JP2006080406A - Composition for polishing - Google Patents
Composition for polishing Download PDFInfo
- Publication number
- JP2006080406A JP2006080406A JP2004264796A JP2004264796A JP2006080406A JP 2006080406 A JP2006080406 A JP 2006080406A JP 2004264796 A JP2004264796 A JP 2004264796A JP 2004264796 A JP2004264796 A JP 2004264796A JP 2006080406 A JP2006080406 A JP 2006080406A
- Authority
- JP
- Japan
- Prior art keywords
- polishing
- spherical particles
- polishing composition
- particles
- silica
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Mechanical Treatment Of Semiconductor (AREA)
- Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
Abstract
Description
本発明は、水系分散媒に球状粒子と非球状粒子が分散してなる研磨用組成物に関するものである。 The present invention relates to a polishing composition in which spherical particles and non-spherical particles are dispersed in an aqueous dispersion medium.
コンピューター、各種電子機器には各種の集積回路が用いられており、これらの小型化、高性能化に伴い回路の高密度化と高性能化が求められている。この中で、例えば半導体集積回路は、従来、半導体集積回路の集積度を高めるために多層配線が用いられており、このような多層配線は、通常、シリコンなどの基板上に、第1絶縁膜としての熱酸化膜を形成した後、アルミニウム膜などからなる第1配線層を形成し、この上にCVD法あるいはプラズマCVD法等によって、シリカ膜、窒化ケイ素膜などの層間絶縁膜を被着させ、この層間絶縁膜上に、該層間絶縁膜を平坦化するためのシリカ絶縁膜をSOG法により形成し、このシリカ絶縁膜上に必要に応じてさらに第2絶縁膜を被着させた後、第2配線層を形成することによって、製造されている。上記アルミニウム膜からなる配線は、多層配線を形成する際のスパッタリング時にアルミニウム等の配線が酸化されて抵抗値が増大して導電不良を起こすことがあった。また、配線幅を小さくすることができないためにより高密度の集積回路を形成するには限界があった。さらに、近年クロック線やデータバス線のような長距離配線では、チップサイズ増大に伴い配線抵抗が増大し電気信号の伝播遅延時間(RC遅延時間=抵抗ラ容量)の増大が問題となっている。このため配線をより低抵抗の材料に置き換えていく必要が生じている。 Various integrated circuits are used in computers and various electronic devices, and with these miniaturization and high performance, higher density and higher performance of circuits are required. Among them, for example, a semiconductor integrated circuit conventionally uses a multilayer wiring to increase the degree of integration of the semiconductor integrated circuit. Such a multilayer wiring is usually formed on a first insulating film on a substrate such as silicon. After forming a thermal oxide film, a first wiring layer made of an aluminum film or the like is formed, and an interlayer insulating film such as a silica film or a silicon nitride film is deposited thereon by a CVD method or a plasma CVD method. A silica insulating film for planarizing the interlayer insulating film is formed on the interlayer insulating film by the SOG method, and a second insulating film is further deposited on the silica insulating film as necessary. It is manufactured by forming the second wiring layer. In the wiring made of the aluminum film, the wiring such as aluminum is oxidized at the time of sputtering when forming the multilayer wiring, and the resistance value is increased to cause a conductive failure. Further, since the wiring width cannot be reduced, there is a limit to forming a higher density integrated circuit. Further, in recent years, long-distance wiring such as a clock line and a data bus line has increased wiring resistance with an increase in chip size, and an increase in propagation delay time of electric signals (RC delay time = resistance capacity) has become a problem. . For this reason, it is necessary to replace the wiring with a material having a lower resistance.
従来のAlやAl合金による配線に代えてCu配線を行うことも提案されており、例えば、基板上の絶縁膜に予め配線溝を形成した後、電解メッキ法、CVD法等によりCu配線を形成する方法が公知である。この銅等の配線パターン形成においては、ドライエッチプロセスによる加工が困難なため、化学機械研磨方法(以下、CMPと言うこともある。)を用いたダマシンプロセスが適用されており、基板上の絶縁膜に予め配線溝を形成し、電解メッキ法やCVD法等により銅を配線溝に埋め込んだ後、CMPにより上端面を研磨し、平坦化して配線を形成している。具体的には、例えば、図1(A)に示すように、シリコンウェハー等の基材上に配線層間膜(絶縁膜)を成膜し、その配線層間膜(絶縁膜)上に金属配線用の溝パターンを形成し、必要に応じてスパッタリング法などによってTaN等のバリアメタル層を形成し、ついで金属配線用の銅をCVD法等により成膜する。ここで、TaN等のバリアメタル層を設けた場合には層間絶縁膜への銅や不純物などの拡散や浸食に伴う層間絶縁膜の絶縁性の低下などを防止することができ、また層間絶縁膜と銅の接着性を高めることができる。 It has also been proposed to perform Cu wiring instead of conventional Al or Al alloy wiring. For example, after forming a wiring groove in an insulating film on a substrate in advance, Cu wiring is formed by electrolytic plating, CVD, or the like. Methods for doing this are known. In the formation of a wiring pattern such as copper, since a process by a dry etch process is difficult, a damascene process using a chemical mechanical polishing method (hereinafter sometimes referred to as CMP) is applied, and insulation on a substrate is performed. A wiring groove is formed in the film in advance, and copper is buried in the wiring groove by an electrolytic plating method, a CVD method or the like, and then the upper end surface is polished by CMP and flattened to form a wiring. Specifically, for example, as shown in FIG. 1A, a wiring interlayer film (insulating film) is formed on a substrate such as a silicon wafer, and metal wiring is formed on the wiring interlayer film (insulating film). A barrier metal layer such as TaN is formed by a sputtering method or the like as necessary, and then copper for metal wiring is formed by a CVD method or the like. Here, when a barrier metal layer such as TaN is provided, it is possible to prevent a decrease in insulation of the interlayer insulating film due to diffusion or erosion of copper or impurities into the interlayer insulating film. And copper adhesion can be improved.
次いで、CMPにより、溝内以外に成膜された不要な銅及びバリアメタル(図1(A)中の矢印で示す共面より上の部分)を研磨して除去するとともに上部表面を可能な限り平坦化して、溝内にのみ金属膜を残して銅の配線・回路パターンを形成する(図1(B)参照)。CMPは、一般的に回転機構を有する円形プラテン上に研磨パッドを搭載し、研磨パッドの中心上部から研磨材を滴下供給した状態で、図1(A)に示すような被研磨材を回転させ、加重を掛けながら研磨パッドに接触させることによって、共面の上部部分の銅及びバリアメタルを研磨して除去するものである。また、CMPで使用される研磨材は、通常、シリカ、アルミナ等の金属酸化物からなる平均粒子径が200nm程度の球状の研磨用粒子と、配線・回路用金属の研磨速度を早めるための酸化剤、有機酸等の添加剤及び純水などの溶媒から構成されている。 Next, unnecessary copper and barrier metal (parts above the coplanar surface indicated by the arrow in FIG. 1A) formed by CMP are removed by polishing, and the upper surface is made as much as possible. Planarization is performed to form a copper wiring / circuit pattern leaving a metal film only in the groove (see FIG. 1B). In CMP, a polishing pad is generally mounted on a circular platen having a rotation mechanism, and a polishing material is rotated as shown in FIG. The copper and the barrier metal in the upper part of the coplanar surface are polished and removed by contacting the polishing pad while applying a load. In addition, abrasives used in CMP are usually spherical polishing particles having an average particle diameter of about 200 nm made of a metal oxide such as silica and alumina, and oxidation for increasing the polishing rate of wiring / circuit metals. Agent, an additive such as an organic acid, and a solvent such as pure water.
前記図1(A)に示すように、被研磨材の表面には下地の絶縁膜に形成した配線用の溝パターンに起因した段差(凹凸)が存在するので、主に凸部を研磨除去しながら共面まで研磨し、平坦な研磨面とすることが求められており、また、長時間に渡って研磨した場合でも、研磨レートが低下しないことが望まれていた。
特表2003−529662号(特許文献1)には、互いにボンドによって連結していない球形の、分離したシリカ粒子を含む研磨剤であって、a)寸法5−50nmのシリカ粒子5−95重量%、及びb)寸法50−200nmのシリカ粒子95−5重量%を含む、但し粒子の全体がバイモーダルの粒経分布を有する研磨剤に関する発明が記載されており、同研磨剤によれば、高い研磨速度が得られることが記載されている。
As shown in FIG. 1A, the surface of the material to be polished has a step (unevenness) due to the wiring groove pattern formed in the underlying insulating film. However, it has been demanded that the surface is polished to be a flat polished surface, and it has been desired that the polishing rate does not decrease even when polished for a long time.
JP-A-2003-529622 (Patent Document 1) discloses a polishing agent containing spherical, separated silica particles which are not connected to each other by a bond, and a) 5-95% by weight of silica particles having a size of 5 to 50 nm. And b) an invention relating to an abrasive comprising 95-5% by weight of silica particles with a size of 50-200 nm, but with the entire particle having a bimodal particle size distribution. It is described that a polishing rate can be obtained.
特開2003−297777号(特許文献2)には、50〜120nmの粒子径の分画の酸化珪素粒子と、30〜50nmの粒子径の分画の酸化珪素粒子と、15〜30nmの粒子径の分画の酸化珪素粒子とが、重量比において1:0.2〜2:0〜1.5の割合で存在し、かつ研磨用組成物全体に対する酸化珪素粒子の濃度が1〜25重量%の範囲にあり、更に25≡における酸解離定数の逆数の対数値が8.0〜12.0の範囲にある弱酸及び/または弱塩基を使用した弱酸と強塩基、強酸と弱塩基あるいは弱酸と弱塩基の何れかの組み合わせの塩を含むことによりpH8.7〜10.6の範囲でpHが緩衝作用を有する緩衝溶液として調製された研磨用組成物に関する発明が記載されており、同研磨用組成物によれば、シリコンウエーハ、半導体デバイス基板の平面及び端面を研磨表面の品質を落とさず、安定に高速研磨できることが記載されている。 Japanese Patent Application Laid-Open No. 2003-297777 (Patent Document 2) discloses fractionated silicon oxide particles having a particle size of 50 to 120 nm, fractionated silicon oxide particles having a particle size of 30 to 50 nm, and particle size of 15 to 30 nm. The fraction of silicon oxide particles is present in a weight ratio of 1: 0.2 to 2: 0 to 1.5, and the concentration of silicon oxide particles in the polishing composition is 1 to 25% by weight. Further, a weak acid and / or a strong base using a weak acid and / or a weak base in which the logarithm of the reciprocal of the acid dissociation constant at 25≡ is in the range of 8.0 to 12.0, a strong acid and a weak base, or a weak acid An invention relating to a polishing composition prepared as a buffer solution having a buffering action at a pH of 8.7 to 10.6 by containing a salt of any combination of weak bases is described. According to the composition, the silicon wafer , Without reducing the quality of the polished surface plane and an end face of a semiconductor device substrate, it is described that can be stably fast polishing.
特開2001−323254号(特許文献3)には、研磨材と水とを混合してなる研磨液組成物であって、研磨材の小粒径側からの積算粒径分布(個数基準)が50%となる粒径(D50)に対する90%となる粒径(D90)の比(D90/D50)が1.3〜3.0で、且つD50が10〜600nmである研磨液組成物、粒径(D50)が異なる2種類以上の研磨材と水とを混合してなる研磨液組成物であって、D50の最も小さな研磨材(A)のD50(D50S)に対するD50の最も大きな研磨材(B)のD50(D50L)の比(D50L/D50S)が1.1〜3.0であってAとBとの配合比率(A/B(重量比))が90/10〜10/90である研磨液組成物に関する記載があり、同研磨液組成物は、研磨速度を向上させると共に、スクラッチ、ピット等の表面欠陥が少なく、表面粗さ(Ra)等の平滑性が向上した、表面性状に優れた高品質の磁気ディスク基板を生産効率よく製造することができることが記載されている。 Japanese Patent Application Laid-Open No. 2001-323254 (Patent Document 3) is a polishing composition obtained by mixing an abrasive and water, and has an integrated particle size distribution (number basis) from the small particle size side of the abrasive. Polishing liquid composition and particles having a ratio (D90 / D50) of particle size (D90) of 90% to particle size (D50) of 50% of 1.3 to 3.0 and D50 of 10 to 600 nm A polishing composition comprising a mixture of two or more types of abrasives having different diameters (D50) and water, wherein the abrasive having the largest D50 relative to D50 (D50S) of the smallest abrasive (D) (D50) B) The ratio of D50 (D50L) (D50L / D50S) is 1.1 to 3.0, and the blending ratio of A and B (A / B (weight ratio)) is 90/10 to 10/90. There is a description about a certain polishing composition, and the polishing composition improves the polishing rate. In addition, it is described that a high-quality magnetic disk substrate having excellent surface properties and improved surface smoothness such as surface roughness (Ra) can be produced with high production efficiency with few surface defects such as scratches and pits. ing.
特開2001−11433号(特許文献4)には、シリカゾルを含むアルミニウムディスクの研磨用組成物において、シリカゾルが、平均粒子径10〜120nmの球状コロイダルシリカ粒子とこの球状コロイダルシリカ粒子を接合する金属酸化物含有シリカからなり、動的光散乱法による測定粒子径(D1nm)と球状コロイダルシリカ粒子の平均粒子径(窒素吸着法による測定粒子径/D2nm)の比D1/D2が3以上であって、このD1は50〜800nmであり、球状コロイダルシリカ粒子が一平面内のみにつながった数珠状コロイダルシリカ粒子が水中に分散した安定なシリカゾルであること、及び該数珠状コロイダルシリカ粒子を、0.5〜50重量%のSiO2 濃度に有することを特徴とするアルミニウムディスクの研磨用組成物に関する発明について記載があり、同研磨用組成物の様な数珠状コロイダルシリカ粒子を含む研磨用組成物に研磨促進剤として三価の鉄化合物を添加することによりアルミニウムディスクの研磨において、三価の鉄化合物以外の金属塩を添加した研磨用組成物に比べ研磨速度が大幅に速くなり、得られる研磨面の良好となることについて記載がある。 Japanese Patent Application Laid-Open No. 2001-11433 (Patent Document 4) discloses a metal composition for bonding a spherical colloidal silica particle having an average particle diameter of 10 to 120 nm and a spherical colloidal silica particle in an aluminum disk polishing composition containing a silica sol. A ratio D 1 / D 2 consisting of oxide-containing silica and measuring particle diameter (D 1 nm) by dynamic light scattering method and average particle diameter of spherical colloidal silica particles (measured particle diameter by nitrogen adsorption method / D 2 nm) there be three or more, the D 1 is 50 to 800 nm, it beaded colloidal silica particles spherical colloidal silica particles are connected to only one plane is a stable silica sol dispersed in water, and said number pearl-like colloidal silica particles, sets polishing of aluminum disks, characterized in that it comprises a SiO 2 concentration of 0.5 to 50 wt% In the polishing of an aluminum disk, a trivalent iron compound is added as a polishing accelerator to a polishing composition containing beaded colloidal silica particles such as the polishing composition. There is a description that the polishing rate is significantly faster than the polishing composition to which a metal salt other than the iron compound is added, and the resulting polished surface is good.
本願発明者らは、ディッシング(過研磨)を抑制し、基板表面を平坦に研磨することのできる研磨用粒子として、平均粒子径が5〜300nmの範囲にある1次粒子が2個以上結合した異形粒子群を含む研磨用粒子を提案した(特開2003−133267号(特許文献5))。ここで「異形粒子群」とは、1次粒子が集合して球状となったり、または凝集して塊状となった通常の形態の粒子群ではなく、2個以上の1次粒子が結合して鎖状、繊維状、その他、異形の形態にある粒子群をいうのであるが、このような研磨用粒子は球状粒子自体よりも研磨レートが低くなる。 The present inventors suppressed dishing (overpolishing) and bonded two or more primary particles having an average particle diameter in the range of 5 to 300 nm as polishing particles capable of polishing the substrate surface flatly. Abrasive particles containing irregularly shaped particles were proposed (Japanese Patent Laid-Open No. 2003-133267 (Patent Document 5)). Here, the “shaped particle group” is not a particle group in a normal form in which primary particles are aggregated into a spherical shape or aggregated into a lump, but two or more primary particles are combined. This refers to a group of particles in the form of chains, fibers, or other irregular shapes. Such abrasive particles have a lower polishing rate than the spherical particles themselves.
そこで、例えば、凹凸を有する基材の研磨において、凸部の上端面が凹部の底面と同レベルになるまで凹部の研磨が抑制され、凸部の上端面が凹部の底面と同レベルまで研磨された後は凸部、凹部ともに同じ研磨速度で研磨できて、研磨後の表面は凹凸が無く平坦性に優れ、また、長時間の研磨に供しても、研磨性能の低下が生じ難いような研磨用組成物が望まれていた。 Therefore, for example, in polishing a substrate having irregularities, the polishing of the concave portion is suppressed until the upper end surface of the convex portion becomes the same level as the bottom surface of the concave portion, and the upper end surface of the convex portion is polished to the same level as the bottom surface of the concave portion. After that, both the convex part and the concave part can be polished at the same polishing rate, and the polished surface has no unevenness and is excellent in flatness, and even if it is subjected to polishing for a long time, polishing performance is not easily lowered. A composition for use was desired.
本発明は、優れた研磨性能を発揮し、かつ、長時間の研磨に供しても、研磨レートの低下が最小限に抑制された研磨用組成物を提供することにある。 An object of the present invention is to provide a polishing composition that exhibits excellent polishing performance and that suppresses a decrease in polishing rate to a minimum even when subjected to long-time polishing.
本発明の課題は、水系分散媒に、真球度が0.9以上、1.0以下の範囲にある球状粒子と該球状粒子に相当しない非球状粒子とが分散してなる研磨用組成物であって、非球状粒子に対する球状粒子の重量比が2/98〜35/65の範囲にある研磨用組成物によって解決される。
前記球状粒子と非球状粒子はシリカ粒子であることが好ましく、前記球状粒子の平均粒子径が20〜150nmの範囲にあり、前記非球状粒子の平均粒子径が5〜100nmの範囲にあることが好ましい。
また、本発明の研磨用組成物のpHについては、pHが8〜11.5の範囲にあることが望ましい。
本発明の研磨用組成物における非球状粒子は、珪酸アルカリを酸で中和し、生成したシリカヒドロゲルを洗浄し、熱による解膠により成長させて得られたものが好ましい。
本発明の研磨用組成物中に含まれる塩基性不純物の量は、SiO2に対して100ppm以下であるものが好ましい。
An object of the present invention is to provide a polishing composition in which spherical particles having a sphericity of 0.9 or more and 1.0 or less and non-spherical particles not corresponding to the spherical particles are dispersed in an aqueous dispersion medium. The problem is solved by the polishing composition in which the weight ratio of the spherical particles to the non-spherical particles is in the range of 2/98 to 35/65.
The spherical particles and non-spherical particles are preferably silica particles, the average particle diameter of the spherical particles is in the range of 20 to 150 nm, and the average particle diameter of the non-spherical particles is in the range of 5 to 100 nm. preferable.
Moreover, about pH of polishing composition of this invention, it is desirable that pH exists in the range of 8-11.5.
The non-spherical particles in the polishing composition of the present invention are preferably obtained by neutralizing an alkali silicate with an acid, washing the produced silica hydrogel, and growing it by peptization by heat.
The amount of the basic impurities contained in the polishing composition of the present invention is preferably 100 ppm or less with respect to SiO 2 .
本発明の研磨用組成物は、球状粒子と非球状粒子とを適当な割合で含んでいるので、明確な理由は不明であるが、凹部を有する被研磨面にこれらの粒子が多点接触したり、非球状粒子が球状粒子を介して研磨力を被研磨面に接触することで、凹凸を有する基材の研磨において、凸部の上端面が凹部の底面と同レベルになるまで凹部の研磨が抑制され、凸部の上端面が凹部の底面と同レベルまで研磨された後は凸部、凹部ともに同じ研磨速度で研磨でき、研磨後の表面は凹凸が無く平坦性に優れている。また、長時間の研磨に供しても、研磨性能の低下が生じ難いものであり、効率的に積層集積回路等を形成することができる。 Since the polishing composition of the present invention contains spherical particles and non-spherical particles in an appropriate ratio, the clear reason is unknown, but these particles are in multipoint contact with the surface to be polished having recesses. In the polishing of a substrate having irregularities, the non-spherical particles are brought into contact with the surface to be polished through the spherical particles, so that the concave portion is polished until the upper end surface of the convex portion is at the same level as the bottom surface of the concave portion. After the upper end surface of the convex portion is polished to the same level as the bottom surface of the concave portion, both the convex portion and the concave portion can be polished at the same polishing rate, and the polished surface has no unevenness and has excellent flatness. In addition, even if the polishing is performed for a long time, the polishing performance is hardly deteriorated, and a laminated integrated circuit or the like can be efficiently formed.
以下、本発明の好適な実施形態を説明する。
球状粒子
本発明の球状粒子および非球状粒子は、シリカ、アルミナ、ジルコニア、チタニア、セリアなどの無機酸化物、および/または、シリカ・アルミナ、シリカ・ジルコニアなどの無機複合酸化物からなるが、これらの中では使い易さの点からシリカ粒子が特に好ましい。
本発明において球状粒子とは、真球度が0.9以上、1.0以下の範囲にあるものを言う。ここで真球度とは、走査型電子顕微鏡により写真撮影して得られる写真投影図における粒子の最大径(DL)と、これと直交する短径(DS)との比(DS/DL)を意味する。
Hereinafter, preferred embodiments of the present invention will be described.
Spherical particles The spherical particles and non- spherical particles of the present invention are composed of inorganic oxides such as silica, alumina, zirconia, titania and ceria, and / or inorganic composite oxides such as silica-alumina and silica-zirconia. Of these, silica particles are particularly preferred from the viewpoint of ease of use.
In the present invention, the term “spherical particle” means a particle having a sphericity in the range of 0.9 or more and 1.0 or less. Here, the sphericity is the ratio (DS / DL) between the maximum particle diameter (DL) and the minor diameter (DS) orthogonal to this in a photographic projection obtained by photographing with a scanning electron microscope. means.
球状粒子の製造方法としては、公知の製造方法が適用される。例えば、特開昭63−45114号に記載されているような、珪酸ナトリウム等の珪酸水溶液および/またはアルカリ水溶液と、酸性珪酸液とを混合して、混合液のSiO2/M2O(Mはアルカリ金属)のモル比を2.8〜10に調整した後、得られた混合液を60℃以上にて熟成させてシード液を調製し、次いで得られたシード液に酸性珪酸液を加熱下で添加して、シード液中のシリカ粒子を成長させることによって得る方法、さらに、イオン交換樹脂法、有機ケイ素化合物の加水分解法等を挙げることができる。 A known manufacturing method is applied as a method for manufacturing the spherical particles. For example, as described in JP-A-63-45114, an aqueous silicic acid solution such as sodium silicate and / or an alkaline aqueous solution and an acidic silicic acid solution are mixed, and the mixed solution SiO 2 / M 2 O (M Is adjusted to 2.8-10, the resulting mixture is aged at 60 ° C. or higher to prepare a seed solution, and then the resulting seed solution is heated with an acidic silicic acid solution. Examples of the method include a method obtained by growing the silica particles in the seed solution by adding them below, an ion exchange resin method, a hydrolysis method of an organosilicon compound, and the like.
球状粒子の平均粒子径は、20〜150nmの範囲が好ましく、更に好適には、50〜100nmの範囲のものが使用される。平均粒子径が20nm未満の場合、粒子が凝集し易くなるので、充分な研磨効果が得難くなる。また、平均粒子径が150nmを超えると、球状粒子が大きすぎて研磨速度が低下したり、研磨面にスクラッチ(傷)が発生することがある。 The average particle diameter of the spherical particles is preferably in the range of 20 to 150 nm, and more preferably in the range of 50 to 100 nm. When the average particle diameter is less than 20 nm, the particles are likely to aggregate, and it is difficult to obtain a sufficient polishing effect. On the other hand, if the average particle diameter exceeds 150 nm, the spherical particles may be too large to reduce the polishing rate, or scratches (scratches) may occur on the polished surface.
非球状粒子
本発明における非球状粒子とは、真球度が0.9以上、1.0以下の範囲にある前記球状粒子に相当しない不定形粒子を意味する。非球状粒子の形状は、実質的に球状でないという意味であり、針状、柱状、数珠状、棒状、板状、塊状、繊維状、紡錘状等各種形態があるが、特に円柱状の形状のものが多い。
非球状粒子の製造方法は公知であり、例えば、シリカ粒子であれば、珪酸アルカリを酸で中和し、生成したシリカヒドロゲルを洗浄し、熱による解膠により成長させる方法が挙げられる。この場合、珪酸アルカリの種類としては、珪酸ナトリウム、珪酸カリウム、珪酸リチウム、第4級アンモニウムシリケートや1号水ガラス、2号水ガラス、3号水ガラス等の名称で市販されている珪酸ナトリウムが使用可能である。また、中和用の酸としては、塩酸、硫酸、硝酸、有機酸等が使用される。ケイ酸アルカリと酸は適当な温度と攪拌条件を保持しながら、中和時のシリカ濃度が3〜10%の範囲となるように初期純水を張り込んだ中へ同時に添加する。シリカヒドロゲルの生成温度条件は10〜60℃で、pHは3〜8、特に4〜7の範囲が好ましい。解膠するための加熱温度範囲は、60〜98℃が好ましい。
Non-spherical particle The non-spherical particle in the present invention means an amorphous particle which does not correspond to the spherical particle having a sphericity of 0.9 or more and 1.0 or less. The shape of the non-spherical particles means that they are not substantially spherical, and there are various forms such as needles, columns, beads, rods, plates, lumps, fibers, spindles, etc. There are many things.
Methods for producing non-spherical particles are known. For example, in the case of silica particles, there is a method of neutralizing an alkali silicate with an acid, washing the produced silica hydrogel, and growing it by peptization by heat. In this case, sodium silicate marketed under the names of sodium silicate, potassium silicate, lithium silicate, quaternary ammonium silicate, No. 1 water glass, No. 2 water glass, No. 3 water glass, etc. It can be used. As the neutralizing acid, hydrochloric acid, sulfuric acid, nitric acid, organic acid, or the like is used. The alkali silicate and the acid are simultaneously added to the initial pure water so that the silica concentration at the time of neutralization is in the range of 3 to 10% while maintaining an appropriate temperature and stirring conditions. The production temperature condition of the silica hydrogel is 10 to 60 ° C., and the pH is preferably 3 to 8, particularly 4 to 7. The heating temperature range for peptization is preferably 60 to 98 ° C.
上記製造方法の他に、SiO21〜6重量%を有し、pH2〜4の活性珪酸のコロイド溶液に、水溶性のCa塩及び/またはMg塩含有水溶液をSiO2に対してCaO、MgOとして重量比1500〜3500ppmとなる量加えて混合し、得られた水溶液に、アルカリ金属水酸化物、水溶性有機塩基またはそれらの水溶性珪酸塩をSiO2/M2Oモル比として20〜200となる量加えて混合し、60〜150℃で0.5〜40時間加熱する方法が知られており、この方法によれば、一様な太さで一平面内のみの伸長を有する細長い形状の非晶質コロイダルシリカ粒子が得られる。 In addition to the above production method, a water-soluble Ca salt and / or Mg salt-containing aqueous solution containing 1 to 6% by weight of SiO 2 and having a pH of 2 to 4 in an active silicic acid is added to Ca 2 and CaO, MgO As a weight ratio of 1500 to 3500 ppm, the resulting aqueous solution is mixed with an alkali metal hydroxide, a water-soluble organic base or a water-soluble silicate thereof in an SiO 2 / M 2 O molar ratio of 20 to 200. A method is known in which the amount is mixed and heated at 60 to 150 ° C. for 0.5 to 40 hours. According to this method, an elongated shape having a uniform thickness and an extension in only one plane is known. Amorphous colloidal silica particles are obtained.
また、特開平4−187512号公報に記載されているように、SiO2として0.05〜5.0wt%のアルカリ金属ケイ酸塩水溶液に、(a)ケイ酸液を添加して混合液のSiO2/M2O(モル比、Mはアルカリ金属または第4級アンモニウム)を30〜60とする工程;(b)ケイ酸液添加工程の前、添加工程中または添加工程後に、Ca、Mg、Al、Ti、Cu、希土類金属などから選ばれる1種または2種以上の金属化合物を添加する工程;(c)この混合液を60≡以上の任意の温度で一定時間維持する工程;及び(d)この反応液に再度ケイ酸液を添加して反応液中のSiO2/M2O(モル比)を60〜100とする工程を経て、細長い形状のシリカゾルを得ることもできる。 In addition, as described in JP-A-4-187512, (a) a silicate solution is added to an alkali metal silicate aqueous solution of 0.05 to 5.0 wt% as SiO 2 , and the mixed solution SiO 2 / M 2 O (molar ratio, M is an alkali metal or quaternary ammonium) process 30 to 60; the previous (b) silicic acid solution addition step, during the addition step or after the addition step, Ca, Mg (1) adding one or more metal compounds selected from Al, Ti, Cu, rare earth metals, etc .; (c) maintaining the mixed solution at an arbitrary temperature of 60≡ or more for a predetermined time; and ( d) An elongated silica sol can also be obtained through a step of adding a silicic acid solution to the reaction solution again to adjust the SiO 2 / M 2 O (molar ratio) in the reaction solution to 60 to 100.
非球状粒子の粒子径は、5〜100nmが好ましく、より好適には10〜50nmのものが使用される。平均粒子径が5nm未満の場合、粒子が凝集し易くなるので、充分な研磨効果が得難くなる。また、平均粒子径が100nmを超えると、非球状粒子が大きすぎて研磨速度が低下したり、研磨面にスクラッチ(傷)が発生することがある。 The particle diameter of the non-spherical particles is preferably 5 to 100 nm, more preferably 10 to 50 nm. When the average particle diameter is less than 5 nm, the particles are easily aggregated, and it is difficult to obtain a sufficient polishing effect. On the other hand, if the average particle diameter exceeds 100 nm, the non-spherical particles may be too large and the polishing rate may decrease, or scratches (scratches) may occur on the polished surface.
研磨用組成物
本発明の研磨用組成物は、前記球状粒子と前記非球状粒子とが水系分散媒に分散してなり、非球状粒子に対する球状粒子の重量比が2/98〜35/65の範囲にあることを特徴とする。非球状粒子に対する球状粒子の重量比がこの範囲を外れると高い水準の研磨レートを維持する効果が低下する。より好適な重量比は、4/96〜20/80である。
また、研磨用組成物のコロイド粒子の粒子径分布としては、分布が狭くて粒子径が揃っているものが、前記した効果を達成する上で有利である。
Polishing composition The polishing composition of the present invention is obtained by dispersing the spherical particles and the non-spherical particles in an aqueous dispersion medium, and the weight ratio of the spherical particles to the non-spherical particles is 2/98 to 35/65. It is in the range. When the weight ratio of the spherical particles to the non-spherical particles is out of this range, the effect of maintaining a high level of polishing rate decreases. A more preferred weight ratio is 4/96 to 20/80.
In addition, as the particle size distribution of the colloidal particles of the polishing composition, those having a narrow distribution and uniform particle size are advantageous in achieving the above-described effects.
本発明の研磨用組成物がシリカ粒子からなる場合には、前記球状粒子を含む水性シリカゾルと前記非球状粒子を含む水性シリカゾルを混合することにより研磨用シリカ組成物が得られる。シリカゾルの混合工程は、なるべく5〜40℃の温度条件で攪拌機付き装置で行われる。
水系分散媒としては、水分散媒の他、メチルアルコール、エチルアルコール、イソプロピルアルコール等のアルコール類や、エーテル類、エステル類、ケトン類等の水溶性の有機溶媒と水との混合溶媒が使用される。
When the polishing composition of the present invention comprises silica particles, the polishing silica composition is obtained by mixing the aqueous silica sol containing the spherical particles and the aqueous silica sol containing the non-spherical particles. The mixing step of the silica sol is performed in a device with a stirrer under a temperature condition of 5 to 40 ° C. as much as possible.
As the aqueous dispersion medium, in addition to the aqueous dispersion medium, alcohols such as methyl alcohol, ethyl alcohol, and isopropyl alcohol, and mixed solvents of water-soluble organic solvents such as ethers, esters, and ketones and water are used. The
研磨用組成物中における、前記球状粒子および前記非球状粒子の固形分の濃度は、通常は2〜50重量%、好適には5〜30重量%の範囲で使用される。濃度が2重量%未満の場合は、研磨用粒子の濃度が低すぎて充分な研磨速度が得られないことがある。濃度が50重量%を越えると、研磨材の安定性が不充分となり、また研磨剤を供給する工程で乾燥物が生成して付着することがあり、これがスクラッチ発生の原因となることがある。 The concentration of the solid content of the spherical particles and the non-spherical particles in the polishing composition is usually 2 to 50% by weight, preferably 5 to 30% by weight. When the concentration is less than 2% by weight, the concentration of polishing particles may be too low to obtain a sufficient polishing rate. When the concentration exceeds 50% by weight, the stability of the abrasive becomes insufficient, and a dried product may be generated and adhered in the step of supplying the abrasive, which may cause scratches.
本発明の研磨用組成物は、通常はpHが8〜11.5の範囲にあることが好ましく、より好適には、pH9〜11が推奨される。pHが高いとシリカ粒子の溶解や、凝集が発生し易くなり、pHが低いとシリカゾル中のシリカ粒子の電位が低下して、衝突により凝集が起こり易くなる。研磨用組成物のpHは、酸あるいは塩基を用いて調整することができる。
また、本発明の研磨用組成物を半導体ウエハー等の研磨材として使用する場合には、研磨用組成物に由来する不純物、特に塩基性不純物を除去しておく必要があり、通常、塩基性不純物の量をSiO2に対して100ppm以下とすることが好ましい。
In general, the polishing composition of the present invention preferably has a pH in the range of 8 to 11.5, and more preferably pH 9 to 11 is recommended. When the pH is high, the silica particles are easily dissolved and aggregated. When the pH is low, the potential of the silica particles in the silica sol is lowered, and aggregation is likely to occur due to collision. The pH of the polishing composition can be adjusted using an acid or a base.
Further, when the polishing composition of the present invention is used as an abrasive such as a semiconductor wafer, it is necessary to remove impurities derived from the polishing composition, particularly basic impurities, and usually the basic impurities The amount of is preferably 100 ppm or less with respect to SiO 2 .
本発明の研磨用組成物には、金属の研磨速度を向上すべく、更に、被研磨材の種類に応じて、過酸化水素、過酢酸、過酸化尿素など、またはこれらの混合物を添加して用いることができる。また、複数種の被研磨材の研磨速度を調整するために、硫酸、硝酸、リン酸、フッ酸等の酸、あるいはこれら酸のナトリウム塩、カリウム塩、アンモニウム塩およびこれらの混合物などを添加して用いることができる。この他添加可能な添加剤として、例えば、金属被研磨材表面に不動態層あるいは溶解抑制層を形成して基材の浸食を防止するためにイミダゾール、ベンゾトリアゾール、ベンゾチアゾール等を用いることができる。また、上記不動態層を攪乱するためにクエン酸、乳酸、酢酸、シュウ酸などの錯体形成材を用いることもできる。研磨材スラリーの分散性や安定性を向上させるためにカチオン系、アニオン系、ノニオン系、両性系の界面活性剤を適宜選択して添加することができる。また、被研磨材がシリカ酸化膜などの場合には、アルカリ金属珪酸塩水溶液を添加して用いると研磨速度を高めることができる。 In order to improve the metal polishing rate, the polishing composition of the present invention may further contain hydrogen peroxide, peracetic acid, urea peroxide, or a mixture thereof depending on the type of material to be polished. Can be used. In addition, in order to adjust the polishing rate of multiple kinds of materials to be polished, acids such as sulfuric acid, nitric acid, phosphoric acid and hydrofluoric acid, or sodium salts, potassium salts, ammonium salts and mixtures of these acids are added. Can be used. As other additives that can be added, for example, imidazole, benzotriazole, benzothiazole, and the like can be used to form a passive layer or dissolution inhibiting layer on the surface of the metal polishing material to prevent erosion of the substrate. . In addition, complex forming materials such as citric acid, lactic acid, acetic acid, and oxalic acid can be used to disturb the passive layer. In order to improve the dispersibility and stability of the abrasive slurry, a cationic, anionic, nonionic or amphoteric surfactant can be appropriately selected and added. Further, when the material to be polished is a silica oxide film or the like, the polishing rate can be increased by adding an alkali metal silicate aqueous solution.
以下、実施例を示して本発明を更に具体的に説明するが、先ず、本発明の研磨用組成物を構成するシリカゾルの調製、物性の測定方法、研磨試験方法について説明する。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. First, preparation of a silica sol constituting the polishing composition of the present invention, a method for measuring physical properties, and a polishing test method will be described.
シリカゾルの調製
(1)シリカゾルF(非球状粒子)
3号水硝子(Si02濃度24.0重量%)131gを5重量%硫酸511gに添加して得られたシリカゲルを純水で洗浄し、15重量%アンモニアを添加した後、所定の温度まで加熱熟成させて得たアルカリ性溶液の分散した3重量%シリカゾルを12重量%まで限外濃縮し、次いでロータリーエバポレーターにてシリカ濃度20重量%まで濃縮して、シリカゾルFを得た。シリカゾルFの電子顕微鏡写真(250,000倍)を図2に示す。
次述する測定方法によれば、シリカゾルFの平均粒子径は17nm、真球度は0.52であった。
Preparation of silica sol (1) Silica sol F (non-spherical particles)
3 Gosui glass (Si0 2 concentration 24.0 wt%) silica gel obtained by adding 131g of a 5 wt% sulfuric acid 511g was washed with pure water, after addition of 15 wt% ammonia, heated to a predetermined temperature Silica sol F was obtained by ultraconcentrating 3 wt% silica sol in which the alkaline solution obtained by aging was dispersed to 12 wt%, and then concentrating to 20 wt% silica using a rotary evaporator. An electron micrograph (250,000 times) of silica sol F is shown in FIG.
According to the measurement method described below, silica sol F had an average particle size of 17 nm and a sphericity of 0.52.
(2)シリカゾルB(球状粒子)
Si02濃度24.0重量%、Si02/Na2Oモル比3.1のケイ酸ソ−ダ溶液にイオン交換水を混合し、Si02濃度5.2重量%の希ケイ酸ソ−ダ溶液を調製した。この溶液を、水素型陽イオン交換樹脂層(三菱化成工業(株)製、ダイヤイオン5K−1B)が充填されたカラムに通して酸性ケイ酸液を調製した。酸性ケイ酸液中のSi02濃度は、5.0重量%、pHは2.7であった。また、Na2O濃度は固形分シリカ換算で0.1重量%以下であった。
(2) Silica sol B (spherical particles)
Si0 2 concentration of 24.0 wt%, Si0 of 2 / Na 2 O molar ratio 3.1 silicic oxygen - da solution was mixed with ion-exchanged water, Si0 2 concentration of 5.2 wt% dilute silicic oxygen - da A solution was prepared. This solution was passed through a column packed with a hydrogen cation exchange resin layer (Diaion 5K-1B, manufactured by Mitsubishi Kasei Kogyo Co., Ltd.) to prepare an acidic silicate solution. Si0 2 concentration of the acidic silicic acid solution is 5.0 wt%, pH was 2.7. The Na 2 O concentration was 0.1% by weight or less in terms of solid content silica.
還流器、撹拌機、温度検出装置を備えた10Lのステンレス容器に、純水650gと3号水硝子(Si02濃度24.0重量%)40gを加え、更にシリカゾル(触媒化成工業(株)製、カタロイドSI−50 (48重量%)70gを加えて、98℃まで昇温してシード液を調製した。このシード液に前記酸性ケイ酸液9750gを14時間かけて添加し、添加終了後、同温度で1時間熟成し冷却した。その後、得られた5重量%シリカゾルを、12重量%まで限外濃縮し、次いで5重量%NaOHと0.1重量%HClを添加した後、ロータリーエバポレーターにてシリカ濃度40重量%まで濃縮して、シリカゾルBを得た。シリカゾルBの電子顕微鏡写真(250,000倍)を図3に示す。シリカゾルBの平均粒子径は45nm、真球度は0.94であった。 Reflux condenser, stirrer, a stainless steel container of 10L equipped with a temperature sensing device, pure water 650g and 3 Gosui glass (Si0 2 concentration 24.0 wt%) 40 g was added, further manufactured silica sol (Catalysts & Chemicals Industries Co., Then, 70 g of cataloid SI-50 (48% by weight) was added, and a seed solution was prepared by heating up to 98 ° C. 9750 g of the acidic silicic acid solution was added to this seed solution over 14 hours. After aging and cooling at the same temperature for 1 hour, the obtained 5 wt% silica sol was ultraconcentrated to 12 wt%, and then 5 wt% NaOH and 0.1 wt% HCl were added, and then the mixture was added to the rotary evaporator. The silica concentration was 40% by weight to obtain silica sol B. An electron micrograph (250,000 times) of the silica sol B is shown in Fig. 3. The average particle size of the silica sol B is 45 nm, and the sphericity. Was 0.94.
(3)シリカゾルC(球状粒子)
シリカゾル(濃度40重量%、平均粒子径40nm)に、ケイ酸ナトリウム溶液(SiO2濃度24重量%)および純水を混合してシ−ド液(全Si02濃度4.0重量%、Si02/Na2Oモル比15.0)を調製した。
還流器、撹拌機、温度検出装置を備えた10Lのステンレス容器に、純水1990gと3号水硝子(Si02濃度24.0重量%)50gを加え、更にシリカゾル(触媒化成工業(株)製、カタロイドSI−45P (40重量%)130gを加えて、98℃まで昇温してシード液を調製した。このシード液に前記酸性ケイ酸液7820gを18時間かけて添加し、添加終了後、同温度で1時間熟成し冷却した。その後、得られた5重量%シリカゾルを、12重量%まで限外濃縮し、次いで5重量%NaOHと0.1重量%HClを添加した後、ロータリーエバポレーターにてシリカ濃度40重量%まで濃縮して、シリカゾルCを得た。シリカゾルCの平均粒子径は80nm、真球度は0.95であった。
(3) Silica sol C (spherical particles)
Silica sol (concentration 40 wt%, average particle size 40 nm) is mixed with sodium silicate solution (SiO 2 concentration 24 wt%) and pure water to obtain seed solution (total SiO 2 concentration 4.0 wt%, SiO 2 / Na 2 O molar ratio 15.0) was prepared.
Into a 10 L stainless steel container equipped with a reflux device, a stirrer, and a temperature detector, pure water 1990 g and No. 3 water glass (SiO 2 concentration 24.0 wt%) 50 g were added, and silica sol (manufactured by Catalyst Kasei Kogyo Co., Ltd.) Then, 130 g of cataloid SI-45P (40 wt%) was added, and the temperature was raised to 98 ° C. to prepare a seed solution, and 7820 g of the acidic silicic acid solution was added to the seed solution over 18 hours. After aging and cooling at the same temperature for 1 hour, the obtained 5 wt% silica sol was ultraconcentrated to 12 wt%, and then 5 wt% NaOH and 0.1 wt% HCl were added, and then the mixture was added to the rotary evaporator. The silica sol C was concentrated to obtain a silica sol C. The silica sol C had an average particle size of 80 nm and a sphericity of 0.95.
物性の測定方法
(1)比表面積
シリカ微粒子の比表面積は、シリカゾルを凍結乾燥機で乾燥させた後、110℃で20時間乾燥した試料について、比表面積測定装置(湯浅アイオニクス製、「マルチソーブ12」)を用いて窒素吸着法(BET法)により測定した。
(2)平均粒子径
シリカ微粒子の平均粒子径は、粒子径分布測定装置(Particle Sizing Systems社製)、「NICOMP MODEL 380」)を使用して動的光散乱法により測定した。
(3)真球度
走査型電子顕微鏡(日本電子(株)製、JIS-5300型)により粒子を写真撮影し、任意の粒子10個についてそれぞれ最大径(DL)と、これと直交する短径(DS)を求め、その比(DS/DL)の平均値を真球度として求めた。
Method of measuring physical properties (1) Specific surface area The specific surface area of silica fine particles was determined by using a specific surface area measuring device (manufactured by Yuasa Ionics, "Multisorb 12" for a sample obtained by drying a silica sol with a freeze dryer and then drying at 110 ° C for 20 hours. )) And the nitrogen adsorption method (BET method).
(2) Average particle diameter The average particle diameter of the silica fine particles was measured by a dynamic light scattering method using a particle size distribution measuring apparatus (manufactured by Particle Sizing Systems, "NICOMP MODEL 380").
(3) Sphericity Particles are photographed with a scanning electron microscope (JEOL Ltd., JIS-5300 type), and each of 10 arbitrary particles has a maximum diameter (DL) and a short diameter perpendicular thereto. (DS) was determined, and the average value of the ratio (DS / DL) was determined as sphericity.
研磨試験方法
研磨試験用に29mm角に加工したタンタル酸リチウム基板を準備し、これを研磨装置(ナノファクター(株)製、NF300)にセットし、基板加重0.12MPa、テーブル回転数30rpm、スピンドル速度60rpmで、後記各研磨用組成物(いずれも、水酸化ナトリウム10%水溶液を加えて、pHを11に調整)を70ml/分の速度で絶縁膜上の犠牲層(厚さ0.2μm)がなくなるまで研磨を行った。このときの研磨所要時間は120分であった。
塩基性不純物の測定方法
無機陰イオン濃度の測定は、DIONEX社のイオンクロマトグラフ(型番;DX-AQ)を使用した。
Polishing test method Prepare a 29 mm square lithium tantalate substrate for polishing test, set it on a polishing machine (NF300, manufactured by Nano Factor Co., Ltd.), load substrate 0.12 MPa, table rotation speed 30 rpm, spindle A sacrificial layer (thickness: 0.2 μm) on the insulating film at a rate of 70 ml / min at a speed of 60 rpm with each polishing composition described later (all adjusted to pH 11 by adding a 10% aqueous solution of sodium hydroxide). Polishing was performed until there was no more. The polishing time at this time was 120 minutes.
Measurement Method of Basic Impurity An inorganic anion concentration was measured using an ion chromatograph (model number: DX-AQ) manufactured by DIONEX.
非球状粒子からなるシリカゾルF(平均粒子径17nm、固形分20重量%)を350部と、球状粒子からなるシリカゾルC(平均粒子径80nm、固形分40重量%)を75部と、純水75部とを配合して、非球状粒子に対する球状粒子の重量比が30/70の研磨用組成物(固形分濃度20重量%)を調製した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。
この研磨用組成物を用いて前記研磨試験を実施した。研磨速度を測定した結果を表1に示すが、表1中「研磨レート比」はシリカゾルCのみからなる研磨用組成物(後記比較例2における30分後の研磨速度)の研磨速度を1.0としたときの相対値を示す。
350 parts of silica sol F composed of non-spherical particles (average particle diameter 17 nm, solid content 20% by weight), 75 parts of silica sol C composed of spherical particles (average particle diameter 80 nm, solid content 40% by weight), and pure water 75 A polishing composition (solid content concentration 20% by weight) having a weight ratio of spherical particles to non-spherical particles of 30/70 was prepared. The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
The polishing test was carried out using this polishing composition. The results of measuring the polishing rate are shown in Table 1. In Table 1, the “polishing rate ratio” is the polishing rate of the polishing composition consisting only of silica sol C (polishing rate after 30 minutes in Comparative Example 2 described later). Relative value when 0 is shown.
シリカゾルFを450重量部、シリカゾルCを25重量部、純水20重量部を配合して、非球状粒子に対する球状粒子の重量比が10/90である研磨用組成物(固形分濃度20重量%)を調製し、実施例1と同様に研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 A polishing composition comprising 450 parts by weight of silica sol F, 25 parts by weight of silica sol C and 20 parts by weight of pure water and having a weight ratio of spherical particles to non-spherical particles of 10/90 (solid content concentration 20% by weight) ) And a polishing test was conducted in the same manner as in Example 1. The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
シリカゾルFを460重量部とシリカゾルCの20重量部とを配合して、非球状粒子に対する球状粒子の重量比が8/92である研磨用組成物(固形分濃度20重量%)を調製し、実施例1と同様に研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 460 parts by weight of silica sol F and 20 parts by weight of silica sol C were blended to prepare a polishing composition (solid content concentration 20% by weight) in which the weight ratio of spherical particles to non-spherical particles was 8/92. A polishing test was conducted in the same manner as in Example 1. The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
シリカゾルFを475重量部とシリカゾルCの12.5重量部とを配合して、非球状粒子に対する球状粒子の重量比が5/95である研磨用組成物(固形分濃度20重量%)を調製し、実施例1と同様に研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 475 parts by weight of silica sol F and 12.5 parts by weight of silica sol C are blended to prepare a polishing composition (solid content concentration 20% by weight) in which the weight ratio of spherical particles to non-spherical particles is 5/95. Then, a polishing test was conducted in the same manner as in Example 1. The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
シリカゾルFを485重量部とシリカゾルCの7.5重量部とを配合して、非球状粒子に対する球状粒子の重量比が3/97である研磨用組成物(固形分濃度20重量%)を調製し、実施例1と同様に研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 485 parts by weight of silica sol F and 7.5 parts by weight of silica sol C are blended to prepare a polishing composition (solid content concentration 20% by weight) in which the weight ratio of spherical particles to non-spherical particles is 3/97. Then, a polishing test was conducted in the same manner as in Example 1. The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
シリカゾルFを300重量部、シリカゾルCの100重量部および純水100gとを配合して、非球状粒子に対する球状粒子の重量比が40/60である研磨用組成物(固形分濃度20重量%)を調製した。この研磨用組成物を用いて、実施例1と同様に研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 A polishing composition comprising 300 parts by weight of silica sol F, 100 parts by weight of silica sol C, and 100 g of pure water, and the weight ratio of spherical particles to non-spherical particles is 40/60 (solid content concentration 20% by weight) Was prepared. Using this polishing composition, a polishing test was performed in the same manner as in Example 1. The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
シリカゾルCを250重量部と純水250重量部からなる研磨用組成物(固形分濃度20重量%)について、実施例1と同様に研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 A polishing test was conducted in the same manner as in Example 1 on a polishing composition (solid content concentration 20% by weight) composed of 250 parts by weight of silica sol C and 250 parts by weight of pure water. The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
シリカゾルFのみからなる研磨用組成物(固形分濃度20重量%)について、実施例1と同様に研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 A polishing test was carried out in the same manner as in Example 1 for the polishing composition consisting of only silica sol F (solid content concentration 20% by weight). The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
シリカゾルBを250重量部と純水250重量部からなる研磨用組成物(固形分濃度20重量%)について、実施例1と同様に研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 A polishing test was conducted in the same manner as in Example 1 on a polishing composition (solid content concentration 20% by weight) composed of 250 parts by weight of silica sol B and 250 parts by weight of pure water. The concentration of basic impurities in the polishing composition was less than 100ppm against SiO 2.
実施例1のシリカゾルCの代わりにシリカゾルB(45nm、固形分40重量%)を用いた以外は同様にして研磨用組成物を調製し、研磨試験を実施した。この研磨用組成物中の塩基性不純物の濃度は、SiO2に対して100ppm未満だった。 A polishing composition was prepared in the same manner except that silica sol B (45 nm, solid content 40% by weight) was used instead of silica sol C of Example 1, and a polishing test was performed. The concentration of basic impurities in this polishing composition was less than 100 ppm with respect to SiO 2 .
[表1]
実施例NO シリカゾルの種類(重量部) 研 磨 レ ー ト 比
球状粒子 非球状粒子 30分後 60分後 120分後
実施例1 C(30) F(70) 1.02 0.84 0.77
実施例2 C(10) F(90) 1.34 1.45 1.47
実施例3 C( 8) F(92) 1.62 1.51 1.59
実施例4 C( 5) F(95) 1.77 1.56 1.44
実施例5 C( 3) F(97) 1.66 1.56 1.47
実施例6 B(30) F(70) 1.01 0.75 0.54
比較例1 C(40) F(60) 0.91 0.68 0.42
比較例2 C(100) − 1.00 0.70 0.43
比較例3 − F(100) 0.89 0.65 0.41
比較例4 B(100) − 0.62 0.42 0.35
[Table 1]
Example NO Silica Sol Type (parts by weight ) Polishing Rate Ratio
Spherical particles Non-spherical particles 30 minutes later 60 minutes later 120 minutes later Example 1 C (30) F (70) 1.02 0.84 0.77
Example 2 C (10) F (90) 1.34 1.45 1.47
Example 3 C (8) F (92) 1.62 1.51 1.59
Example 4 C (5) F (95) 1.77 1.56 1.44
Example 5 C (3) F (97) 1.66 1.56 1.47
Example 6 B (30) F (70) 1.01 0.75 0.54
Comparative Example 1 C (40) F (60) 0.91 0.68 0.42
Comparative Example 2 C (100) -1.00 0.70 0.43
Comparative Example 3-F (100) 0.89 0.65 0.41
Comparative Example 4 B (100)-0.62 0.42 0.35
本発明の如く高研磨レ−トの研磨用組成物(研磨剤)の開発は、半導体層間絶縁膜、タンタル酸リチウム基板、シリコ−ン基板、酸化膜付き基板、宝石化合物半導体等の生産性向上に大きく寄与する。また、金属(SUS)、ディスプレイガラス、液晶用ガラス等においても生産性の向上が期待される。 The development of a polishing composition (abrasive) with a high polishing rate as in the present invention has been achieved by improving the productivity of semiconductor interlayer insulating films, lithium tantalate substrates, silicon substrates, substrates with oxide films, gem compound semiconductors, etc. Greatly contributes. In addition, improvement in productivity is also expected in metal (SUS), display glass, liquid crystal glass, and the like.
Claims (6)
A polishing composition in which spherical particles having a sphericity in a range of 0.9 or more and 1.0 or less and non-spherical particles not corresponding to the spherical particles are dispersed in an aqueous dispersion medium. A polishing composition wherein the weight ratio of spherical particles to particles is in the range of 2/98 to 35/65.
The polishing composition according to claim 1, wherein the spherical particles and the non-spherical particles are silica particles.
The polishing composition according to claim 1 or 2, wherein the spherical particles have an average particle diameter in the range of 20 to 150 nm, and the non-spherical particles have an average particle diameter in the range of 5 to 100 nm.
The polishing composition according to claim 1, 2 or 3, wherein the polishing composition has a pH of 8 to 11.5.
The polishing composition according to claim 1, 2, 3, or 4, wherein the non-spherical particles are obtained by neutralizing an alkali silicate with an acid, washing the produced silica hydrogel, and growing by heat peptization. object.
The polishing composition according to claim 1, 2, 3, 4 or 5, wherein the amount of basic impurities contained in the polishing composition is 100 ppm or less with respect to SiO 2 .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004264796A JP2006080406A (en) | 2004-09-13 | 2004-09-13 | Composition for polishing |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2004264796A JP2006080406A (en) | 2004-09-13 | 2004-09-13 | Composition for polishing |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010043703A Division JP2010192904A (en) | 2010-03-01 | 2010-03-01 | Composition for polishing |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006080406A true JP2006080406A (en) | 2006-03-23 |
Family
ID=36159596
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2004264796A Pending JP2006080406A (en) | 2004-09-13 | 2004-09-13 | Composition for polishing |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006080406A (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1142177A (en) * | 1997-07-28 | 1999-02-16 | Build:Kk | Bathtub having high warm water durability and repairing method therefor |
JP2008137822A (en) * | 2006-11-30 | 2008-06-19 | Catalysts & Chem Ind Co Ltd | Konpeito-like inorganic oxide sol, its production method, and abrasive including the oxide sol |
JP2008169102A (en) * | 2006-10-12 | 2008-07-24 | Catalysts & Chem Ind Co Ltd | Confetti-like silica-based sol and method for producing the same |
JP2009144080A (en) * | 2007-12-14 | 2009-07-02 | Kao Corp | Polishing liquid composition |
JP2009202262A (en) * | 2008-02-27 | 2009-09-10 | Jsr Corp | Aqueous dispersing element for chemical mechanical polishing used for polishing wiring layer composed of copper or copper alloy disposed on electrooptic display device substrate, manufacturing method of aqueous dispersing element for chemical mechanical polishing, and chemical mechanical polishing method |
WO2011018935A1 (en) * | 2009-08-13 | 2011-02-17 | Jsr株式会社 | Composition and film containing carbon nanotubes |
WO2011065144A1 (en) | 2009-11-27 | 2011-06-03 | Jsr株式会社 | Composition, cured product, and electronic device |
JP2014116057A (en) * | 2012-12-12 | 2014-06-26 | Fujimi Inc | Polishing composition for magnetic disk substrate |
JP2015125792A (en) * | 2013-12-27 | 2015-07-06 | 花王株式会社 | Abrasive liquid composition for magnetic disk substrate |
GB2528386A (en) * | 2014-06-30 | 2016-01-20 | Kao Corp | Polishing liquid composition for magnetic disk substrate |
JP2018070870A (en) * | 2016-10-19 | 2018-05-10 | ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド | Aqueous composition of low abrasive silica particle |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000345144A (en) * | 1999-03-31 | 2000-12-12 | Tokuyama Corp | Abrasive and polishing |
JP2001011433A (en) * | 1999-07-02 | 2001-01-16 | Nissan Chem Ind Ltd | Composition for abrasion |
JP2001039709A (en) * | 1999-07-28 | 2001-02-13 | Denki Kagaku Kogyo Kk | Silica powder and resin composition |
JP2002038131A (en) * | 2000-07-19 | 2002-02-06 | Rodel Nitta Co | Abrasive composition, method for producing abrasive composition and polishing method |
JP2002537652A (en) * | 1999-02-18 | 2002-11-05 | ロデール ホールディングス インコーポレイテッド | Method for chemical mechanical polishing of low dielectric constant polymer layers |
JP2003133267A (en) * | 2001-10-30 | 2003-05-09 | Catalysts & Chem Ind Co Ltd | Polishing particle and polishing material |
-
2004
- 2004-09-13 JP JP2004264796A patent/JP2006080406A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002537652A (en) * | 1999-02-18 | 2002-11-05 | ロデール ホールディングス インコーポレイテッド | Method for chemical mechanical polishing of low dielectric constant polymer layers |
JP2000345144A (en) * | 1999-03-31 | 2000-12-12 | Tokuyama Corp | Abrasive and polishing |
JP2001011433A (en) * | 1999-07-02 | 2001-01-16 | Nissan Chem Ind Ltd | Composition for abrasion |
JP2001039709A (en) * | 1999-07-28 | 2001-02-13 | Denki Kagaku Kogyo Kk | Silica powder and resin composition |
JP2002038131A (en) * | 2000-07-19 | 2002-02-06 | Rodel Nitta Co | Abrasive composition, method for producing abrasive composition and polishing method |
JP2003133267A (en) * | 2001-10-30 | 2003-05-09 | Catalysts & Chem Ind Co Ltd | Polishing particle and polishing material |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1142177A (en) * | 1997-07-28 | 1999-02-16 | Build:Kk | Bathtub having high warm water durability and repairing method therefor |
JP2013047180A (en) * | 2006-10-12 | 2013-03-07 | Jgc Catalysts & Chemicals Ltd | Spinous silica-based sol |
JP2008169102A (en) * | 2006-10-12 | 2008-07-24 | Catalysts & Chem Ind Co Ltd | Confetti-like silica-based sol and method for producing the same |
JP2008137822A (en) * | 2006-11-30 | 2008-06-19 | Catalysts & Chem Ind Co Ltd | Konpeito-like inorganic oxide sol, its production method, and abrasive including the oxide sol |
JP2009144080A (en) * | 2007-12-14 | 2009-07-02 | Kao Corp | Polishing liquid composition |
JP2009202262A (en) * | 2008-02-27 | 2009-09-10 | Jsr Corp | Aqueous dispersing element for chemical mechanical polishing used for polishing wiring layer composed of copper or copper alloy disposed on electrooptic display device substrate, manufacturing method of aqueous dispersing element for chemical mechanical polishing, and chemical mechanical polishing method |
WO2011018935A1 (en) * | 2009-08-13 | 2011-02-17 | Jsr株式会社 | Composition and film containing carbon nanotubes |
WO2011065144A1 (en) | 2009-11-27 | 2011-06-03 | Jsr株式会社 | Composition, cured product, and electronic device |
JP2014116057A (en) * | 2012-12-12 | 2014-06-26 | Fujimi Inc | Polishing composition for magnetic disk substrate |
JP2015125792A (en) * | 2013-12-27 | 2015-07-06 | 花王株式会社 | Abrasive liquid composition for magnetic disk substrate |
GB2528386A (en) * | 2014-06-30 | 2016-01-20 | Kao Corp | Polishing liquid composition for magnetic disk substrate |
JP2018070870A (en) * | 2016-10-19 | 2018-05-10 | ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド | Aqueous composition of low abrasive silica particle |
JP7002907B2 (en) | 2016-10-19 | 2022-01-20 | ローム アンド ハース エレクトロニック マテリアルズ シーエムピー ホウルディングス インコーポレイテッド | Aqueous composition of low-abrasive silica particles |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN1849379B (en) | Abrasive partilcle for chemical mechanical polishing | |
JP4278020B2 (en) | Abrasive particles and method for producing abrasives | |
US20060118760A1 (en) | Slurry composition and methods for chemical mechanical polishing | |
WO2005123858A1 (en) | CHEMICAL-MECHANICAL POLISHING (CMP) SLURRY CONTAINING CLAY AND CeO2 ABRASIVE PARTICLES AND METHOD OF PLANARIZING SURFACES | |
JP2003109921A (en) | Abrasive silica particle-dispersed fluid, its manufacturing method, and abrasive material | |
CN1312845A (en) | Chemical mechanical polishing slurry useful for copper/tantalum substrate | |
JP2003501817A (en) | Slurry composition and chemical mechanical polishing method using the same | |
CN1312843A (en) | Chemical mechanical polishing slurry useful for copper/tantalum substrates | |
KR20040012588A (en) | Aqueous Dispersion for Chemical Mechanical Polishing and Production Process of Semiconductor Device | |
JP2003514950A (en) | Surface flattening composition and method | |
CN114106706B (en) | Copper interconnection polishing solution with pressure buffering effect and preparation method of abrasive thereof | |
JP2011020208A (en) | Cmp polishing liquid, and polishing method using the same | |
JP2006080406A (en) | Composition for polishing | |
JP5516594B2 (en) | CMP polishing liquid, and polishing method and semiconductor substrate manufacturing method using the same | |
KR20070090265A (en) | Polishing slurry | |
JP2004165424A (en) | Polishing agent composition and polishing method using the same | |
JP7508275B2 (en) | Polishing composition, polishing method, and method for producing semiconductor substrate | |
JP2010192904A (en) | Composition for polishing | |
US6913634B2 (en) | Abrasives for copper CMP and methods for making | |
JP2002043258A (en) | Polishing composition for metal films | |
JP2010024119A (en) | Method for producing confetti-like silica sol | |
KR102687866B1 (en) | Metal oxide particle-bonded polymer nanoparticle, preparing method of the same and chemical mechanical polishing slurry composition comprising the same | |
KR101279970B1 (en) | CMP slurry composition for polishing metal wiring | |
JP2011243789A (en) | Polishing solution for cmp, and polishing method using the same | |
JPH09316431A (en) | Slurry for polishing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20070619 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20091216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100105 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100301 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20100629 |