JP4278020B2 - Abrasive particles and method for producing abrasives - Google Patents

Abrasive particles and method for producing abrasives Download PDF

Info

Publication number
JP4278020B2
JP4278020B2 JP2001331748A JP2001331748A JP4278020B2 JP 4278020 B2 JP4278020 B2 JP 4278020B2 JP 2001331748 A JP2001331748 A JP 2001331748A JP 2001331748 A JP2001331748 A JP 2001331748A JP 4278020 B2 JP4278020 B2 JP 4278020B2
Authority
JP
Japan
Prior art keywords
particles
polishing
abrasive
irregularly shaped
wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2001331748A
Other languages
Japanese (ja)
Other versions
JP2003133267A (en
Inventor
広泰 西田
祐一郎 田熊
和洋 中山
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2001331748A priority Critical patent/JP4278020B2/en
Publication of JP2003133267A publication Critical patent/JP2003133267A/en
Application granted granted Critical
Publication of JP4278020B2 publication Critical patent/JP4278020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Description

【0001】
【発明の技術分野】
本発明は、平均粒子径が5〜300nmの範囲にある粒子が2個以上結合することによって形成された、鎖状その他の異形の粒子群を含む研磨用粒子、および該研磨用粒子を含む研磨材に関するものである。
【0002】
【発明の技術的背景】
コンピューター、各種電子機器には各種の集積回路が用いられており、これらの小型化、高性能化に伴い回路の高密度化と高性能化が求められている。
この中で、例えば半導体集積回路は、従来、半導体集積回路の集積度を高めるために多層配線が用いられており、このような多層配線は、通常、シリコンなどの基板上に、第1絶縁膜としての熱酸化膜を形成した後、アルミニウム膜などからなる第1配線層を形成し、この上にCVD法あるいはプラズマCVD法等によって、シリカ膜、窒化ケイ素膜などの層間絶縁膜を被着させ、この層間絶縁膜上に、該層間絶縁膜を平坦化するためのシリカ絶縁膜をSOG法により形成し、このシリカ絶縁膜上に必要に応じてさらに第2絶縁膜を被着させた後、第2配線層を形成することによって、製造されている。
上記アルミニウム膜からなる配線は、多層配線を形成する際のスパッタリング時にアルミニウム等の配線が酸化されて抵抗値が増大して導電不良を起こすことがあった。また、配線幅を小さくすることができないためにより高密度の集積回路を形成するには限界があった。さらに、近年クロック線やデータバス線のような長距離配線では、チップサイズ増大に伴い配線抵抗が増大し電気信号の伝播遅延時間(RC遅延時間=抵抗×容量)の増大が問題となっている。このため配線をより低抵抗の材料に置き換えていく必要が生じている。
【0003】
従来のAlやAl合金による配線に代えてCu配線を行うことも提案されており、例えば、基板上の絶縁膜に予め配線溝を形成した後、電解メッキ法、CVD法等によりCu配線を形成する方法が公知である。
この銅等の配線パターン形成においては、ドライエッチプロセスによる加工が困難なため、化学機械研磨方法(以下、CMPと言うこともある。)を用いたダマシンプロセスが適用されており、基板上の絶縁膜に予め配線溝を形成し、電解メッキ法やCVD法等により銅を配線溝に埋め込んだ後、CMPにより上端面を研磨し、平坦化して配線を形成している。
具体的には、例えば、図2(A)に示すように、シリコンウェハー等の基材上に配線層間膜(絶縁膜)を成膜し、その配線層間膜(絶縁膜)上に金属配線用の溝パターンを形成し、必要に応じてスパッタリング法などによってTaN等のバリアメタル層を形成し、ついで金属配線用の銅をCVD法等により成膜する。ここで、TaN等のバリアメタル層を設けた場合には層間絶縁膜への銅や不純物などの拡散や浸食に伴う層間絶縁膜の絶縁性の低下などを防止することができ、また層間絶縁膜と銅の接着性を高めることができる。
【0004】
次いで、CMPにより、溝内以外に成膜された不要な銅及びバリアメタル(図2(A)中の矢印で示す共面より上の部分)を研磨して除去するとともに上部表面を可能な限り平坦化して、溝内にのみ金属膜を残して銅の配線・回路パターンを形成する(図2(B)参照)。
CMPは、一般的に回転機構を有する円形プラテン上に研磨パッドを搭載し、研磨パッドの中心上部から研磨材を滴下供給した状態で、図2(A)に示すような被研磨材を回転させ、加重を掛けながら研磨パッドに接触させることによって、共面の上部部分の銅及びバリアメタルを研磨して除去するものである。
また、CMPで使用される研磨材は、通常、シリカ、アルミナ等の金属酸化物からなる平均粒子径が200nm程度の球状の研磨用粒子と、配線・回路用金属の研磨速度を早めるための酸化剤、有機酸等の添加剤及び純水などの溶媒から構成されている。
【0005】
前記図2(A)に示すように、被研磨材の表面には下地の絶縁膜に形成した配線用の溝パターンに起因した段差(凹凸)が存在するので、主に凸部を研磨除去しながら共面まで研磨し、平坦な研磨面とすることが求められている。
しかしながら、従来の球状の研磨用粒子では共面より上の部分を研磨した際に、凹部の下部にあった配線溝内の回路用金属が共面以下まで研磨される問題(ディッシングと呼ばれている。)があった。このようなディッシング(過研磨)が起きると配線の厚みが減少して配線抵抗が増加したり、また、この上に形成される絶縁膜の平坦性が低下するなどの問題が生じるので、ディッシングを抑制することが求められている。
【0006】
【発明の目的】
本発明は、前記いわゆるディッシングを抑制し、基板表面を平坦に研磨することのできる研磨用粒子および該研磨用粒子を含んでなる研磨材を提供することを目的とするものである。
【0007】
【発明の概要】
本発明の研磨用粒子は、平均粒子径が5〜300nmの範囲にある1次粒子が2個以上結合した異形粒子群を含むことを特徴とするものであり、研磨用粒子中の全1次粒子の粒子数に占める、前記異形粒子群を構成する1次粒子の粒子数は5〜100%の範囲にあることが好ましい。
前記1次粒子は、シリカ、アルミナ、ジルコニア、チタニア、セリアなどの無機酸化物及び/又はシリカ・アルミナ、シリカ・ジルコニアなどの無機複合酸化物からなることが好ましい。
本発明の研磨材は、水系分散媒に前記研磨用粒子が2〜50重量%分散してなることを特徴とするものである。
【0008】
【発明の具体的説明】
研磨用粒子
本発明において異形粒子群とは、1次粒子が集合して球状となったり、または凝集して塊状となった通常の形態の粒子群ではなく、2個以上の1次粒子が結合して鎖状、繊維状、その他、異形の形態にある粒子群をいう。
即ち、異形粒子群1個が平面(被研磨基板)と2点以上の点で接触できるか、線または面で接触できる粒子群を意味している。
この異形粒子群における1次粒子の結合態様として、図1に示すように、1次粒子が2個接合したもの、3個以上鎖状に接合したもの、3個が3点で接合したもの、4個が平面的にあるいはテトラポット型に接合したもの、同様に5個以上の粒子が接合したもの、などの他、さらにこれら異形粒子群同士が結合した異形粒子群を挙げることができる。
【0009】
上記異形粒子群を構成する1次粒子は2個以上、好ましくは2〜20個、特に好ましくは3〜10個、互いに結合している。
1次粒子の数が2個未満、即ち1個の場合は前記したようにディッシングを惹起し易く、他方、1次粒子が20個を越えて結合していると、結合形態にもよるが、異形粒子群が破壊されることがあり、このためスクラッチ(傷)が発生することがあり、また、鎖状の長い異形粒子群の場合は研磨速度が低下することがある。
なお、1次粒子が塊状に凝集している場合は後述するチキソトロピー性が発現しないことがあり、単に大きい球状粒子と異なるところが無く、ディッシングを抑制する効果が充分得られない。更にこの場合も、スクラッチが発生することがある。
1次粒子が2〜20個の範囲で結合した異形粒子群は、凹凸を有する被研磨面の凹部底面において異形粒子群と底面とが多点接触していたり、異形粒子群がチキソトロピー性を有しているので研磨時に凹部に堆積した異形粒子群が凹部から容易に移動することがないので凹部の底面は研磨されることがなく、このためディッシングを抑制することができる。
【0010】
異形粒子群を構成する1次粒子は必ずしも球状である必要はなく、卵状、サイコロ状、棒状であってもよい。また、1次粒子の粒子径は互いに異なっていても良く、さらに接合部分の大きさは1次粒子の粒子径と同程度、即ち、括れが無くても良い。
このような1次粒子として、シリカ、アルミナ、ジルコニア、チタニア、セリアなどの無機酸化物、および/または、シリカ・アルミナ、シリカ・ジルコニアなどの無機複合酸化物からなる粒子が好適である。
【0011】
上記1次粒子の平均粒子径は5〜300nm、好ましくは20〜80nmの範囲にある。平均粒子径が5nm未満の場合は、1次粒子が凝集して得られる粒子群が塊状になる傾向があり、このためチキソトロピー性が発現せずディッシングを抑制する効果が得難い。平均粒子径が300nmを越えると、粒子が大きすぎて研磨速度が低下したり、研磨面にスクラッチ(傷)が発生することがある。
【0012】
前記異形粒子群を構成する1次粒子の粒子数は、研磨用粒子中の全ての1次粒子の粒子数に対して、5〜100%、特に10〜80%の範囲にあることが好ましい。この割合が5%未満の場合は、異形粒子群以外の単分散粒子によって異形粒子群が随伴され、配線溝凹部に滞留しなくなるのでディッシングを抑制する効果が得られないことがある。
異形粒子群を構成する1次粒子の割合は、研磨用粒子の透過型電子顕微鏡写真を撮影し、任意エリア中の全粒子について、1次粒子の総数と1次粒子のみからなる粒子(単分散粒子ということがある。)の数を夫々求め、1次粒子の総数から単分散粒子数を減じることによって求めることができる。粒子数の計測は、1次粒子の総数が約500個となるようなエリアについて測定するのがよい。
【0013】
異形粒子群を製造するには、(1)従来公知のシリカの単分散粒子の分散液あるいはゾルを、高温度下で水熱処理したり、あるいは、(2)本願出願人の出願による特開平11−61043号公報に開示した短繊維状シリカ等も好適に用いることができる。
このような異形粒子群は、必要に応じて得られた異形粒子群分散液を分離・分級して単分散粒子を除いたり、場合によっては単分散粒子を添加することによって異形粒子群の大きさ、研磨用粒子中の異形粒子群の割合を所望の程度に調整して用いることができる。
【0014】
研磨材
本発明の研磨材は前記異形粒子群を含む研磨用粒子が水系分散媒に分散している。水系分散媒とは、水分散媒の他、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類や、エーテル類、エステル類、ケトン類など水溶性の有機溶媒と水との混合溶媒をいう。研磨材中の研磨用粒子の濃度は2〜50重量%、特に5〜30重量%の範囲にあることが好ましい。濃度が2重量%未満の場合は、研磨用粒子の濃度が低すぎて充分な研磨速度が得られないことがある。研磨用粒子の濃度が50重量%を越えると、研磨材の安定性が不充分となり、また研磨剤を供給する工程で乾燥物が生成して付着することがあり、これがスクラッチ発生の原因となることがある。
【0015】
本発明の研磨材は前記した異形粒子群を含んでいるので、前記凹凸を有する基板のCMPにおいて、先ず凸部が研磨され、凹部は凸部の研磨が進行するまでは加重もかからず異形粒子群も凹部に流入しにくいので凹部は研磨されることがない。
凸部の研磨が進行して行くと、異形粒子群が凹部に流入するようになるものの異形粒子群は多点で基板と接しており、かつ鎖状粒子または繊維状粒子としてのチキソトロピー性を有しているために容易に移動することがなく、また、新たな異形粒子群と置換することもなく、このため凹部の研磨は進行しない。次いで、さらに凸部の研磨が進行して凸部の上面と凹部底面とが近接してくると(段差が縮小してくると)、凹部に滞留していた異形粒子群に基板荷重がかかり始め、凸部と同じ研磨速度で凹部の研磨が始まることになる。
CMPでは基材上に形成された絶縁膜などの上端面上の金属部分が無くなるまで研磨するが、このとき凸部の研磨速度と凹部の研磨速度は同じとなり、しかも凸部の上面と凹部底面とが近接したままで研磨されるので、ディッシングが起きることはなく、研磨終了時点では絶縁膜などの上端面と研磨後の回路の上端面が一致するとともに平坦性に優れた共面を有する状態に研磨することができる。
特に凹部の幅が広い場合においては、通常の研磨用粒子は凹部に流入しやすく、また研磨パッドと接触し易いために凸部の研磨と同時に凹部の研磨が進行し、ディッシングが顕著になる。しかしながら、本発明に用いる異形粒子群は前記したチキソトロピーを有しているために凹部の幅が広い場合あるいは配線溝の幅が広い場合においてもディッシングを抑制することができる。
【0016】
本発明の研磨材には、金属の研磨速度を向上すべく、さらに、被研磨材の種類に応じて、過酸化水素、過酢酸、過酸化尿素など、またはこれらの混合物を添加して用いることができる。
また、複数種の被研磨材の研磨速度を調整するために、硫酸、硝酸、リン酸、フッ酸等の酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩およびこれらの混合物などを添加して用いることができる。
その他の添加剤として、例えば、金属被研磨材表面に不動態層あるいは溶解抑制層を形成して基材の浸食を防止するためにイミダゾール、ベンゾトリアゾール、ベンゾチアゾールなどを用いることができる。
また、上記不動態層を攪乱するためにクエン酸、乳酸、酢酸、シュウ酸などの錯体形成材を用いることもできる。
研磨材スラリーの分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤を適宜選択して添加することができる。
さらに、上記各添加剤の効果を高める等のために、酸または塩基を添加して研磨材スラリーのpHを約2〜11、好ましくは4〜9、さらに好ましくは5〜8に調節してもよい。
また、被研磨材がシリカ酸化膜などの場合には、アルカリ金属珪酸塩水溶液を添加して用いると研磨速度を高めることができる。
【0017】
【発明の効果】
本発明の研磨用粒子は、異形粒子群を含んでいるので、凹凸を有する基材の研磨において、凸部の上端面が凹部の底面と同レベルになるまで凹部の研磨が抑制され、凸部の上端面が凹部の底面と同レベルまで研磨された後は凸部、凹部ともに同じ研磨速度で研磨できるので、ディッシング(過研磨)が起きることがなく、研磨後の表面は凹凸が無く平坦性に優れている。
本発明の研磨剤によれば、半導体集積回路の形成などにおける研磨においてディッシングが起きることがないので、得られる集積回路の回路抵抗を増加させることもなく、研磨後の表面は平坦性に優れているので効率的に積層集積回路を形成することができる。
【0018】
【実施例】
以下、本発明を実施例により説明するが、本発明はこれら実施例に限定されるものではない。
【0019】
【実施例1】
研磨用粒子(A)の製造
純水139. 1gとメタノール169. 9gとを混合した混合溶媒を60℃に保持し、これにテトラエトキシシラン(多摩化学(株)製:エチルシリケート28、SiO2 =28重量%)の水−メタノール溶媒(水/メタノール(重量比2/8)混合溶媒2450gにテトラエトキシシランを532. 5g溶解したもの)2982. 5gおよび濃度0. 25重量%のアンモニア水596. 4gを同時に20時間かけて添加した。添加終了後、さらにこの温度で3時間熟成した。その後、限外濾過膜で未反応のテトラエトキシシラン、メタノール、アンモニアをほぼ完全に除去し、純水を添加してシリカ濃度1重量%に調製した。
次いで、300℃のオートクレーブ中で10時間、水熱処理を行った。水熱処理後、両イオン交換樹脂で精製し、濃縮し、平均粒子径20nmの粒子が2〜5個、平均的に4個鎖状に連結した異形粒子群からなり、固形分濃度20重量%の研磨用粒子(A)の分散液を得た。異形粒子群の性状を表1に、研磨用粒子(A)における異形粒子群の割合を表2に、夫々示す。
【0020】
研磨
(1)研磨材
研磨用粒子(A)の分散液500gに、濃度30重量%の過酸化水素水333g、蓚酸アンモニウム5gおよび水162gを混合して、粒子濃度10重量%、過酸化水素10重量%、蓚酸アンモニウム0. 5重量%の研磨材(A)を調製した。
(2)研磨用基板
絶縁膜として、窒化ケイ素からなる絶縁膜(厚さ0. 2μm)の表面に、シリカからなる絶縁膜(厚さ0. 4μm)が積層され、さらに窒化ケイ素からなる絶縁膜(厚さ0. 2μm)が順次形成されたシリコンウェーハー(8インチウェーハー)基板上にポジ型フォトレジストを塗布し、0. 3μmのラインアンドスペースの露光処理を行った。テトラメチルアンモニウムハイドライド(TMAH)の現像液で露光部分を除去した後、CF4 とCHF3 の混合ガスを用いて、下層の絶縁膜にパターンを形成し、ついでO2 プラズマによりレジストを除去し、幅(WC )が0. 3μmで、深さが0. 6μmの配線溝を形成した。
次に、配線溝を形成した基板にCVD法で薄層の銅(Cu)を製膜し、さらに電解メッキ法で製膜を行い絶縁膜上の銅層(犠牲層)の合計の厚さが0. 2μmの銅の製膜を行い、研磨用基板を準備した。
【0021】
(3)研磨試験
研磨用基板を用い、研磨装置(ナノファクター(株)製:NF300)にセットし、基板加重5psi、テーブル回転速度50rpm、スピンドル速度60rpmで、上記研磨剤(A)を60ml/分の速度で絶縁膜上の犠牲層(厚さ0.2μm)がなくなるまで研磨を行った。このときの研磨所要時間は120秒であり、研磨面にスクラッチは認められなかった。また、配線溝部を配線方向に垂直に切断し、切断面の写真を撮影し、銅表面のディッシングを観察し、以下の基準で評価した。評価結果とこのときの研磨速度を表2に示した。
○:深さ50nm未満のディッシングが認められた。
△:深さ50〜100nm未満のディッシングが認められた。
×:深さ100nm以上のディッシングが認められた。
【0022】
【実施例2】
研磨用粒子(B)の製造
実施例1において、純水を添加してシリカ濃度0. 5重量%に調製した以外は実施例1と同様にして固形分濃度20重量%の研磨用粒子(B)の分散液を得た。得られた研磨用粒子(B)は、平均粒子径20nmの粒子が1〜4個、平均的に3個鎖状に連結した異形粒子群からなっていた。
研磨
研磨用粒子(B)の分散液を用いた以外は実施例1と同様にして研磨材(B)を調製した。
研磨材(B)を用い、実施例1で用いたと同様の研磨用基板を同様に研磨した。このときの研磨所要時間は100秒であり、研磨面にスクラッチは認められなかった。
【0023】
【実施例3】
研磨用粒子(C)の製造
実施例1において、純水を添加してシリカ濃度2. 5重量%に調製した以外は実施例1と同様にして固形分濃度20重量%の研磨用粒子(C)の分散液を得た。得られた研磨用粒子(C)は、平均粒子径20nmの粒子が2〜8個、平均的に6個鎖状に連結した異形粒子群からなっていた。
研磨
研磨用粒子(C)の分散液を用いた以外は実施例1と同様にして研磨材(C)を調製した。
研磨材(C)を用い、実施例1で用いたと同様の研磨用基板を同様に研磨した。このときの研磨所要時間は150秒であり、研磨面にスクラッチは認められなかった。
【0024】
【実施例4】
研磨用粒子(D)の製造
シリカゾル(触媒化成工業(株)製:カタロイドSI−50,平均粒子径25nm、SiO2 濃度48重量%)をSiO2 濃度2重量%に希釈し、ついで、250℃のオートクレーブ中で10時間、水熱処理を行った。水熱処理後、両性イオン交換樹脂で精製し、ついで濃縮し、平均粒子径25nmの粒子が1〜6個、平均的に4個鎖状あるいはテトラポット状に連結した異形粒子群からなり、固形分濃度20重量%の研磨用粒子(D)の分散液を得た。
研磨
研磨用粒子(D)の分散液を用いた以外は実施例1と同様にして研磨材(D)を調製した。
研磨材(D)を用い、実施例1で用いたと同様の研磨用基板を同様に研磨した。このときの研磨所要時間は110秒であり、研磨面にスクラッチは認められなかった。
【0025】
【比較例1】
研磨用粒子(E)の製造
実施例1において、限外濾過膜で未反応のテトラエトキシシラン、メタノール、アンモニアをほぼ完全に除去した後、濃縮して固形分濃度20重量%の研磨用粒子(E)の分散液を得た。研磨用粒子(E)は平均粒子径20nmの単分散粒子であった。
研磨
研磨用粒子(E)の分散液を用いた以外は実施例1と同様にして研磨材(E)を調製した。
研磨材(E)を用い、実施例1で用いたと同様の研磨用基板を同様に研磨した。このときの研磨所要時間は80秒であり、研磨面にスクラッチは認められなかった。
【0026】
【比較例2】
研磨用粒子(F)としてシリカゾル(触媒化成工業(株)製:カタロイドSI−50、平均粒子径25nm、SiO2 濃度48重量%)をSiO2 濃度20重量%に希釈して用いた以外は実施例1と同様にして研磨材(F)を調製した。
研磨材(F)を用い、実施例1で用いたと同様の研磨用基板を同様に研磨した。このときの研磨所要時間は85秒であり、研磨面にスクラッチは認められなかった。
【0027】
【比較例3】
研磨用粒子(G)の製造
シリカゾル(触媒化成工業(株)製:カタロイドSI−50,平均粒子径25nm、SiO2 濃度48重量%:pH9.2)をSiO2 濃度2重量%に希釈した後、イオン交換樹脂で脱イオンしてpH5.5とした。このシリカゾルを実施例4と同様に水熱処理し、両性イオン交換樹脂で精製した後濃縮し、平均粒子径25nmの粒子が10〜20個、平均的に16個塊状に連結した粒子群からなり、固形分濃度20重量%の研磨用粒子(G)の分散液を得た。
研磨
研磨用粒子(G)の分散液を用いた以外は実施例1と同様にして研磨材(G)を調製した。
研磨材(G)を用い、実施例1で用いたと同様の研磨用基板を同様に研磨した。このときの研磨所要時間は180秒であり、研磨面にスクラッチは認められなかった。
【0028】
【表1】

Figure 0004278020
【0029】
【表2】
Figure 0004278020

【図面の簡単な説明】
【図1】本発明の異形粒子群における1次粒子の結合態様を示す説明図である。
【図2】従来のCMPによる研磨前(A)と研磨後(B)の状態を示す、被研磨材の断面図である。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to abrasive particles containing chain-like or other irregularly shaped particles formed by bonding two or more particles having an average particle diameter in the range of 5 to 300 nm, and polishing comprising the abrasive particles It relates to materials.
[0002]
TECHNICAL BACKGROUND OF THE INVENTION
Various integrated circuits are used in computers and various electronic devices, and with these miniaturization and high performance, higher density and higher performance of circuits are required.
Among them, for example, a semiconductor integrated circuit conventionally uses a multilayer wiring to increase the degree of integration of the semiconductor integrated circuit. Such a multilayer wiring is usually formed on a first insulating film on a substrate such as silicon. After forming a thermal oxide film, a first wiring layer made of an aluminum film or the like is formed, and an interlayer insulating film such as a silica film or a silicon nitride film is deposited thereon by a CVD method or a plasma CVD method. A silica insulating film for planarizing the interlayer insulating film is formed on the interlayer insulating film by the SOG method, and a second insulating film is further deposited on the silica insulating film as necessary. It is manufactured by forming the second wiring layer.
In the wiring made of the aluminum film, the wiring such as aluminum is oxidized at the time of sputtering when forming the multilayer wiring, and the resistance value is increased, which may cause poor conductivity. Further, since the wiring width cannot be reduced, there is a limit to forming a higher density integrated circuit. Further, in recent years, in long-distance wiring such as a clock line and a data bus line, wiring resistance increases as the chip size increases, and an increase in propagation delay time of electric signals (RC delay time = resistance × capacitance) has become a problem. . For this reason, it is necessary to replace the wiring with a material having a lower resistance.
[0003]
It has also been proposed to perform Cu wiring instead of conventional Al or Al alloy wiring. For example, after forming a wiring groove in an insulating film on a substrate in advance, Cu wiring is formed by electrolytic plating, CVD, or the like. Methods for doing this are known.
In the formation of a wiring pattern such as copper, since a process by a dry etch process is difficult, a damascene process using a chemical mechanical polishing method (hereinafter sometimes referred to as CMP) is applied, and insulation on a substrate is performed. A wiring groove is formed in the film in advance, and copper is buried in the wiring groove by an electrolytic plating method, a CVD method or the like, and then the upper end surface is polished by CMP and flattened to form a wiring.
Specifically, for example, as shown in FIG. 2A, a wiring interlayer film (insulating film) is formed on a substrate such as a silicon wafer, and metal wiring is formed on the wiring interlayer film (insulating film). A barrier metal layer such as TaN is formed by a sputtering method or the like as necessary, and then copper for metal wiring is formed by a CVD method or the like. Here, when a barrier metal layer such as TaN is provided, it is possible to prevent a decrease in insulation of the interlayer insulating film due to diffusion or erosion of copper or impurities into the interlayer insulating film. And copper adhesion can be improved.
[0004]
Next, unnecessary copper and barrier metal (parts above the coplanar indicated by the arrow in FIG. 2A) formed by CMP are removed by polishing, and the upper surface is made as much as possible. Planarization is performed to form a copper wiring / circuit pattern while leaving a metal film only in the groove (see FIG. 2B).
In CMP, a polishing pad is generally mounted on a circular platen having a rotation mechanism, and a polishing material is rotated as shown in FIG. The copper and the barrier metal in the upper part of the coplanar surface are polished and removed by contacting the polishing pad while applying a load.
In addition, abrasives used in CMP are usually spherical polishing particles having an average particle diameter of about 200 nm made of a metal oxide such as silica and alumina, and oxidation for increasing the polishing rate of wiring / circuit metals. Agent, an additive such as an organic acid, and a solvent such as pure water.
[0005]
As shown in FIG. 2A, the surface of the material to be polished has a step (unevenness) due to the wiring groove pattern formed in the underlying insulating film. However, it is required to polish even the coplanar surface to obtain a flat polished surface.
However, with conventional spherical abrasive particles, when the portion above the coplanar surface is polished, the circuit metal in the wiring trench at the bottom of the recess is polished to below the coplanar surface (called dishing) There was.) If such dishing (overpolishing) occurs, the thickness of the wiring decreases and the wiring resistance increases, and the flatness of the insulating film formed thereon deteriorates. There is a need to suppress it.
[0006]
OBJECT OF THE INVENTION
An object of the present invention is to provide abrasive particles capable of suppressing the so-called dishing and polishing the substrate surface flatly, and an abrasive comprising the abrasive particles.
[0007]
Summary of the Invention
The abrasive particles according to the present invention are characterized by including an irregularly shaped particle group in which two or more primary particles having an average particle diameter in the range of 5 to 300 nm are combined, and all primary particles in the abrasive particles are included. The number of primary particles constituting the irregularly shaped particle group in the number of particles is preferably in the range of 5 to 100%.
The primary particles are preferably composed of inorganic oxides such as silica, alumina, zirconia, titania and ceria and / or inorganic composite oxides such as silica-alumina and silica-zirconia.
The abrasive of the present invention is characterized in that the abrasive particles are dispersed in an aqueous dispersion medium in an amount of 2 to 50% by weight.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Abrasive particles In the present invention, the irregularly shaped particle group is not a particle group of a normal form in which primary particles are aggregated into a spherical shape or agglomerated to form a lump, but two or more 1 A group of particles in which secondary particles are combined to form a chain, fiber, or other irregular shape.
That is, it means a particle group in which one irregularly shaped particle group can be in contact with a plane (substrate to be polished) at two or more points, or in contact with a line or a surface.
As the binding mode of primary particles in this irregularly shaped particle group, as shown in FIG. 1, two primary particles joined, three or more joined in a chain, three joined at three points, In addition to the case where four particles are bonded in a planar or tetrapot form, the case where five or more particles are bonded in the same manner, and other irregular particle groups obtained by bonding these irregular particle groups.
[0009]
Two or more, preferably 2 to 20, and particularly preferably 3 to 10, primary particles constituting the irregularly shaped particle group are bonded to each other.
When the number of primary particles is less than 2, that is, one, dishing is likely to occur as described above. On the other hand, when the primary particles are bonded in excess of 20, depending on the bonding form, The irregularly shaped particle group may be destroyed, which may cause scratches (scratches), and in the case of a long chain shaped irregularly shaped particle group, the polishing rate may decrease.
In addition, when the primary particles are aggregated in a lump shape, the thixotropy described later may not be exhibited, there is no difference from simply large spherical particles, and the effect of suppressing dishing cannot be sufficiently obtained. In this case as well, scratches may occur.
In the deformed particle group in which primary particles are bonded in the range of 2 to 20, the deformed particle group and the bottom surface are in multipoint contact at the bottom of the concave portion of the surface to be polished, or the deformed particle group has thixotropic properties. Therefore, the irregularly shaped particle group deposited in the concave portion during polishing is not easily moved from the concave portion, so that the bottom surface of the concave portion is not polished, so that dishing can be suppressed.
[0010]
The primary particles constituting the irregularly shaped particle group are not necessarily spherical, and may be egg-shaped, dice-shaped, or rod-shaped. Moreover, the particle diameters of the primary particles may be different from each other, and the size of the joint portion may be approximately the same as the particle diameter of the primary particles, that is, there may be no constriction.
As such primary particles, particles made of inorganic oxides such as silica, alumina, zirconia, titania and ceria and / or inorganic composite oxides such as silica-alumina and silica-zirconia are suitable.
[0011]
The average particle diameter of the primary particles is in the range of 5 to 300 nm, preferably 20 to 80 nm. When the average particle diameter is less than 5 nm, the particle group obtained by agglomerating primary particles tends to be agglomerated, so that thixotropic properties are not exhibited and it is difficult to obtain an effect of suppressing dishing. If the average particle diameter exceeds 300 nm, the particles may be too large and the polishing rate may decrease, or scratches (scratches) may occur on the polished surface.
[0012]
The number of primary particles constituting the irregularly shaped particle group is preferably in the range of 5 to 100%, particularly 10 to 80% with respect to the number of all primary particles in the abrasive particles. If this ratio is less than 5%, the irregularly shaped particle group is accompanied by monodisperse particles other than the irregularly shaped particle group, and the effect of suppressing dishing may not be obtained because it does not stay in the wiring groove recess.
The proportion of primary particles constituting the irregularly shaped particle group is determined by taking a transmission electron micrograph of the abrasive particles and, for all particles in an arbitrary area, particles consisting of the total number of primary particles and only primary particles (monodisperse And the number of monodispersed particles is subtracted from the total number of primary particles. The number of particles is preferably measured in an area where the total number of primary particles is about 500.
[0013]
In order to produce the irregularly shaped particle group, (1) a conventionally known dispersion or sol of silica monodisperse particles is hydrothermally treated at a high temperature, or (2) Japanese Patent Application Laid-Open No. Hei 11 filed by the applicant of the present application. The short fibrous silica disclosed in JP-A-610443 can also be suitably used.
Such irregular shaped particle groups are obtained by separating and classifying the obtained irregular shaped particle group dispersion liquid to remove the monodispersed particles, or adding monodispersed particles in some cases. The proportion of the irregularly shaped particles in the abrasive particles can be adjusted to a desired level.
[0014]
Abrasive Material In the abrasive material of the present invention, abrasive particles containing the irregularly shaped particle group are dispersed in an aqueous dispersion medium. The aqueous dispersion medium refers to a mixed solvent of water and a water-soluble organic solvent such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, water-soluble organic solvents such as ethers, esters, and ketones. The concentration of the abrasive particles in the abrasive is preferably 2 to 50% by weight, particularly 5 to 30% by weight. When the concentration is less than 2% by weight, the concentration of polishing particles may be too low to obtain a sufficient polishing rate. When the concentration of the abrasive particles exceeds 50% by weight, the stability of the abrasive becomes insufficient, and a dried product may be generated and adhered in the step of supplying the abrasive, which causes the generation of scratches. Sometimes.
[0015]
Since the abrasive of the present invention includes a profiled particle group noted previously, in CMP of a substrate having the uneven, polished first projections, recesses does not take up polishing of the projections proceeds even weighted Since the irregularly shaped particle group also hardly flows into the recess, the recess is not polished.
As the polishing of the convex part proceeds, the irregularly shaped particle group flows into the concave part, but the irregularly shaped particle group is in contact with the substrate at many points and has thixotropic properties as chain particles or fibrous particles. Therefore, it does not move easily and is not replaced with a new irregularly shaped particle group, so that polishing of the recess does not proceed. Next, when the polishing of the convex portion further progresses and the upper surface of the convex portion and the bottom surface of the concave portion come close to each other (when the step is reduced), a substrate load starts to be applied to the irregularly shaped particles that have stayed in the concave portion. The polishing of the concave portion starts at the same polishing rate as the convex portion.
In CMP, polishing is performed until there is no metal portion on the upper end surface such as an insulating film formed on the substrate. At this time, the polishing rate of the convex portion and the polishing rate of the concave portion are the same, and the top surface of the convex portion and the bottom surface of the concave portion Since polishing is performed in the proximity of each other, dishing does not occur, and at the end of polishing, the upper end surface of the insulating film and the upper end surface of the circuit after polishing coincide with each other and have a coplanar surface with excellent flatness Can be polished.
In particular, when the width of the concave portion is wide, normal polishing particles easily flow into the concave portion and easily come into contact with the polishing pad. Therefore, the polishing of the concave portion proceeds simultaneously with the polishing of the convex portion, and dishing becomes remarkable. However, since the irregularly shaped particle group used in the present invention has the above-described thixotropy, dishing can be suppressed even when the width of the recess is wide or the width of the wiring groove is wide.
[0016]
In order to improve the metal polishing rate, the abrasive of the present invention should be used with addition of hydrogen peroxide, peracetic acid, urea peroxide, or a mixture thereof, depending on the type of material to be polished. Can do.
In addition, in order to adjust the polishing rate of multiple kinds of materials to be polished, acids such as sulfuric acid, nitric acid, phosphoric acid and hydrofluoric acid, or sodium salts, potassium salts, ammonium salts and mixtures of these acids are added. Can be used.
As other additives, for example, imidazole, benzotriazole, benzothiazole and the like can be used in order to form a passive layer or a dissolution suppressing layer on the surface of the metal polishing material to prevent erosion of the substrate.
In addition, complex forming materials such as citric acid, lactic acid, acetic acid, and oxalic acid can be used to disturb the passive layer.
In order to improve the dispersibility and stability of the abrasive slurry, a cationic, anionic, nonionic or amphoteric surfactant can be appropriately selected and added.
Furthermore, in order to enhance the effect of each of the above additives, an acid or base may be added to adjust the pH of the abrasive slurry to about 2-11, preferably 4-9, more preferably 5-8. Good.
Further, when the material to be polished is a silica oxide film or the like, the polishing rate can be increased by adding an alkali metal silicate aqueous solution.
[0017]
【The invention's effect】
Since the abrasive particles of the present invention include irregularly shaped particles, polishing of the concave portion is suppressed until the upper end surface of the convex portion is at the same level as the bottom surface of the concave portion in the polishing of the substrate having irregularities. After the top surface of the surface is polished to the same level as the bottom surface of the recess, both the protrusion and the recess can be polished at the same polishing speed, so that dishing (overpolishing) does not occur and the surface after polishing is flat with no unevenness. Is excellent.
According to the polishing agent of the present invention, dishing does not occur in polishing in the formation of a semiconductor integrated circuit and the like, and the surface after polishing is excellent in flatness without increasing the circuit resistance of the obtained integrated circuit. Therefore, a laminated integrated circuit can be formed efficiently.
[0018]
【Example】
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
[0019]
[Example 1]
Production of abrasive particles (A) A mixed solvent obtained by mixing 139.1 g of pure water and 169.9 g of methanol was kept at 60C, and tetraethoxysilane (manufactured by Tama Chemical Co., Ltd .: ethyl silicate) 28, SiO 2 = 28 wt%) in a water-methanol solvent (532.5 g of tetraethoxysilane dissolved in 2450 g of a mixed solvent of water / methanol (weight ratio 2/8)) 2982.5 g and a concentration of 0.25 wt% 596.4 g of aqueous ammonia was added simultaneously over 20 hours. After completion of the addition, the mixture was further aged at this temperature for 3 hours. Thereafter, unreacted tetraethoxysilane, methanol and ammonia were removed almost completely with an ultrafiltration membrane, and pure water was added to prepare a silica concentration of 1% by weight.
Next, hydrothermal treatment was performed in an autoclave at 300 ° C. for 10 hours. After hydrothermal treatment, it is refined with both ion exchange resins, concentrated, and composed of a group of irregularly shaped particles in which 2 to 5 particles having an average particle diameter of 20 nm are connected in an average of 4 chains, and the solid content concentration is 20% by weight. A dispersion of abrasive particles (A) was obtained. Table 1 shows the properties of the irregularly shaped particle group, and Table 2 shows the proportion of the irregularly shaped particle group in the abrasive particles (A).
[0020]
Polishing (1) A dispersion of abrasive particles (A) (500 g) was mixed with 333 g of hydrogen peroxide solution having a concentration of 30% by weight, 5 g of ammonium oxalate and 162 g of water to obtain a particle concentration of 10% by weight and 10% hydrogen peroxide. A polishing material (A) containing 0.5% by weight of ammonium oxalate was prepared.
(2) As a polishing substrate insulating film, an insulating film (thickness 0.4 μm) made of silica is laminated on the surface of an insulating film (thickness 0.2 μm) made of silicon nitride, and further an insulating film made of silicon nitride A positive photoresist was applied on a silicon wafer (8-inch wafer) substrate on which (thickness of 0.2 μm) was sequentially formed, and a 0.3 μm line-and-space exposure process was performed. After removing the exposed portion with a developer of tetramethylammonium hydride (TMAH), a pattern is formed in the lower insulating film using a mixed gas of CF 4 and CHF 3 , and then the resist is removed by O 2 plasma, A wiring groove having a width (W C ) of 0.3 μm and a depth of 0.6 μm was formed.
Next, a thin layer of copper (Cu) is formed on the substrate on which the wiring grooves are formed by the CVD method, and further the film is formed by the electrolytic plating method, so that the total thickness of the copper layer (sacrificial layer) on the insulating film is A 0.2 μm copper film was formed to prepare a polishing substrate.
[0021]
(3) Polishing Test Using a polishing substrate, set in a polishing apparatus (manufactured by Nano Factor Co., Ltd .: NF300), load the substrate with a weight of 5 psi, a table rotation speed of 50 rpm, and a spindle speed of 60 rpm. Polishing was performed at a rate of minutes until there was no sacrificial layer (thickness 0.2 μm) on the insulating film. The required polishing time at this time was 120 seconds, and no scratch was observed on the polished surface. Moreover, the wiring groove part was cut | disconnected perpendicularly to the wiring direction, the photograph of the cut surface was image | photographed, the dishing of the copper surface was observed, and the following references | standards evaluated. The evaluation results and the polishing rate at this time are shown in Table 2.
○: Dishing with a depth of less than 50 nm was observed.
(Triangle | delta): The dishing of depth less than 50-100 nm was recognized.
X: Dishing with a depth of 100 nm or more was observed.
[0022]
[Example 2]
Production of abrasive particles (B) Polishing with a solid concentration of 20% by weight in the same manner as in Example 1 except that pure water was added to prepare a silica concentration of 0.5% by weight. A dispersion of particles for use (B) was obtained. The obtained abrasive particles (B) consisted of a group of irregularly shaped particles in which 1 to 4 particles having an average particle diameter of 20 nm were connected in an average of 3 chains.
Abrasive Abrasive (B) was prepared in the same manner as in Example 1 except that the dispersion of abrasive particles (B) was used.
A polishing substrate similar to that used in Example 1 was polished in the same manner using the abrasive (B). The required polishing time at this time was 100 seconds, and no scratch was observed on the polished surface.
[0023]
[Example 3]
Production of abrasive particles (C) Polishing with a solid content concentration of 20% by weight in the same manner as in Example 1 except that pure water was added to adjust the silica concentration to 2.5% by weight. A dispersion of particles for use (C) was obtained. The obtained abrasive particles (C) consisted of a group of irregularly shaped particles in which 2 to 8 particles having an average particle diameter of 20 nm were connected in an average of 6 chains.
Polishing An abrasive (C) was prepared in the same manner as in Example 1 except that the dispersion of polishing particles (C) was used.
Using the abrasive (C), the same polishing substrate as used in Example 1 was polished in the same manner. The required polishing time at this time was 150 seconds, and no scratch was observed on the polished surface.
[0024]
[Example 4]
Production of abrasive particles (D) Silica sol ( manufactured by Catalyst Kasei Kogyo Co., Ltd .: Cataloid SI-50, average particle size 25 nm, SiO 2 concentration 48 wt%) was diluted to an SiO 2 concentration of 2 wt%, Subsequently, hydrothermal treatment was performed in an autoclave at 250 ° C. for 10 hours. After hydrothermal treatment, it is purified with an amphoteric ion exchange resin, then concentrated, and consists of a group of irregularly shaped particles in which 1 to 6 particles having an average particle diameter of 25 nm are connected in an average of 4 chains or tetrapots. A dispersion of abrasive particles (D) having a concentration of 20% by weight was obtained.
Polishing An abrasive (D) was prepared in the same manner as in Example 1 except that the dispersion of polishing particles (D) was used.
A polishing substrate similar to that used in Example 1 was polished in the same manner using the abrasive (D). The required polishing time at this time was 110 seconds, and no scratch was observed on the polished surface.
[0025]
[Comparative Example 1]
Production of abrasive particles (E) In Example 1, unreacted tetraethoxysilane, methanol, and ammonia were almost completely removed with an ultrafiltration membrane, and then concentrated to a solid content concentration of 20 wt%. A dispersion of abrasive particles (E) was obtained. The abrasive particles (E) were monodisperse particles having an average particle diameter of 20 nm.
Polishing An abrasive (E) was prepared in the same manner as in Example 1 except that the dispersion of polishing particles (E) was used.
Using the abrasive (E), the same polishing substrate as used in Example 1 was polished in the same manner. The required polishing time at this time was 80 seconds, and no scratch was observed on the polished surface.
[0026]
[Comparative Example 2]
Except that silica sol (catalyst SI-50, cataloid SI-50, average particle diameter 25 nm, SiO 2 concentration 48% by weight) was used as polishing particles (F) diluted to SiO 2 concentration 20% by weight. An abrasive (F) was prepared in the same manner as in Example 1.
A polishing substrate similar to that used in Example 1 was polished in the same manner using the abrasive (F). The required polishing time at this time was 85 seconds, and no scratch was observed on the polished surface.
[0027]
[Comparative Example 3]
Production of abrasive particles (G) Silica sol ( manufactured by Catalytic Chemical Industry Co., Ltd .: Cataloid SI-50, average particle size 25 nm, SiO 2 concentration 48 wt%: pH 9.2) was prepared with an SiO 2 concentration of 2 wt%. And diluted to pH 5.5 by deionization with an ion exchange resin. This silica sol was hydrothermally treated in the same manner as in Example 4, purified after being purified with an amphoteric ion exchange resin, concentrated, and composed of 10 to 20 particles having an average particle diameter of 25 nm, and an average of 16 particles connected in a lump. A dispersion of abrasive particles (G) having a solid content concentration of 20% by weight was obtained.
Polishing An abrasive (G) was prepared in the same manner as in Example 1 except that the dispersion of polishing particles (G) was used.
Using the abrasive (G), the same polishing substrate as used in Example 1 was polished in the same manner. The required polishing time at this time was 180 seconds, and no scratch was observed on the polished surface.
[0028]
[Table 1]
Figure 0004278020
[0029]
[Table 2]
Figure 0004278020

[Brief description of the drawings]
FIG. 1 is an explanatory view showing a binding mode of primary particles in a deformed particle group of the present invention.
FIG. 2 is a cross-sectional view of a material to be polished, showing states before (A) and after (B) polishing by conventional CMP.

Claims (3)

平均粒子径が5〜300nmの範囲にあるシリカの単分散粒子の分散液あるいはゾルを、250〜300℃の温度範囲で水熱処理することを特徴とする、1次粒子がバインダーを介さずに2個以上結合した異形粒子群を含む研磨用粒子の製造方法。 A dispersion or sol of monodispersed silica particles having an average particle diameter in the range of 5 to 300 nm is hydrothermally treated in a temperature range of 250 to 300 ° C. A method for producing abrasive particles comprising a group of irregularly shaped particles bonded together. 研磨用粒子中の全1次粒子の粒子数に占める、前記異形粒子群を構成する1次粒子の粒子数が5〜100%の範囲にある請求項1記載の研磨用粒子の製造方法。  The method for producing abrasive particles according to claim 1, wherein the number of primary particles constituting the irregularly shaped particle group in the total number of primary particles in the abrasive particles is in the range of 5 to 100%. 1次粒子がバインダーを介さずに2個以上結合した異形粒子群を含む研磨用粒子が、水系分散媒に2〜50重量%分散してなる研磨材の製造方法であって、前記研磨用粒子を、平均粒子径が5〜300nmの範囲にあるシリカの単分散粒子の分散液あるいはゾルを250〜300℃の温度範囲で水熱処理して得ることを特徴とする研磨材の製造方法。A method for producing an abrasive comprising 2 to 50% by weight of an abrasive particle comprising a group of irregularly shaped particles in which two or more primary particles are bonded without a binder, wherein the abrasive particle is dispersed in an aqueous dispersion medium. Is obtained by hydrothermally treating a dispersion or sol of silica monodisperse particles having an average particle diameter of 5 to 300 nm in a temperature range of 250 to 300 ° C.
JP2001331748A 2001-10-30 2001-10-30 Abrasive particles and method for producing abrasives Expired - Lifetime JP4278020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001331748A JP4278020B2 (en) 2001-10-30 2001-10-30 Abrasive particles and method for producing abrasives

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001331748A JP4278020B2 (en) 2001-10-30 2001-10-30 Abrasive particles and method for producing abrasives

Publications (2)

Publication Number Publication Date
JP2003133267A JP2003133267A (en) 2003-05-09
JP4278020B2 true JP4278020B2 (en) 2009-06-10

Family

ID=19147258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001331748A Expired - Lifetime JP4278020B2 (en) 2001-10-30 2001-10-30 Abrasive particles and method for producing abrasives

Country Status (1)

Country Link
JP (1) JP4278020B2 (en)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006080406A (en) * 2004-09-13 2006-03-23 Catalysts & Chem Ind Co Ltd Composition for polishing
JP4883383B2 (en) * 2005-06-02 2012-02-22 旭硝子株式会社 Dispersion containing hollow SiO2, coating composition, and substrate with antireflection coating
US20070117497A1 (en) * 2005-11-22 2007-05-24 Cabot Microelectronics Corporation Friction reducing aid for CMP
JP5137521B2 (en) 2006-10-12 2013-02-06 日揮触媒化成株式会社 Konpira sugar-like sol and process for producing the same
JP4907317B2 (en) 2006-11-30 2012-03-28 日揮触媒化成株式会社 Kinpe sugar-like inorganic oxide sol, method for producing the same, and abrasive containing the sol
JP5275595B2 (en) * 2007-08-29 2013-08-28 日本化学工業株式会社 Semiconductor wafer polishing composition and polishing method
JP5602358B2 (en) 2007-11-30 2014-10-08 日揮触媒化成株式会社 Non-spherical silica sol, method for producing the same, and polishing composition
JP5346167B2 (en) * 2007-12-27 2013-11-20 日揮触媒化成株式会社 Particle-linked alumina-silica composite sol and method for producing the same
JP2010192904A (en) * 2010-03-01 2010-09-02 Jgc Catalysts & Chemicals Ltd Composition for polishing
JP5477192B2 (en) 2010-06-23 2014-04-23 富士ゼロックス株式会社 Method for producing silica particles
JP5477193B2 (en) 2010-06-24 2014-04-23 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5488255B2 (en) 2010-06-25 2014-05-14 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5724401B2 (en) 2011-01-19 2015-05-27 富士ゼロックス株式会社 Resin particles and method for producing the same
JP5741005B2 (en) 2011-01-20 2015-07-01 富士ゼロックス株式会社 Resin particles and method for producing the same
JP5712824B2 (en) 2011-07-06 2015-05-07 富士ゼロックス株式会社 Silica particles and method for producing the same
JP5857525B2 (en) * 2011-08-18 2016-02-10 富士ゼロックス株式会社 Silica particles and method for producing the same
JP6140390B2 (en) * 2012-03-16 2017-05-31 株式会社フジミインコーポレーテッド Polishing composition
KR102050783B1 (en) 2011-11-25 2019-12-02 가부시키가이샤 후지미인코퍼레이티드 Polishing composition
JP5831378B2 (en) 2011-12-01 2015-12-09 富士ゼロックス株式会社 Silica composite particles and method for producing the same
JP5915555B2 (en) 2013-01-28 2016-05-11 富士ゼロックス株式会社 Silica composite particles and method for producing the same
CN109414210B (en) 2016-06-30 2022-03-11 拓自达电线株式会社 Electrode for living body, and method for forming electrode for living body
US10629325B2 (en) * 2016-06-30 2020-04-21 Tatsuta Electric Wire & Cable Co., Ltd. Silver chloride paste
US9783702B1 (en) * 2016-10-19 2017-10-10 Rohm And Haas Electronic Materials Cmp Holdings Inc. Aqueous compositions of low abrasive silica particles
KR102495158B1 (en) * 2017-01-20 2023-02-01 닛키 쇼쿠바이카세이 가부시키가이샤 Silica particle dispersion and manufacturing method thereof
TWI777011B (en) 2017-12-27 2022-09-11 日商日揮觸媒化成股份有限公司 Method for producing chain particle dispersion liquid for abrasives
JP7351698B2 (en) 2019-09-30 2023-09-27 日揮触媒化成株式会社 Silica particle dispersion and its manufacturing method
TW202122517A (en) * 2019-12-03 2021-06-16 日商Jsr股份有限公司 Composition for chemical mechanical polishing and chemical mechanical polishing method

Also Published As

Publication number Publication date
JP2003133267A (en) 2003-05-09

Similar Documents

Publication Publication Date Title
JP4278020B2 (en) Abrasive particles and method for producing abrasives
US7029373B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
US6692546B2 (en) Chemical mechanical polishing compositions for metal and associated materials and method of using same
RU2356926C2 (en) Abrasive particles for mechanical polishing
TW575645B (en) Acidic polishing slurry for the chemical-mechanical polishing of SiO2 isolation layers
JP4489191B2 (en) Planarizing composition for metal film removal
US6365520B1 (en) Small particle size chemical mechanical polishing composition
KR100508838B1 (en) Method of Manufacturing Semiconductor Apparatus and Solution for Polishing the Same
JP2006060205A (en) Slurry composition, its production process, and polishing method of workpiece employing it
KR100956216B1 (en) Compositions for chemical mechanical planarization of copper
US20120196443A1 (en) Chemical mechanical polishing method
JP2007157841A (en) Aqueous dispersion solution for cmp, polishing method, and manufacturing method of semiconductor device
JP2005159351A (en) High selectivity colloidal silica slurry
JP2002537652A (en) Method for chemical mechanical polishing of low dielectric constant polymer layers
JP2003031529A (en) Slurry for cmp, and manufacturing method of semiconductor device using the slurry
JP4649871B2 (en) Chemical mechanical polishing method using chemical mechanical polishing kit
US6530824B2 (en) Method and composition for polishing by CMP
JP2000114213A (en) Mechanochemical polishing method for layer of copper- based material
JP2006080406A (en) Composition for polishing
JP2003277731A (en) Abrasive particle and abrasive material
JP2001031953A (en) Polishing agent for metallic film
JP4618974B2 (en) Abrasive particles, method for producing the abrasive particles, and abrasive
JP2010192904A (en) Composition for polishing
JP4070572B2 (en) Abrasive silica particles and abrasive
JP2000306873A (en) Polishing

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20061026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061107

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070710

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081228

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090210

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090305

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4278020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120319

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130319

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140319

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term