JP3335667B2 - A method of manufacturing a semiconductor device - Google Patents

A method of manufacturing a semiconductor device

Info

Publication number
JP3335667B2
JP3335667B2 JP13297892A JP13297892A JP3335667B2 JP 3335667 B2 JP3335667 B2 JP 3335667B2 JP 13297892 A JP13297892 A JP 13297892A JP 13297892 A JP13297892 A JP 13297892A JP 3335667 B2 JP3335667 B2 JP 3335667B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
polishing
insulating film
semiconductor device
film
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13297892A
Other languages
Japanese (ja)
Other versions
JPH05326469A (en )
Inventor
雅子 小寺
博之 矢野
厚 重田
利一郎 青木
Original Assignee
株式会社東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、半導体装置の製造方法に係わり、特に研磨により絶縁膜等の平坦化方法に関する。 The present invention relates relates to a method of manufacturing a semiconductor device, more particularly to planarization method such as an insulating film by polishing.

【0002】 [0002]

【従来の技術】従来、半導体装置の製造工程等において、絶縁膜等を平坦化するための研磨工程では研磨剤としてコロイダルシリカが一般的に用いられていた。 Conventionally, in a manufacturing process of a semiconductor device, in the polishing step for flattening the insulating film and the like was colloidal silica is generally used as an abrasive.

【0003】コロイダルシリカのシリカ粒子は、通常ケイ酸ナトリウムを原料として水溶液中で数十nmのシリカ粒子に成長させたものが用いられている。 [0003] Colloidal silica silica particles is that the normal sodium silicate grown several tens nm of the silica particles in an aqueous solution as a raw material is used. 研磨剤として用いる場合には通常これを水に懸濁させたものに、シリカ粒子を安定に分散させるための水素イオン濃度の調整と研磨速度の増大という二つの目的により、KOHやNaOHが添加されている。 Those in the case of using as a polishing agent which typically is suspended in water, the dual purpose of increased adjusting the polishing rate of the hydrogen ion concentration for the silica particles stably dispersed, KOH or NaOH is added ing.

【0004】例えば、このような研磨剤として不二見研磨剤工業株式会社のコンポール80という製品があるが、このようにアルカリ金属を含む研磨剤を用いてシリコン酸化膜等を研磨すると、研磨剤中のアルカリ金属がシリコン酸化膜中に拡散し、MOSデバイスにおいてはしきい値電圧を変動させるなど半導体装置の信頼性を著しく低下させることになってしまうという問題がある。 [0004] For example, there is a product called Compol 80 of Fuji seen abrasive Industry Co., Ltd. Such abrasives, in this way to polish the silicon oxide film by using a polishing agent containing an alkali metal, in the polishing agent alkali metal diffuses into the silicon oxide film, the MOS device has a problem that becomes significantly reduce the reliability of the semiconductor device such as varying the threshold voltage.

【0005】別のコロイダルシリカ系の研磨剤として、 [0005] As another colloidal silica abrasive,
シリカ粒子を四塩化ケイ酸を熱分解したり有機シランを加水分解したりして成長させ、アンモニアやアミンで水素イオン濃度の調整を行った、アルカリ金属を含まない研磨剤もあるが、この様な研磨剤では、シリコン酸化膜等の研磨速度は著しく遅く実用できないという問題があった。 Tetrachloride silicate silica particles grown organosilane or pyrolysis or by hydrolysis, with ammonia or an amine was adjusted hydrogen ion concentration, there is a polishing agent containing no alkali metal, such the do abrasive, polishing rate of a silicon oxide film or the like has a problem that can not be practically significantly slower.

【0006】また、従来よりフォトマスク用ガラスの表面研磨においては、一次研磨として酸化アルミニウム懸濁液でガラス表面を研磨し、仕上げ研磨として平均粒径数μmの酸化セリウム粒子を含む懸濁液で研磨するという方法がとられている。 [0006] In the surface polishing of conventionally glass for photomasks, polished glass surface with aluminum oxide suspension as the primary polishing, a suspension containing cerium oxide particles having an average particle diameter of several μm as the final polishing methods have been taken that are polished. しかしながら、通常、半導体装置の製造工程においては、絶縁膜の研磨量は高々数μm However, usually, in a manufacturing process of a semiconductor device, the polishing amount of the insulating film is at most several μm
程度で、この様な2段階以上の研磨は好ましくない。 Degree in, polishing of more than such a two-step is not preferable. さらに、半導体装置の製造工程においては、通常、図3 Further, in the manufacturing process of a semiconductor device, usually, 3
(a)に示すように数百nmから数千nm程度の段差5 Step of several thousands nm from several hundred nm as shown in (a) 5
1上に形成された表面に段差を有する絶縁膜52を被覆し、この際段差51の段差形状は絶縁膜52の表面形状に反映される。 An insulating film 52 having the step formed on the surface on 1 coated, stepped shape of the time step 51 is reflected on the surface shape of the insulating film 52. さらに、図3(b)に示すように絶縁膜52の表面段差を研磨により平坦化しなければならないが、平均粒径数μmの酸化セリウム粒子で、数百nmから数千nm程度の段差を平坦化しながら研磨することができるかどうか、また、絶縁膜表面に傷を発生させることなく研磨することが可能かどうか、さらにコロイダルシリカを用いた場合のようなアルカリ金属汚染があるかどうかについては、全く知られておらず、上記方法を半導体装置の製造工程中の研磨工程に対して適用することなどは全く考慮されていなかった。 Furthermore, must be flattened by polishing the surface level difference of the insulating film 52 as shown in FIG. 3 (b), cerium oxide particles having an average particle diameter of several [mu] m, the flat stepped in several thousands nm hundreds nm whether it is possible to polish while turned into, also, whether it is possible to polish without causing scratches on the insulating film surface, the further whether there is an alkali metal contamination, such as in the case of using colloidal silica, not known at all, it has never been considered such as by applying the above method to the polishing step in the process of manufacturing a semiconductor device.

【0007】 [0007]

【発明が解決しようとする課題】上述の如く、半導体装置の製造工程等において、研磨剤としてコロイダルシリカを用いた従来の研磨工程においては、アルカリ金属による汚染や研磨速度が遅いなどの問題があり、実用が困難であった。 As described above [0006], in the manufacturing process of a semiconductor device, in the conventional polishing process using colloidal silica as the abrasive, there are problems such as pollution and the polishing rate by the alkali metal is slow , practical use has been difficult.

【0008】また、フォトマスク用ガラスの表面研磨において、酸化セリウム粒子が含まれた懸濁液を用いる方法があるが、絶縁膜表面に傷を発生することなく、数百nmから数千nm程度の段差を平坦化しながら研磨できるかどうか、また、アルカリ金属汚染があるかどうかについては、全く知られておらず、上記方法を半導体装置の製造工程における研磨工程に対して適用することなどは全く考慮されていなかった。 Further, in the surface polishing of the glass for photomasks, there is a method of using a suspension containing the cerium oxide particles, without generating scratches on the insulating film surface several thousand nm about several hundred nm whether the step can be polished while flattening, also, about whether there is an alkali metal contamination, not known at all, such as applying the polishing step in the manufacturing process of a semiconductor device of the above method is quite It has not been taken into consideration.

【0009】本発明は、上記事情を鑑みてなされたもので、その目的とするところは、アルカリ金属による汚染がなく、高速で研磨できる研磨剤を使用することにより、半導体装置の製造工程への研磨工程の実用化を容易にしようとするものである。 [0009] The present invention has been made in view of the above circumstances, and has as its object, there is no contamination by alkali metal, by using a polishing agent which can be polished at high speed, to the manufacturing process of a semiconductor device it is intended to facilitate the commercialization of the polishing process.

【0010】 [0010]

【課題を解決するための手段】前述した問題を解決するため本発明は、半導体基板上に絶縁膜を形成する工程と、該絶縁膜の少なくとも一部を酸化セリウムを含む [SUMMARY OF] To solve the problems described above the present invention includes the steps of forming an insulating film on a semiconductor substrate, at least a portion of the insulating film where containing cerium oxide
定の研磨剤によって研磨し、取り除く工程とを有することを特徴とする半導体装置の製造方法を提供する。 Polished by a constant abrasive, to provide a method of manufacturing a semiconductor device characterized by a step of removing. また、本発明は、表面に段差が形成された基板上に絶縁膜 Further, the present invention is an insulating on the substrate a step is formed on the surface layer
を形成する工程と、該絶縁膜を酸化セリウムを含む所定 Forming a predetermined comprising cerium oxide the insulating film
研磨剤によって研磨して平坦化する工程とを有することを特徴とする半導体装置の製造方法を提供する。 It is polished by abrasive to provide a method of manufacturing a semiconductor device characterized by a step of flattening.

【0011】 [0011]

【作用】本発明による半導体装置の製造方法であれば、 If the method of manufacturing a semiconductor device according to the present invention,
絶縁膜、例えばシリコン酸化膜やシリコン窒化膜等を酸化セリウムを含む所定の研磨剤によって研磨するので、 Insulating film, for example, since polishing the silicon oxide film or a silicon nitride film or the like by a predetermined polishing agent containing cerium oxide,
該絶縁膜を高速で研磨することができる。 The insulating film can be polished at high speed.

【0012】また、上記絶縁膜を研磨した際にも該絶縁膜の内部にアルカリ金属汚染を引き起こす事もないことがわかった。 Further, it was found that it nor cause internal alkali metal contamination of the insulating film even when the polishing the insulating film. さらに、絶縁膜表面に傷を発生させることなく数百nmから数千nm程度の段差を平坦化しながら研磨することが可能である事もわかった。 Furthermore, it was found also that it is possible to polish while flattening the level difference of several thousands nm hundreds nm without causing scratches on the surface of the insulating film.

【0013】 [0013]

【実施例】以下、本発明による半導体装置の製造方法を図面を参照しながら詳細に説明する。 EXAMPLES Hereinafter, a method for manufacturing a semiconductor device according to the present invention in detail with reference to the drawings. 図1には本発明の実施例に係わる層間絶縁膜平坦化の工程断面図が示されている。 There is shown a process cross-sectional view of an interlayer insulating film planarized in the embodiment of the present invention in FIG.

【0014】図1(a)に示す如く、表面に素子(不図示)が形成されたSi基板1上に、厚さ1μmのSiO [0014] As shown in FIG. 1 (a), on a Si substrate 1, element (not shown) is formed on the surface, the thickness of 1 [mu] m SiO
2膜2を形成する。 To form a 2 layer 2. 次いで、このSiO 2膜2上に厚さ500nmのポリシリコン膜3を形成する。 Then, a polysilicon film 3 having a thickness of 500nm on the SiO 2 film 2.

【0015】次に、図1(b)に示す如く、ポリシリコン膜3上に厚さ1.5μmのフォトレジスト(感光性樹脂層)4を塗布し、マスクパターン(図示せず)を用いてこのフォトレジスト4を露光し現像を行うことにより、フォトレジストパターン4を形成する。 [0015] Next, as shown in FIG. 1 (b), the polysilicon film 3 photoresist thickness 1.5μm on (photosensitive resin layer) 4 is applied, by using a mask pattern (not shown) by performing exposing the photoresist 4 developed to form a photoresist pattern 4.

【0016】次に、図1(c)に示す如く、このフォトレジストパターン4をマスクとして、CF 4ガスを使用したRIE法によりポリシリコン膜3をパターニングする。 [0016] Next, as shown in FIG. 1 (c), the photoresist pattern 4 as a mask, the polysilicon film is patterned 3 by RIE using CF 4 gas.

【0017】次に、図1(d)に示す如く、CF 4とO [0017] Next, as shown in FIG. 1 (d), CF 4 and O
2の混合ガスをマイクロ波放電させた下流でフォトレジストを灰化処理するダウンフロータイプの灰化処理装置により、フォトレジストパターン4を剥離した後、図1 The down-flow type ashing apparatus ashing a photoresist mixed gas of 2 downstream obtained by microwave discharge, after removing the photoresist pattern 4, Fig. 1
(e)に示す如く、全面に層間絶縁膜として厚さ1μm As shown in (e), a thickness of 1μm as an interlayer insulating film on the entire surface
のSiO 2膜5を形成する。 Forming a SiO 2 film 5. ここで、SiO 2膜5の表面にはポリシリコン配線3に対応して段差が生じた。 Here, the surface of the SiO 2 film 5 step occurs in response to the polysilicon wiring 3.

【0018】最後に、SiO 2膜5を研磨したのが、図1(f)である。 [0018] Finally, the polishing the SiO 2 film 5 is a diagram 1 (f). 研磨は、図2の概略図に示すような装置を用いた。 Polishing using an apparatus as shown in the schematic of FIG. この図に示されるように、ターンテーブル21上の研磨クロス22の中心に研磨剤供給パイプ23 As shown in this figure, the polishing agent supply to the center of the polishing cloth 22 on the turntable 21 Pipe 23
の先端が位置しており、ターンテーブル21は前記中心を通る軸のまわりに100rpmで矢印の方向に回転するとともに、前記先端から研磨剤が研磨クロス22上に供給される。 Of it has tip position, the turntable 21 with rotating in the direction of the arrow 100rpm about an axis passing through the center, the abrasive from the tip is supplied onto the polishing cloth 22. また、ウェーハ24は荷重40kgfで研磨クロス22上に押し付けられると共に、100rpm Further, the wafer 24 with the pressed onto the polishing cloth 22 under a load 40 kgf, 100 rpm
で矢印の方向に回転せしめられる。 In is rotated in the direction of the arrow. 研磨剤 、平均粒径1.2μm、最大粒径4.0μmの酸化セリウムを含む粉体は、バストネサイトを粉砕、焼成したもので、その組成は、酸化セリウム50wt%、その他の希土類金属の酸化物37wt%程度のものである。 During the abrasive, the average particle diameter of 1.2 [mu] m, the powder containing cerium oxide of maximum particle size 4.0μm, the milling bastnaesite, obtained by firing the composition, cerium oxide 50 wt%, other rare earth metals it is of the order of oxide 37 wt%. 本実施例で用いた酸化セリウムを含む粉体の組成を表1に示す。 The composition of the powder containing cerium oxide used in this example are shown in Table 1.

【0019】 [0019]

【表1】 [Table 1]

【0020】この様に、酸化セリウムを含む研磨剤で研磨した後の絶縁膜表面は、平坦化がされていた。 [0020] Thus, the insulating film surface was polished with an abrasive containing cerium oxide had been flattened. また、 Also,
微分干渉型顕微鏡で絶縁膜表面を観察しても、傷は観察されなかった。 Even by observing the insulating film surface by a differential interference microscope, scratches were observed.

【0021】図1と同様の方法で、平均粒径2.5μ [0021] In the same manner as FIG. 1, average particle size 2.5μ
m、最大粒径12.0μmの酸化セリウムを含む粉体1 m, the powder 1 containing a cerium oxide maximum particle size 12.0μm
wt%を水に懸濁させたものを用いた場合にも、研磨した後の絶縁膜表面は平坦化がなされていたが、微分干渉方顕微鏡で絶縁膜表面を観察すると、10cm 2 even when used as suspended in water wt%, the insulating film surface after polishing had been made flattened, observing the insulating film surface by differential interference direction microscope, 10 cm 2 あたり4 Per 4
個の傷が観察された。 Number of scratches were observed.

【0022】また、図1と同様の方法で、平均粒径2. Further, in the same manner as in FIG. 1, average particle size 2.
5μm、最大粒径12.0μmの酸化セリウムを含む粉体で、上記したように粉砕後焼成を行った粉末1wt% 5 [mu] m, in a powder containing cerium oxide in maximum particle diameter 12.0 .mu.m, powder 1 wt% was baked after milling as described above
を水に懸濁させたものを用いた場合には、微分干渉型顕微鏡で絶縁膜表面を観察すると、 10cm 2 あたりの傷の数は1個であった。 To the case of using those suspended in water, when observing the surface of the insulating film by a differential interference microscope, the number of scratches per 10 cm 2 was one.

【0023】この結果より、酸化セリウムを含む研磨剤で研磨することにより、絶縁膜表面の平坦化が可能である事、酸化セリウムを含む研磨剤は、粒径が小さいもの、好ましくは最大粒径4μm以下のものが傷の発生を抑えられる事、さらに同じ粒径の研磨剤においても焼成条件を変え粒子の硬さを軟らかくすることにより傷の発生を抑えられる事がわかる。 [0023] From this result, by polishing with an abrasive containing cerium oxide, it is possible to flatten the surface of the insulating film, a polishing agent containing cerium oxide, as the particle diameter is small, preferably a maximum particle size that 4μm the following can be suppressed the occurrence of flaws, it is understood that suppressing the occurrence of flaws by also soften the hardness of changing the firing conditions particles in yet same particle size of the abrasive.

【0024】次に、表2にシリコンを熱酸化した膜厚1 Next, the thickness 1 of silicon in Table 2 was thermally oxidized
μmのシリコン酸化膜およびリンとホウ素を高濃度に含む膜厚1μmのシリコン酸化膜(以下BPSGと呼ぶ) Silicon oxide film having a thickness of 1μm containing silicon oxide film and the phosphorus and boron μm high concentration (hereinafter referred to as BPSG)
を平均粒径2.5μm、最大粒径12.0μmの酸化セリウムを含む粉体1wt%を水に懸濁させた研磨剤を用いて0.5μm研磨した後の、原子吸光法による不純物分析の結果を示す。 The average particle diameter of 2.5 [mu] m, a 1 wt% powder containing cerium oxide of maximum particle size 12.0μm after 0.5μm polished using an abrasive suspended in water, the impurity analysis by atomic absorption spectrometry the results show a. 参考のため、コンポール80で研磨した場合の結果も示す。 For reference, the results in the case of polishing with Compol 80.

【0025】 [0025]

【表2】 [Table 2]

【0026】コンポール80で研磨した場合には、シリコン熱酸化膜ではRef. [0026] When it is polished with Compol 80, Ref is silicon thermal oxide film. の研磨を行っていないものの値(文献に記載されている通常の値)に比べ1桁程度ナトリウムのレベルが高くなっており、BPSG膜においては2桁以上もナトリウムのレベルが高くなっている。 Has become higher by about one digit level of sodium compared to the value of those not subjected to polishing (normal values ​​described in the literature) of sodium levels than two digits or more is high in the BPSG film.

【0027】これに対し、酸化セリウムを含む研磨剤で研磨したものでは、シリコン熱酸化膜、BPSG膜、共にナトリウムのレベルは、Ref. [0027] In contrast, than those polished with an abrasive containing cerium oxide, silicon thermal oxide film, BPSG film, both the level of sodium, Ref. の研磨を行っていないものの値(文献に記載されている通常の値)と同等で、他の元素についても汚染は観察されなかった。 Equal to the value of those not subjected to polishing (normal value described in the literature), contamination for the other elements were not observed. また、Ceは1×10 10 atoms/cm 2 Also, Ce has 1 × 10 10 atoms / cm 2 以下であった。 It was less than. 酸化セリウムを含む研磨剤は、先に述べたようにバストネサイトを粉砕、焼成したもので、特にアルカリ金属等を取り除く事は行っていないが、それでもアルカリ金属汚染は観察されず、バストネサイトを原料とする研磨剤でも半導体装置の製造に支障ない事が分かる。 Abrasive containing cerium oxide, pulverized Bastnasite As mentioned earlier, which was calcined, but not it is performed in particular removing the alkali metal or the like, but still alkali metal contamination was not observed and bastnaesite that is found not hinder the fabrication of the semiconductor device in abrasives as raw materials.

【0028】次に、表3にシリコンの熱酸化シリコン酸化膜、シリコン窒化膜、及びBPSG膜を平均粒径2. Next, a silicon thermal oxide silicon oxide film in Table 3, the silicon nitride film, and a BPSG film an average particle diameter of 2.
5μm、最大粒径12.0μmの酸化セリウムを含む粉体1wt%を水に懸濁させた研磨剤を用いて研磨した際の研磨速度を示す。 5 [mu] m, showing a polishing rate at which a 1 wt% powder containing cerium oxide of maximum particle size 12.0μm were polished using an abrasive suspended in water. 参考のため、コンポール80および粒径12nmのシリカ粒子5wt%を水に懸濁させたもの、さらにこれにアンモニアを10wt%加えたもの、 For reference, those silica particles 5 wt% of Compol 80 and particle size 12nm was suspended in water, and further adding 10 wt% of ammonia thereto,
および水酸化ナトリウムを0.2wt%加えたものも合わせて示す。 And also shown together that sodium hydroxide was added 0.2 wt%.

【0029】 [0029]

【表3】 [Table 3]

【0030】熱酸化したシリコン酸化膜の場合、コンポール80の研磨速度は110nm/min程度である。 In the case of the heat oxidized silicon oxide film, the polishing rate of Compol 80 is about 110 nm / min.
また、粒径12nmシリカ粒子5wt%を水に懸濁させただけのものでは、研磨速度は6nm/minと非常に小さい。 Further, the 5 wt% particle diameter 12nm silica particles intended only was suspended in water, the polishing rate is very small and 6 nm / min. これに、水酸化ナトリウムを0.2wt%加えたものでは研磨速度は50nm/min、アンモニアを10wt%加えたものでは18nm/minと増大するが、アンモニアの効果は水酸化ナトリウムの効果に比べて小さい。 Thereto, the polishing rate than that of sodium hydroxide was added 0.2 wt% is 50 nm / min, although those of ammonia plus 10 wt% increases the 18 nm / min, the effect of ammonia as compared to the effect of sodium hydroxide small. さらにまた、コンポール80でシリコン窒化膜、BPSG膜を研磨した時の研磨速度はそれぞれ40 Furthermore, the silicon nitride film in Compol 80, the polishing rate when polishing the BPSG film, respectively 40
nm/min、200nm/minである。 nm / min, which is 200nm / min.

【0031】例えば500nmの熱酸化したシリコン酸化膜を研磨によって除去する場合、コンポール80では約5分、粒径12nmのシリカ粒子5wt%を水に懸濁させたものに水酸化ナトリウムを0.2wt%加えたものでは約10分であるが、アンモニアを10wt%加えたものでは30分程度もかかり実用できるものではない。 [0031] When removing the polished silicon oxide film thermally oxidized, for example 500 nm, Compol 80 in about 5 minutes, sodium hydroxide 5 wt% silica particles having a particle size of 12nm to those suspended in water 0.2wt % was added as hereinbefore is about 10 minutes, but not intended to plus 10 wt%, which may also take practical about 30 minutes ammonia.

【0032】これに対し、平均粒子2.5μm、最大粒径12.0μmの酸化セリウムを含む粉体1wt%を水に懸濁させた研磨剤で研磨した場合には、シリコン酸化膜の研磨速度が1000nm/min、シリコン窒化膜の研磨速度が300nm/min、BPSG膜の研磨速度が1200 乃至 1300nm/minと非常に早く、 [0032] In contrast, when the average particle 2.5 [mu] m, a 1 wt% powder containing cerium oxide of maximum particle size 12.0μm was polished with an abrasive suspended in water, the polishing rate of the silicon oxide film There 1000 nm / min, the polishing rate of the silicon nitride film is 300 nm / min, the polishing rate of the BPSG film is very fast and 1200 to 1300 nm / min,
500nmの膜を研磨によって除去するのにそれぞれ0.5分、2分程度と生産への実用に有効な速度が得られる。 0.5 min each for removing by grinding the 500nm membrane, effective rate can be obtained for practical use in production of about 2 minutes.

【0033】本実施例では、研磨剤はバストネサイトを粉砕、焼成したもので、その組成は、酸化セリウム50 [0033] In this embodiment, the abrasive grinding bastnaesite, obtained by firing the composition, cerium oxide 50
wt%、その他の希土類金属の酸化物37wt%程度のものを水に懸濁させたものについて述べたが、酸化セリウムを含む研磨剤は原料、製法、懸濁液の濃度など変更可能である。 wt%, but what about oxide 37 wt% of other rare earth metals has been described that is suspended in water, a polishing agent containing cerium oxide raw material, production method, can be changed, such as the concentration of the suspension. また、研磨する絶縁膜についてはシリコン熱酸化膜を中心に述べたが、化学的気相成長法で形成したシリコン酸化膜、窒化膜など他の絶縁膜、さらに、絶縁膜の一部に導体膜が形成されているものにおいても有効である。 Although for the insulating film to be polished mentioned about the silicon thermal oxide film, a silicon oxide film formed by chemical vapor deposition, other insulating film such as a nitride film, further, the conductive film on a part of the insulating film There is also effective in being formed. さらに、研磨装置の構造も実施例に述べたものに限られるものではない。 Further, not the structure of the polishing apparatus are also limited to those described in the examples. その他、本発明の要旨を逸脱しない範囲で、種々変形して実施できる。 Other, without departing from the scope of the present invention can be variously modified.

【0034】 [0034]

【発明の効果】本発明によれば、酸化セリウムを含む研磨剤を用いることにより、シリコン酸化膜やシリコン窒化膜等の絶縁膜を高速で研磨することができる。 According to the present invention, by using a polishing agent containing cerium oxide, it is possible to polish the insulating film such as a silicon oxide film or a silicon nitride film at a high speed. また、 Also,
研磨の際に上記絶縁膜の内部にアルカリ金属汚染を引き起こす事もない。 Nor cause alkali metal contamination in the interior of the insulating film during polishing. さらに、絶縁膜表面に傷を発生させることなく段差を平坦化しながら研磨することが可能である。 Furthermore, it is possible to polish while flattening the level difference without causing scratches on the surface of the insulating film. 従って、半導体装置の製造において、絶縁膜の研磨工程を実用化する事が容易になる。 Thus, in the manufacture of semiconductor devices, it becomes easy to practical polishing process of the insulating film.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】 本発明による半導体装置の製造方法の一実施例を示す工程断面図。 Sectional views showing an embodiment of a method of manufacturing a semiconductor device according to the invention; FIG.

【図2】 本発明に用いた研磨装置を示す概略図。 Schematic view showing a polishing apparatus used in the present invention; FIG.

【図3】 従来の研磨工程を示す断面図。 Cross-sectional view showing the Figure 3 conventional polishing process.

【符号の説明】 DESCRIPTION OF SYMBOLS

1 Si基板、 2 SiO 2膜、 3 ポリシリコン膜、 4 フォトレジスト(感光性樹脂層)、 5 SiO 2膜、 21 ターンテーブル、 22 研磨クロス、 23 研磨剤供給パイプ、 24 ウェーハ、 51 段差、 52 絶縁膜。 1 Si substrate, 2 SiO 2 film, third polysilicon film, 4 a photoresist (photosensitive resin layer), 5 SiO 2 film, 21 a turntable, 22 polishing cloth, 23 polishing agent supply pipe, 24 wafers, 51 step, 52 insulating film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 青木 利一郎 神奈川県川崎市幸区堀川町72番地 株式 会社東芝 堀川町工場内 (56)参考文献 特開 昭58−61663(JP,A) 特開 昭64−87146(JP,A) 特開 昭59−201756(JP,A) 特開 昭64−45566(JP,A) (58)調査した分野(Int.Cl. 7 ,DB名) H01L 21/304 B24B 37/00 C09K 3/14 550 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor, Kawasaki City, Kanagawa Prefecture, Saiwai-ku Horikawa-cho, 72 address Riichiro Aoki stock company Toshiba Horikawa-cho, in the factory (56) reference Patent Sho 58-61663 (JP, a) JP Akira 64-87146 (JP, a) JP Akira 59-201756 (JP, a) JP Akira 64-45566 (JP, a) (58 ) investigated the field (Int.Cl. 7, DB name) H01L 21/304 B24B 37/00 C09K 3/14 550

Claims (5)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】半導体基板上に絶縁膜を形成する工程と、 1. A forming an insulating film on a semiconductor substrate,
    該絶縁膜の少なくとも一部を、酸化セリウムを含みNa At least a portion of the insulating film, Na comprise cerium oxide
    濃度100ppm以下の粒子を水に懸濁させた研磨剤に<br>よって研磨し、取り除く工程とを有することを特徴とする半導体装置の製造方法。 The method of manufacturing a semiconductor device characterized by the following particle concentration 100ppm to <br> Therefore polishing abrasive suspended in water, and a step of removing.
  2. 【請求項2】 半導体基板上に絶縁膜を形成する工程と、 To 2. A semiconductor substrate forming an insulating film,
    該絶縁膜の少なくとも一部を、酸化セリウムを含みFe At least a portion of the insulating film, Fe include cerium oxide
    濃度10000ppm以下の粒子を水に懸濁させた研磨 Polishing the following particle concentration 10000ppm suspended in water
    剤によって研磨し、取り除く工程とを有することを特徴 Characterized in that it has a polished, removed step by agents
    とする半導体装置の製造方法。 The method of manufacturing a semiconductor device according to.
  3. 【請求項3】表面に段差が形成された基板上に絶縁膜を形成する工程と、該絶縁膜を、酸化セリウムを含みNa Forming a wherein insulating on the substrate a step is formed on the surface film, the insulating film comprises cerium oxide Na
    濃度100ppm以下の粒子を水に懸濁させた研磨剤に<br>よって研磨して平坦化する工程とを有することを特徴とする半導体装置の製造方法。 The method of manufacturing a semiconductor device characterized by a step of flattening by <br> Thus polished following particle concentration 100ppm to abrasives suspended in water.
  4. 【請求項4】 表面に段差が形成された基板上に絶縁膜を The 4. insulating on the substrate a step is formed on the surface layer
    形成する工程と、該絶縁膜を、酸化セリウムを含みFe Forming the insulating film, Fe include cerium oxide
    濃度10000ppm以下の粒子を水に懸濁させた研磨 Polishing the following particle concentration 10000ppm suspended in water
    剤によって研磨して平坦化する工程とを有することを特 JP, further comprising the step of polishing and flattening the dosage
    徴とする半導体装置の製造方法。 The method of manufacturing a semiconductor device according to symptoms.
  5. 【請求項5】 前記粒子の最大粒径は4μm以下であることを特徴とする請求項1乃至4のいずれかに記載の半導体装置の製造方法。 5. A method of manufacturing a semiconductor device according to any one of claims 1 to 4, wherein the maximum particle size of the particles is 4μm or less.
JP13297892A 1992-05-26 1992-05-26 A method of manufacturing a semiconductor device Expired - Lifetime JP3335667B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13297892A JP3335667B2 (en) 1992-05-26 1992-05-26 A method of manufacturing a semiconductor device

Applications Claiming Priority (13)

Application Number Priority Date Filing Date Title
JP13297892A JP3335667B2 (en) 1992-05-26 1992-05-26 A method of manufacturing a semiconductor device
KR930009027A KR0153787B1 (en) 1992-05-26 1993-05-25 A method of manufacturing semiconductor apparatus and a method of flattening
US08066375 US5445996A (en) 1992-05-26 1993-05-25 Method for planarizing a semiconductor device having a amorphous layer
GB9326509A GB2275129B (en) 1992-05-26 1993-05-26 Method for planarizing a layer on a semiconductor wafer
GB9611104A GB2298961B (en) 1992-05-26 1993-05-26 Polishing apparatus for planarizing layer on a semiconductor wafer
GB9326510A GB2275130B (en) 1992-05-26 1993-05-26 Polishing apparatus and method for planarizing layer on a semiconductor wafer
GB9310909A GB2267389B (en) 1992-05-26 1993-05-26 Polishing method for planarizing layer on a semiconductor wafer
GB9611090A GB2298960B (en) 1992-05-26 1993-05-26 Polishing apparatus and method for planarizing layer on a semiconductor wafer
GB9611070A GB2299895B (en) 1992-05-26 1993-05-26 polishing apparatus for planarizing layer on a semiconductor wafer
US08451226 US5597341A (en) 1992-05-26 1995-05-26 Semiconductor planarizing apparatus
US08897570 US5948205A (en) 1992-05-26 1997-07-21 Polishing apparatus and method for planarizing layer on a semiconductor wafer
US08897324 US5914275A (en) 1992-05-26 1997-07-21 Polishing apparatus and method for planarizing layer on a semiconductor wafer
KR19980001478A KR100153906B1 (en) 1992-05-26 1998-01-12 A polishing apparatus and a polishing method, and an apparatus for planarizing a semiconductor wafer

Publications (2)

Publication Number Publication Date
JPH05326469A true JPH05326469A (en) 1993-12-10
JP3335667B2 true JP3335667B2 (en) 2002-10-21

Family

ID=15093936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13297892A Expired - Lifetime JP3335667B2 (en) 1992-05-26 1992-05-26 A method of manufacturing a semiconductor device

Country Status (2)

Country Link
JP (1) JP3335667B2 (en)
KR (1) KR0153787B1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06216094A (en) * 1993-01-18 1994-08-05 Mitsubishi Materials Corp Polishing method for semiconductor substrate and manufacture of the substrate using same
EP0820092A4 (en) * 1996-02-07 2000-03-29 Hitachi Chemical Co Ltd Cerium oxide abrasive, semiconductor chip, semiconductor device, process for the production of them, and method for the polishing of substrates
US5962343A (en) * 1996-07-30 1999-10-05 Nissan Chemical Industries, Ltd. Process for producing crystalline ceric oxide particles and abrasive
KR100775228B1 (en) 1996-09-30 2007-11-12 히다치 가세고교 가부시끼가이샤 A Cerium Oxide Particle
JPH10309660A (en) * 1997-05-07 1998-11-24 Tokuyama Corp Finishing abrasive
JPH11181403A (en) * 1997-12-18 1999-07-06 Hitachi Chem Co Ltd Cerium oxide abrasive and grinding of substrate
WO2001000744A1 (en) 1999-06-28 2001-01-04 Nissan Chemical Industries, Ltd. Abrasive compound for glass hard disk platter
JP2005203394A (en) 2004-01-13 2005-07-28 Nec Electronics Corp Manufacturing method of semiconductor device
EP1566420A1 (en) 2004-01-23 2005-08-24 JSR Corporation Chemical mechanical polishing aqueous dispersion and chemical mechanical polishing method
JP4292117B2 (en) 2004-07-15 2009-07-08 Jsr株式会社 Chemical mechanical polishing aqueous dispersion and a chemical mechanical polishing method
JP4756996B2 (en) * 2005-11-02 2011-08-24 三井金属鉱業株式会社 Cerium-based abrasive
EP1962334A4 (en) 2005-12-16 2010-11-17 Jsr Corp Aqueous dispersion for chemical mechanical polishing, chemical mechanical polishing method, and kit for preparing aqueous dispersion for chemical mechanical polishing
JP2008132593A (en) * 2007-12-14 2008-06-12 Hitachi Chem Co Ltd Cerium oxide slurry, cerium oxide abrasive and base board polishing method

Also Published As

Publication number Publication date Type
JPH05326469A (en) 1993-12-10 application
KR0153787B1 (en) 1998-12-01 grant

Similar Documents

Publication Publication Date Title
US5389194A (en) Methods of cleaning semiconductor substrates after polishing
US5302551A (en) Method for planarizing the surface of an integrated circuit over a metal interconnect layer
US5169491A (en) Method of etching SiO2 dielectric layers using chemical mechanical polishing techniques
US20050208883A1 (en) Polishing composition
US6478836B1 (en) Cerium oxide slurry for polishing, process for preparing the slurry, and process for polishing with the slurry
US6416685B1 (en) Chemical mechanical planarization of low dielectric constant materials
US5626715A (en) Methods of polishing semiconductor substrates
US5264010A (en) Compositions and methods for polishing and planarizing surfaces
US5697992A (en) Abrasive particle, method for producing the same, and method of use of the same
US6429134B1 (en) Method of manufacturing semiconductor device
US5795495A (en) Method of chemical mechanical polishing for dielectric layers
US6527818B2 (en) Aqueous dispersion for chemical mechanical polishing
US5896870A (en) Method of removing slurry particles
US20050176606A1 (en) Cleaning composition, method for cleaning semiconductor substrate, and process for manufacturing semiconductor device
US6464740B1 (en) Reactive aqueous metal oxide sols as polishing slurries for low dielectric constant materials
US7056192B2 (en) Ceria-based polish processes, and ceria-based slurries
US5891205A (en) Chemical mechanical polishing composition
US6451696B1 (en) Method for reclaiming wafer substrate and polishing solution compositions therefor
US5880039A (en) Method for forming interlayer insulating film of a semiconductor device
US5709588A (en) Polishing slurry and polishing process using the same
US5993685A (en) Planarization composition for removing metal films
US5597341A (en) Semiconductor planarizing apparatus
US5951724A (en) Fine particulate polishing agent, method for producing the same and method for producing semiconductor devices
US6227949B1 (en) Two-slurry CMP polishing with different particle size abrasives
US6447694B1 (en) Composition for chemical mechanical polishing

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070802

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080802

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090802

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100802

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110802

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120802

Year of fee payment: 10