WO2018135585A1 (en) * 2017-01-20 2018-07-26 日揮触媒化成株式会社 Silica particle liquid dispersion and production method therefor
KR20200101925A (en) 2017-12-27 2020-08-28 닛키 쇼쿠바이카세이 가부시키가이샤 Method for producing chain-shaped particle dispersion and dispersion of chain-shaped particles
US11613683B2 (en) 2017-12-27 2023-03-28 Jgc Catalysts And Chemicals Ltd. Method for producing chain-like particle dispersion, and dispersion of chain-like particles
US11542167B2 (en) 2019-09-30 2023-01-03 Jgc Catalysts And Chemicals Ltd. Silica particle dispersion liquid and production method thereof
WO2021111863A1 (en) * 2019-12-03 2021-06-10 Jsr株式会社 Composition for chemical mechanical polishing and chemical mechanical polishing method

Also Published As

Publication number Publication date
JP4278020B2 (en) 2009-06-10

Similar Documents

Publication Publication Date Title
JP4278020B2 (en) Abrasive particles and method for producing abrasives
RU2356926C2 (en) Abrasive particles for mechanical polishing
US7029373B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
US6692546B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
CN1301288A (en) Chemical mechanical polishing slurry useful for copper substrates
US20080274620A1 (en) Chemical mechanical polishing agent kit and chemical mechanical polishing method using the same
JP3748410B2 (en) Polishing method and semiconductor device manufacturing method
JP2002537652A (en) Method for chemical mechanical polishing of low dielectric constant polymer layers
JP2003031529A (en) Slurry for cmp, and manufacturing method of semiconductor device using the slurry
KR20190132951A (en) Chemical mechanical polishing tungsten buffing slurries
JP2007180534A (en) Composition for polishing semiconductor layer
WO2009070967A1 (en) A chemical-mechanical polishing liquid
JP4649871B2 (en) Chemical mechanical polishing method using chemical mechanical polishing kit
US6530824B2 (en) Method and composition for polishing by CMP
US20010013507A1 (en) Method for CMP of low dielectric constant polymer layers
JP2000114213A (en) Mechanochemical polishing method for layer of copper- based material
JP2006080406A (en) Composition for polishing
JP2012531731A (en) Method for modifying the crystal structure of copper elements
US7455791B2 (en) Abrasives for copper CMP and methods for making
JP2003277731A (en) Abrasive particle and abrasive material
JP2003286477A (en) Polishing composition and polishing method
JP2006012969A (en) Silica sol for polish, and its manufacturing method
JP2001031953A (en) Polishing agent for metallic film
JP2010192904A (en) Composition for polishing
KR101043451B1 (en) Composition and method for damascene cmp

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term