JP3170335B2 - Gas flow meter - Google Patents

Gas flow meter

Info

Publication number
JP3170335B2
JP3170335B2 JP03304392A JP3304392A JP3170335B2 JP 3170335 B2 JP3170335 B2 JP 3170335B2 JP 03304392 A JP03304392 A JP 03304392A JP 3304392 A JP3304392 A JP 3304392A JP 3170335 B2 JP3170335 B2 JP 3170335B2
Authority
JP
Japan
Prior art keywords
flow rate
flow
measured
signal
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP03304392A
Other languages
Japanese (ja)
Other versions
JPH05231902A (en
Inventor
稔彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP03304392A priority Critical patent/JP3170335B2/en
Publication of JPH05231902A publication Critical patent/JPH05231902A/en
Application granted granted Critical
Publication of JP3170335B2 publication Critical patent/JP3170335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は気体用流量計に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas flow meter.

【0002】[0002]

【従来の技術】計測範囲を拡大する目的で、二つのセン
サを用い、一方のセンサでは中〜大流量域を、他方のセ
ンサでは小流量域を計測する気体用流量計が、特開平3
−96817号公報と特開平3−264821号公報で
提案されている。
2. Description of the Related Art A gas flow meter using two sensors for expanding a measurement range, one of which measures a medium to large flow rate region and the other of which measures a small flow rate region, is disclosed in Japanese Unexamined Patent Publication No. Hei.
-96817 and JP-A-3-264821.

【0003】これら両従来技術は、中〜大流量域をフル
ィディック発振素子で、小流量域を熱式フローセンサで
計測し、両者の計測域がオーバーラップする流量範囲を
設けておき、この流量範囲に測定対象流量があるとき、
安定性の高いフルィディツク発振素子(以下FDと言
う)の計測値を基準として、ダストや水分の付着及び経
年変化による誤差を生じやすい熱式フローセンサ(以下
FSと言う)の計測値を自動的に較正しながら使用する
構成になっている。
In both of these prior arts, a medium to large flow rate region is measured by a fluidic oscillation element, and a small flow rate region is measured by a thermal flow sensor, and a flow rate range in which both measurement ranges overlap is provided. When there is a target flow rate in the flow rate range,
Based on the measurement value of a highly stable fluid oscillation device (hereinafter referred to as FD), the measurement value of a thermal flow sensor (hereinafter referred to as FS), which is liable to cause errors due to dust and moisture adhesion and aging, is automatically calculated. It is configured to be used while calibrating.

【0004】上記従来技術のうち、特開平3−9681
7号公報記載の流量計の概略を図3と図4により以下に
説明する。この気体用流量計は、図3に示すように、フ
ルィディック発振素子(FD)1と、該FD1の流体振
動を検知して電気信号に変換するセンサ2と、FDのノ
ズル部3の流速を検知して電気信号に変換する熱式フロ
ーセンサ(FS)4と、前記流体振動検知用センサ2と
流速検知用FS4の信号を演算して積算流量を求める電
子回路5と、該電子回路5で求めた積算流量を表示する
表示器6とを有している。
[0004] Of the above prior art, Japanese Patent Application Laid-Open No. 3-9681
An outline of the flow meter described in Japanese Patent Publication No. 7 will be described below with reference to FIGS. As shown in FIG. 3, this gas flow meter includes a fluidic oscillation element (FD) 1, a sensor 2 that detects fluid vibration of the FD 1 and converts it into an electric signal, and a flow rate of a nozzle 3 of the FD. A thermal flow sensor (FS) 4 for detecting the flow rate and converting it into an electric signal; an electronic circuit 5 for calculating the integrated flow rate by calculating signals of the fluid vibration detecting sensor 2 and the flow velocity detecting FS 4; And an indicator 6 for displaying the integrated flow rate obtained in the step (a).

【0005】流体振動検知用センサ2としては、高分子
圧電膜センサが、流速検知用FS4としては特開昭59
−182315号公報記載のようなFSが用いられる。
そして、流体振動検知用センサ2は、流体振動に対応し
た周波数の電気信号を生じ、FS4はノズル部3の流速
に対応してアナログ電気信号を生じる。
As the fluid vibration detecting sensor 2, a polymer piezoelectric film sensor is used, and as the flow velocity detecting FS4, Japanese Unexamined Patent Publication No.
FS as described in JP-A-182315 is used.
Then, the fluid vibration detection sensor 2 generates an electric signal of a frequency corresponding to the fluid vibration, and the FS 4 generates an analog electric signal corresponding to the flow velocity of the nozzle unit 3.

【0006】FS4はシリコンチップ上の流れが当たる
表面に発熱部の上流側と下流側に流体温度検出部を配置
した物で、流量に応じて発熱部の両側の流体温度検出部
の電気抵抗が変化するため、この変化を電気信号として
検出し、増幅、A/D変換してマイコンにより流量を求
める。
The FS4 has a fluid temperature detecting section disposed upstream and downstream of the heating section on the surface of the silicon chip where the flow is applied. The electric resistance of the fluid temperature detecting section on both sides of the heating section depends on the flow rate. Since the change occurs, the change is detected as an electric signal, amplified, A / D converted, and the flow rate is obtained by a microcomputer.

【0007】電子回路5は図4に示す構成となってい
る。4AはA/D変換回路で、FS4で検知した小流量
域のアナログ電気信号を流量に比例したパルス数の電気
パルス信号にディジタル変換する。
The electronic circuit 5 has a configuration shown in FIG. Reference numeral 4A denotes an A / D conversion circuit which converts an analog electric signal in a small flow rate range detected by the FS 4 into an electric pulse signal having a pulse number proportional to the flow rate.

【0008】7はA/D変換回路4Aの出力である高速
の電気パルス(信号B)をマイコン8に入力するのに一
時的にストックするカウンタ、9は電源、10は圧電膜
回路部11と熱式フローセンサ回路部12とに供給する
駆動電圧を制御する電圧制御回路である。
Reference numeral 7 denotes a counter for temporarily storing a high-speed electric pulse (signal B) output from the A / D conversion circuit 4A for input to the microcomputer 8, reference numeral 9 denotes a power supply, and reference numeral 10 denotes a piezoelectric film circuit unit 11. This is a voltage control circuit that controls a drive voltage supplied to the thermal flow sensor circuit unit 12.

【0009】13はセンサ2の電気信号を増幅するアナ
ログ増幅器、14はアナログ増幅器13の出力信号を矩
形波に整形する波形整形回路、15は波形整形回路14
の出力(信号A)を入力とし、その周波数が一定値以上
のときに信号Aを同じ周波数の信号Jとしてマイコン8
に伝送する信号判定回路である。
Reference numeral 13 denotes an analog amplifier for amplifying the electric signal of the sensor 2, 14 denotes a waveform shaping circuit for shaping the output signal of the analog amplifier 13 into a rectangular wave, and 15 denotes a waveform shaping circuit 14.
(Signal A) is input, and when the frequency is equal to or higher than a predetermined value, the signal A is set as the signal J having the same frequency.
Is a signal determination circuit to be transmitted.

【0010】16はクロック制御回路で、マイコン8の
指令を受けてA/D変換するためクロック信号HをA/
D変換回路4Aへ送出する。センサ2の信号周波数、つ
まり信号Aの周波数が一定値以上のときは信号Jがマイ
コン8で演算されて流量積算値となる。又、信号Aの周
波数が一定値以下の小流量域ではFS4に基づく信号B
がマイコン8で演算され、信号Jと信号Bのパルス数の
合計の流量積算値が求められて表示器6に表示される。
Reference numeral 16 denotes a clock control circuit which receives a command from the microcomputer 8 and converts the clock signal H into an A / D signal for A / D conversion.
It is sent to the D conversion circuit 4A. When the signal frequency of the sensor 2, that is, the frequency of the signal A is equal to or higher than a predetermined value, the signal J is calculated by the microcomputer 8 and becomes a flow rate integrated value. In a small flow rate region where the frequency of the signal A is equal to or lower than a predetermined value, the signal B based on the FS4 is used.
Is calculated by the microcomputer 8, and the integrated flow amount of the total number of pulses of the signal J and the signal B is obtained and displayed on the display 6.

【0011】FS4のアナログ電圧は、クロック信号と
同期して、流量に比例したパルス数の流量信号BにA/
D変換回路4Aで変換される。この信号Bは間隔(周
期)T0 毎(例えばT0 =5秒)に出力され、その都度
のパルス数は流量0[l/h]で0パルス、流量50
[l/h]で300パルスにし、流量に比例したパルス
数になるように、A/D変換回路6の特性が定められて
いる。
The analog voltage of the FS4 is synchronized with the clock signal to generate a flow rate signal B having a pulse number proportional to the flow rate.
It is converted by the D conversion circuit 4A. This signal B is output at every interval (cycle) T 0 (for example, T 0 = 5 seconds).
The characteristics of the A / D conversion circuit 6 are determined so that [1 / h] is 300 pulses and the number of pulses is proportional to the flow rate.

【0012】そして、FDの計測値を基準として、FS
の計測値を較正するときは、FS4のアナログ信号をA
/D変換回路4Aで電気パルスにディジタル変換すると
きのパルス定数を変えることで較正していた。
Then, based on the measured value of FD, FS
When calibrating the measured value of FS4, the analog signal of FS4
The calibration has been performed by changing the pulse constant when the digital conversion into an electric pulse is performed by the / D conversion circuit 4A.

【0013】このような較正動作のより詳細は前記特開
平3−96817号公報で周知である。
The details of such a calibration operation are well known in the above-mentioned Japanese Patent Application Laid-Open No. 3-96817.

【0014】[0014]

【発明が解決しようとする課題】上記従来の技術では、
前記計測域がオーバーラップする流量域では、FDとF
Sの両者が、流量とセンサ出力との間に直線性を保つ領
域を用いている。
In the above prior art,
In the flow area where the measurement areas overlap, FD and F
Both S use a region that maintains linearity between the flow rate and the sensor output.

【0015】この領域を広くとるには、FDの計測下限
の拡大とFSの計測上限の拡大を必要とし、技術的に困
難であった。そのために前記オーバーラップする計測域
である較正範囲が狹くて、この種の流量計をガス使用量
をはかる計量器としてのガスメータとして用いると、フ
ィールドにおけるガスの使用流量が較正範囲に入りずら
く、較正の機会が少なくなり、場合によっては較正出来
ないことが生じるという問題点があった。
In order to widen this area, it is necessary to increase the lower limit of the FD measurement and the upper limit of the FS measurement, which is technically difficult. Therefore, the calibration range, which is the overlapping measurement range, is narrow, and when this type of flow meter is used as a gas meter as a measuring instrument for measuring gas usage, the flow rate of gas used in the field is hard to enter the calibration range. However, there is a problem that the number of calibrations is reduced, and in some cases, the calibration cannot be performed.

【0016】そこで、本発明にかかる問題点を解消し
て、較正の機会を増大できるガスメータに好適な気体用
流量計を提供することを目的とする。
An object of the present invention is to provide a gas flow meter suitable for a gas meter which can solve the problems of the present invention and can increase the chance of calibration.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、本発明の気体用流量計は、中〜大流量域をフルィデ
ィック発振素子(1)で、小流量域を熱式フローセンサ
(4)で計測すると共に、両者の計測域がオーバーラッ
プする流量範囲を設けておき、この流量範囲に測定対象
流量があるとき、フルィディツク発振素子(1)の計測
値を基準として熱式フローセンサ(4)の計測値を較正
する流量計において、前記流量範囲に測定対象があると
きに熱式フローセンサ(4)の計測値が飽和領域にある
か飽和領域以下かを識別し、飽和領域以下のときに前記
較正動作を行なうことを特徴とする。
In order to achieve the above object, a gas flow meter according to the present invention comprises a fluid flow oscillating element (1) for a medium to large flow area and a thermal flow sensor for a small flow area. In addition to the measurement in (4), a flow rate range where both measurement areas overlap is provided, and when the flow rate to be measured is in this flow rate range, a thermal flow sensor is used based on the measured value of the fluid oscillation element (1). In the flow meter for calibrating the measured value of (4), it is determined whether the measured value of the thermal flow sensor (4) is in the saturation region or less than the saturation region when there is an object to be measured in the flow rate range. The calibration operation is performed at the time of.

【0018】[0018]

【作用】FSが経時変化して感度が低下すると、流量に
対するセンサ出力が、初期の正常な感度曲線イに対し、
図2の曲線ロのようになる。従って、同図Bの流量範囲
でFDとオーバーラップして計測し、FSの出力特性
(感度曲線)の飽和領域以下の計測値を用いて、FDの
出力である曲線ハを基準に較正する。こうすることで、
従来技術の較正範囲Aに比較して、大幅に較正範囲が拡
大できる。
When the FS changes with time and the sensitivity decreases, the sensor output with respect to the flow rate becomes smaller than the initial normal sensitivity curve a.
It becomes like the curve B in FIG. Therefore, the measurement is performed so as to overlap with the FD in the flow rate range of FIG. B, and calibration is performed on the basis of the curve C which is the output of the FD, using the measured value of the output characteristic (sensitivity curve) of the FS which is equal to or less than the saturation region. By doing this,
The calibration range can be greatly expanded as compared with the calibration range A of the prior art.

【0019】[0019]

【実施例】図1と図2に基づいて本発明の実施例を説明
するが、流量計のハードの構成は図3と図4で説明した
従来技術の場合と同じで、ソフトのみが異なっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 and 2. The configuration of the hardware of the flow meter is the same as that of the prior art described with reference to FIGS. I have.

【0020】図2において、曲線イとロはFSの流量と
出力(前記信号Bのパルス数)の関係を示し、イは初期
時のデータ、ロは経時変化等で初期時の60%近くに感
度が低下したときのデータで、何れの曲線とも、出力が
2000パルス程度で飽和する状態をFSが本質的にも
っている。
In FIG. 2, curves A and B show the relationship between the flow rate of FS and the output (the number of pulses of the signal B). Regarding the data when the sensitivity is lowered, the FS essentially has a state in which the output is saturated at about 2000 pulses in any of the curves.

【0021】ハはFDの特性で、比較的良い直線性を示
しているが、流量Q1 未満では発振が不安定であったり
発振不能で、計測できない。Q2 はFSで実用的に計測
可能な上限の流量で、Q1 とQ2 との間の符号Aで示す
流量範囲を、従来技術ではオーバーラップしFDとFS
の両者で計測して、較正範囲としている。
[0021] c is a characteristic of the FD, while indicating relatively good linearity, it is less than the flow rate Q 1 is impossible oscillation or unstable oscillation, can not be measured. Q 2 is the upper limit flow rate that can be practically measured by FS, and the flow rate range indicated by reference symbol A between Q 1 and Q 2 is overlapped with FD and FS in the prior art.
Are measured in both cases, and set as the calibration range.

【0022】そして、この従来技術での較正のフロー
は、図1のステップ33〜46と同じである。本発明で
は、較正範囲(オーバーラップする計測範囲)を図2の
Bのように(従来技術の範囲Aよりも)大幅に広げ、F
Sの計測データから2000パルス付近の飽和データを
除き(ステップ40)、飽和領域を除いたFSの計測値
を、FDの計測データを基準としてFSパルス定数を変
更して較正動作を完了する(図1のステップ34〜4
1) 流量がAの範囲にあるときは、ステップ42〜46の従
来と同じフローで較正が行なわれる。
The flow of calibration in this prior art is the same as steps 33 to 46 in FIG. In the present invention, the calibration range (overlapping measurement range) is significantly increased as shown in FIG.
The saturation data around 2000 pulses are removed from the S measurement data (Step 40), and the calibration operation is completed by changing the FS measurement value excluding the saturation region and the FS pulse constant based on the FD measurement data (FIG. Step 34 of 1
1) When the flow rate is in the range of A, the calibration is performed according to the same flow as the conventional one in steps 42 to 46.

【0023】なお、この較正方法を用いたガスメータの
較正範囲Bを従来技術の較正範囲Aと比較して表1に示
す。メータ号数により、わずかに違うが、どのメータ
も、較正範囲がほぼ2.5倍に拡大改善されている。
The calibration range B of the gas meter using this calibration method is shown in Table 1 in comparison with the calibration range A of the prior art. Although slightly different depending on the number of the meters, the calibration range of each of the meters is improved by approximately 2.5 times.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明の気体用流量計は、上述のように
構成されているので、熱式フローセンサの較正範囲を従
来の倍強にまで拡大できるため、熱式フローセンサが特
性変化した場合の較正の機会が多くなり、小流量域での
計測誤差が経時変化で増大することが防止できる。
Since the gas flow meter of the present invention is configured as described above, the calibration range of the thermal type flow sensor can be expanded to twice as large as that of the conventional type, so that the characteristics of the thermal type flow sensor have changed. In such a case, the number of opportunities for calibration increases, and it is possible to prevent the measurement error in the small flow rate region from increasing over time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例のフローチャート。FIG. 1 is a flowchart of an embodiment of the present invention.

【図2】流量とセンサ出力の線図。FIG. 2 is a diagram of a flow rate and a sensor output.

【図3】従来技術の系統図。FIG. 3 is a system diagram of the related art.

【図4】従来技術の電子回路のブロック図。FIG. 4 is a block diagram of a conventional electronic circuit.

【符号の説明】[Explanation of symbols]

1 フルィディック発振素子 4 熱式フローセンサ 1 Fluidic oscillator 4 Thermal flow sensor

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 中〜大流量域をフルィディック発振素子
(1)で、小流量域を熱式フローセンサ(4)で計測す
ると共に、両者の計測域がオーバーラップする流量範囲
を設けておき、この流量範囲に測定対象流量があると
き、フルィディツク発振素子(1)の計測値を基準とし
て熱式フローセンサ(4)の計測値を較正する流量計に
おいて、前記流量範囲に測定対象があるときに熱式フロ
ーセンサ(4)の計測値が飽和領域にあるか飽和領域以
下かを識別し、飽和領域以下のときに前記較正動作を行
なうことを特徴とする気体用流量計。
1. A medium to large flow rate region is measured by a fluidic oscillation element (1), a small flow rate region is measured by a thermal flow sensor (4), and a flow rate range in which both measurement ranges overlap is provided. When there is a flow rate to be measured in this flow rate range, in a flow meter for calibrating the measurement value of the thermal type flow sensor (4) based on the measurement value of the fluid oscillation element (1), the flow rate range has the measurement target. A gas flow meter characterized in that it sometimes discriminates whether a measured value of the thermal flow sensor (4) is in a saturation region or less than a saturation region, and performs the calibration operation when the measurement value is less than the saturation region.
【請求項2】 ガス使用量をはかる計量器としてのガス
メータである請求項1の気体用流量計。
2. The gas flow meter according to claim 1, wherein the gas flow meter is a gas meter as a measuring device for measuring the amount of gas used.
JP03304392A 1992-02-20 1992-02-20 Gas flow meter Expired - Fee Related JP3170335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03304392A JP3170335B2 (en) 1992-02-20 1992-02-20 Gas flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03304392A JP3170335B2 (en) 1992-02-20 1992-02-20 Gas flow meter

Publications (2)

Publication Number Publication Date
JPH05231902A JPH05231902A (en) 1993-09-07
JP3170335B2 true JP3170335B2 (en) 2001-05-28

Family

ID=12375765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03304392A Expired - Fee Related JP3170335B2 (en) 1992-02-20 1992-02-20 Gas flow meter

Country Status (1)

Country Link
JP (1) JP3170335B2 (en)

Also Published As

Publication number Publication date
JPH05231902A (en) 1993-09-07

Similar Documents

Publication Publication Date Title
JP3343509B2 (en) Air flow measurement device
JP4223915B2 (en) Thermal flow meter and control system
JP2001201478A (en) Measurement method and measurement system for humidity sensor or gas concentration sensor
JP3170335B2 (en) Gas flow meter
JP3053486B2 (en) Fluidic gas meter
JP3640334B2 (en) Flow meter and gas meter
JPH10281709A (en) Method and device for measuring dynamic strain
JP3146603B2 (en) Fluidic meter controller
JPS5895230A (en) Method and apparatus for electronic type temperature measurement
JP3238984B2 (en) Heat-sensitive microbridge flowmeter
JP3103700B2 (en) Flowmeter
JP3622613B2 (en) Ultrasonic flow meter
JP2000266773A (en) Hot wire flowmeter and its conversion table forming method
JP3057949B2 (en) Flowmeter
JP3146601B2 (en) Fluidic meter controller
JP4698014B2 (en) Flow measuring device
JP2633362B2 (en) Gas flow meter
JP3036218B2 (en) Flowmeter
JP2002303544A (en) Method of calculating initial value of pulse constant of fluidic gas meter, and fluidic gas meter
JP2001074529A (en) Flow measuring device
JPH03148040A (en) Viscosity measuring apparatus
JPH05273007A (en) Flowmeter
JPS5826346Y2 (en) Karman vortex flow meter or current meter
JP3146602B2 (en) Fluidic meter controller
JPH0222338B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees