JPH0222338B2 - - Google Patents

Info

Publication number
JPH0222338B2
JPH0222338B2 JP7337681A JP7337681A JPH0222338B2 JP H0222338 B2 JPH0222338 B2 JP H0222338B2 JP 7337681 A JP7337681 A JP 7337681A JP 7337681 A JP7337681 A JP 7337681A JP H0222338 B2 JPH0222338 B2 JP H0222338B2
Authority
JP
Japan
Prior art keywords
circuit
signal
pulse
amplitude value
maximum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7337681A
Other languages
Japanese (ja)
Other versions
JPS57189049A (en
Inventor
Koichiro Myagi
Yozo Kono
Setsuo Kotado
Shintaro Inagaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anritsu Corp
Original Assignee
Anritsu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anritsu Corp filed Critical Anritsu Corp
Priority to JP7337681A priority Critical patent/JPS57189049A/en
Publication of JPS57189049A publication Critical patent/JPS57189049A/en
Publication of JPH0222338B2 publication Critical patent/JPH0222338B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/22Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance
    • G01N27/223Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating capacitance for determining moisture content, e.g. humidity

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

【発明の詳細な説明】 本発明は、湿度によつて静電容量が変化する感
湿センサーと抵抗器とによつて積分回路を構成
し、この積分回路と装置内にあらかじめ設けた比
較用積分回路とに同一パルスを加え、得られた2
つの積分波形の差信号の最大値を検出し、その差
信号の最大値の変化量によつて湿度変化を表示す
るようにした湿度測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, an integrating circuit is constructed by a humidity sensor whose capacitance changes depending on humidity and a resistor, and this integrating circuit and a comparative integrating circuit are provided in advance in the device. The same pulse is applied to the circuit, and the obtained 2
The present invention relates to a humidity measuring device that detects the maximum value of a difference signal between two integral waveforms and displays a change in humidity based on the amount of change in the maximum value of the difference signal.

従来、静電容量変化の検出は既知抵抗と被測定
容量とにより直列回路、または、ブリツジ回路を
構成し、静電容量のインピーダンス変化を検出す
る方法、あるいは、発振回路内の帰還回路に被測
定容量を設置し静電容量変化による発振周波数変
化を検出する方法などが行なわれてきた。これら
の方法は連続的な正弦波信号や発振波を用いた連
続測定動作を基本と為し、信号振幅および発振周
波数の安定度が測定精度に大きく影響するため、
これらの安定化に高度な製作技術と複雑な回路を
必要とした。また、湿度測定時の感湿センサのよ
うに長期間に恒る静電容量変化の検出において
は、感湿センサの応答時間を考慮して適当な時間
間隔を設定した断続的測定で十分な場合が多く、
前記連続測定動作の検出回路を使用した場合には
非測定時に大半の電力が浪費され、これに伴い不
用な発熱も生ずる。これらの点は検出回路を小形
集積化し、電池等の有限微小電力源で動作させる
事を考えた場合には欠点となる。また、前記検出
回路を断続的に動作させることは、連続測定動作
を安定に行うための回路を十分活用できないばか
りか、断続測定動作を行う新回路の増設と、過度
応答による出力信号への影響を検討する必要が生
じ、より一層、高度な技術と複雑な回路構成が必
要となる。
Conventionally, capacitance changes have been detected by constructing a series circuit or bridge circuit with a known resistance and the capacitance under test, and detecting changes in the impedance of the capacitance, or by connecting the capacitance under test to a feedback circuit in an oscillation circuit. Methods such as installing a capacitor and detecting changes in oscillation frequency due to changes in capacitance have been used. These methods are based on continuous measurement using continuous sine wave signals or oscillation waves, and the stability of the signal amplitude and oscillation frequency greatly affects measurement accuracy.
Stabilizing these elements required advanced manufacturing techniques and complex circuits. In addition, when detecting capacitance changes that remain constant over a long period of time, such as with a humidity sensor when measuring humidity, intermittent measurements set at appropriate time intervals taking into account the response time of the humidity sensor may be sufficient. There are many
When the continuous measurement operation detection circuit is used, most of the power is wasted during non-measurement periods, and unnecessary heat generation is also generated. These points become disadvantages when it is considered that the detection circuit is integrated into a small size and operated with a finite micro power source such as a battery. Furthermore, operating the detection circuit intermittently does not only make it impossible to fully utilize the circuitry required to stably perform continuous measurement operations, but also requires the addition of a new circuit for intermittent measurement operations, and the influence of transient response on the output signal. It becomes necessary to consider the following, and even more advanced technology and complicated circuit configurations are required.

本発明の目的は、上記欠点を除き、回路構成が
簡易で平均消費電力の小さい断続測定動作を行な
い、かつ、断続周期が任意可変できるようにした
湿度測定装置を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a humidity measuring device which has a simple circuit configuration, performs intermittent measurement operation with low average power consumption, and allows the intermittent cycle to be arbitrarily varied, in addition to the above-mentioned drawbacks.

この目的のため本発明では、矩形パルス信号に
よる断続測定法を採用し、感湿センサの湿度変化
による静電容量変化を時定数変化の形に変換し、
それを電気信号で出力する静電容量検出回路を設
け、また、静電容量の変化検出に最適な矩形パル
ス幅、繰返し周期を任意設定できるパルス発振回
路を設けた。さらにまた、前記検出回路の出力信
号の最大値を非測定時に保持し連続階段状の出力
波形と為す、最大信号振幅値保持回路と、この回
路を前記矩形パルス信号の周期に同期させて動作
させるためのリセツトパルス回路を設けた。
For this purpose, the present invention adopts an intermittent measurement method using a rectangular pulse signal, converts the capacitance change due to humidity change of the humidity sensor into a time constant change,
A capacitance detection circuit that outputs this as an electrical signal is provided, and a pulse oscillation circuit is also provided that can arbitrarily set the rectangular pulse width and repetition period optimal for detecting changes in capacitance. Furthermore, a maximum signal amplitude value holding circuit is provided, which holds the maximum value of the output signal of the detection circuit when not being measured to form a continuous step-like output waveform, and this circuit is operated in synchronization with the cycle of the rectangular pulse signal. A reset pulse circuit is provided for this purpose.

つぎに、この発明を図面により具体的に説明す
る。
Next, this invention will be specifically explained with reference to the drawings.

第1図は本発明の一実施例における構成図であ
る。また、第2図は第1図中a〜d点における電
圧波形を示したものである。発振周期とパルス幅
が任意可変できるパルス発振回路2で発生した矩
形パルスaは、装置内に設置した比較用積分回路
4、および感湿センサ1aと抵抗器R2とで構成さ
れる積分回路1に加えられる。前記比較用積分回
路4の時定数τSは同回路内の抵抗R1と可変静電容
量C1とにより、τS=R1C1で与えられる。また、
感湿センサ1aの静電容量をC0とすれば感湿セ
ンサ1aと可変抵抗R2とで構成される積分回路
1の時定数τOは、τO=R2C0である。これらτS,τO
の時定数を持つ回路に、同時に時間幅Tの矩形パ
ルスaを加え、各々の出力信号b,cの電圧差
Vdを求めれば、 Vd=ε-t/0−ε-t/s(0tT) ……(1) となる。ただし、矩形パルスaの振幅値は1.0と
する。また、τS,τOが共にTより十分小さければ Vd=ε-t/0−ε-t/s(Tt) ……(2) も成立する。上式(1),(2)による波形は第2図dに
示すような、パルス状出力信号である。このパル
ス波形dの頂点mの振幅値Hm、発生時刻tnは次
式で与えられる。
FIG. 1 is a block diagram of an embodiment of the present invention. Further, FIG. 2 shows voltage waveforms at points a to d in FIG. 1. A rectangular pulse a generated by a pulse oscillation circuit 2 whose oscillation period and pulse width can be arbitrarily varied is passed through a comparison integration circuit 4 installed in the device, and an integration circuit 1 consisting of a humidity sensor 1a and a resistor R2 . added to. The time constant τ S of the comparison integration circuit 4 is given by the resistance R 1 and the variable capacitance C 1 in the circuit as τ S =R 1 C 1 . Also,
If the capacitance of the humidity sensor 1a is C 0 , then the time constant τ O of the integrating circuit 1 composed of the humidity sensor 1 a and the variable resistor R 2 is τ O =R 2 C 0 . These τ S , τ O
A rectangular pulse a of time width T is simultaneously applied to a circuit with a time constant of , and the voltage difference between the output signals b and c is
If we calculate Vd, we get V d-t/0 −ε -t/s (0tT)...(1). However, the amplitude value of the rectangular pulse a is 1.0. Further, if both τ S and τ O are sufficiently smaller than T, V d−t/0 −ε −t/s (Tt) ...(2) also holds true. The waveforms obtained from the above equations (1) and (2) are pulsed output signals as shown in FIG. 2d. The amplitude value Hm of the peak m of this pulse waveform d and the generation time t n are given by the following equation.

Hn=(ε-tm/0−ε-tm/0) ……(3) tn=logτS/τO/(1/τO−1/τS) ……(4) (3)式Hnの値と、時定数比(τO/τS)との関係
を第3図にグラフで示す。時定数比(τO/τS
は、R1,R2,C1が定数の場合、C0に比例する数
値であるから、第3図のグラフはC0の変化に対
するHnの変化量を示している。また、第4図に
時定数τSの値で正規化した(4)式のtnと時定数とτO
との関係、すなわち(tn/τS)と(τO/τS)との
関係をグラフで示す。これらHn,tnによつて頂
点の定まるパルス波形dは、前記第1図の実施例
において、差動増幅器3の出力信号として得られ
る。
H n = (ε -tm/0 −ε -tm/0 ) ...(3) t n = logτ SO / (1/τ O -1/τ S ) ...(4) (3 ) The relationship between the value of equation H n and the time constant ratio (τ OS ) is shown graphically in FIG. Time constant ratio (τ OS )
is a numerical value proportional to C 0 when R 1 , R 2 , and C 1 are constants, so the graph in FIG. 3 shows the amount of change in H n with respect to the change in C 0 . In addition, Figure 4 shows t n of equation (4) normalized by the value of time constant τ S , time constant and τ O
The relationship between (t nS ) and (τ OS ) is shown in a graph. The pulse waveform d whose apex is determined by these H n and t n is obtained as the output signal of the differential amplifier 3 in the embodiment shown in FIG.

つぎに、パルス状の出力信号dを階段状の出力
信号に変換する回路について説明する。この信号
波形処理の目的は、前記差動増幅器3で得られた
出力信号dの最大振幅値Hnを保持し、湿度変化
を表示する表示装置(表示器あるいは記録器)8
の応答時間が出力信号dのパルス幅に較べ非常に
長い場合でも、正確にHnの値を示すことができ
るようにすることである。このため、前記差動増
幅器3で得られたパルス状出力信号dは最大信号
振幅値保持回路5に送られる。この最大信号振幅
値保持回路5は信号入力端子、リセツト端子およ
び出力端子を有し、まず、リセツト端子にリセツ
トパルスを加えて出力端子の信号電圧を零にし、
次に入力信号を加えると入力信号の最大値に比例
した出力信号電圧を出力し続ける回路である。す
なわち、前記パルス状出力信号dを加えれば、そ
の最大振幅値Hnに比例した電圧信号を出力し続
ける。この出力信号はリセツトパルスを加えれば
零に戻り、回路は入力信号待ちの状態となる。本
発明では、該リセツトパルスをリセツトパルス回
路6により前記パルス発振回路2で発生させた矩
形パルスaの立上に部分を用いて作り出す。第5
図に、パルス発振回路2において前記矩形パルス
aを繰返し発生させ、かつ、感湿センサ1aの静
電容量が変化した場合の、リセツトパルスe、最
大信号振幅値保持回路出力fのタイミングチヤー
トを示す。同図より明らかなように、矩形パルス
aの時間幅Tはパルス状出力信号dの発生時刻
Tnより大きく、また、リセツトパルス時間幅Tr
は、前記Tnより小さくする必要がある。本装置
の湿度検出動作時間はTn、であり、この値は前
記第4図に示したようにτS,τOの値で決まる。実
用上のτS,τOの値は前記矩形パルスaの立上り時
間より大きな任意時間に設定する。また、前記出
力信号fの時間Tn1,Tn2における信号値は測定
値としての意味を持たないため、表示の必要は無
い。さらに、前記出力信号fの振幅値すなわち、
Hnの値は前記第3図に示したように、感湿セン
サの静電容量変化に正比例せず、また、感湿セン
サの湿度対容量変化の特性も通常直線的ではな
い。よつて、本装置を湿度直続の装置にするため
には、これら非直線特性を直線特性に直す直線補
整用増幅器7を使用するか、表示装置8の目盛を
調整する必要がある。
Next, a circuit for converting the pulsed output signal d into a stepped output signal will be described. The purpose of this signal waveform processing is to hold the maximum amplitude value H n of the output signal d obtained by the differential amplifier 3, and display a display device (display device or recorder) 8 that displays humidity changes.
To accurately indicate the value of H n even when the response time of H n is much longer than the pulse width of the output signal d. Therefore, the pulsed output signal d obtained by the differential amplifier 3 is sent to the maximum signal amplitude value holding circuit 5. This maximum signal amplitude value holding circuit 5 has a signal input terminal, a reset terminal, and an output terminal. First, a reset pulse is applied to the reset terminal to make the signal voltage at the output terminal zero, and
Next, when an input signal is applied, the circuit continues to output an output signal voltage proportional to the maximum value of the input signal. That is, if the pulsed output signal d is added, a voltage signal proportional to its maximum amplitude value H n continues to be output. This output signal returns to zero when a reset pulse is applied, and the circuit enters the state of waiting for an input signal. In the present invention, the reset pulse is generated by the reset pulse circuit 6 using the rising edge of the rectangular pulse a generated by the pulse oscillation circuit 2. Fifth
The figure shows a timing chart of the reset pulse e and the maximum signal amplitude value holding circuit output f when the rectangular pulse a is repeatedly generated in the pulse oscillation circuit 2 and the capacitance of the humidity sensor 1a changes. . As is clear from the figure, the time width T of the rectangular pulse a is the generation time of the pulsed output signal d.
larger than T n , and reset pulse time width T r
must be smaller than the above T n . The humidity detection operation time of this device is T n , and this value is determined by the values of τ S and τ O as shown in FIG. 4 above. The practical values of τ S and τ O are set to an arbitrary time greater than the rise time of the rectangular pulse a. Further, since the signal values of the output signal f at times T n1 and T n2 have no meaning as measured values, there is no need to display them. Furthermore, the amplitude value of the output signal f, that is,
As shown in FIG. 3, the value of H n is not directly proportional to the capacitance change of the humidity sensor, and the humidity versus capacitance change characteristic of the humidity sensor is usually not linear. Therefore, in order to make this device directly connected to humidity, it is necessary to use a linear correction amplifier 7 that converts these non-linear characteristics into linear characteristics, or to adjust the scale of the display device 8.

以上に述べたように、この発明による湿度測定
装置は、従来装置に比べ簡単な回路構成となり、
パルス信号による断続測定のため平均消費電力を
小さくすることが可能であり、小形軽量化が実現
できる。また、矩形パルス信号の振幅安定化は正
弦波信号に比べ容易であり、さらに、矩形パルス
信号の立上り時間が一定であれば、パルス幅・繰
返し周期の変動は測定値に影響しないため、本装
置を構成する各回路の時定数変化を小さく抑える
ことにより、測定精度の向上が期待できる。
As described above, the humidity measuring device according to the present invention has a simpler circuit configuration than conventional devices, and
Since intermittent measurement is performed using pulse signals, average power consumption can be reduced, making it possible to achieve smaller size and lighter weight. In addition, stabilizing the amplitude of a rectangular pulse signal is easier than that of a sine wave signal, and if the rise time of a rectangular pulse signal is constant, fluctuations in pulse width and repetition period will not affect the measured value. By keeping changes in the time constants of each circuit constituting the circuit to a small value, it is expected that measurement accuracy will be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す図、第2図は測
定用矩形パルスaと、時定数回路通過後のパルス
波形b,cを示す図、第3図はパルス波dの最大
振幅値Hnと時定数比(τO/τS)の関係を示すグ
ラフ、第4図はパルス波dの最大振幅値発生時刻
tnと、τOの関係をτSで正規化したグラフ、第5図
は装置内の各部の波形を示すタイミングチヤート
で、イは測定用矩形パルスa、ロは時定数回路通
過後のパルス波形b,c、ハは差動増幅器出力信
号d、ニはリセツトパルス信号e、ホは最大信号
増幅値保持回路出力信号f、ヘは直線補整用増幅
器出力信号gを示す。 1は積分回路、1aは感湿センサ、2はパルス
発振回路、3は差動増幅器、4は比較用積分回
路、5は最大信号振幅値保持回路、6はリセツト
パルス回路、7は直線補整用増幅器、8は表示装
置(表示器あるいは記録器)を示す。R1,R2
抵抗、C1は可変静電容量を示す。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a diagram showing a measurement rectangular pulse a and pulse waveforms b and c after passing through a time constant circuit, and Fig. 3 is a diagram showing the maximum amplitude value of the pulse wave d. A graph showing the relationship between H n and the time constant ratio (τ OS ), Figure 4 shows the time at which the maximum amplitude value of the pulse wave d occurs.
A graph showing the relationship between t n and τ O normalized by τ S. Figure 5 is a timing chart showing the waveforms of each part in the device. A is the measurement rectangular pulse a, B is the pulse after passing through the time constant circuit. Waveforms b, c, and c show the differential amplifier output signal d, d shows the reset pulse signal e, e shows the maximum signal amplification value holding circuit output signal f, and f shows the linear correction amplifier output signal g. 1 is an integration circuit, 1a is a humidity sensor, 2 is a pulse oscillation circuit, 3 is a differential amplifier, 4 is an integration circuit for comparison, 5 is a maximum signal amplitude value holding circuit, 6 is a reset pulse circuit, 7 is for linear compensation The amplifier and 8 indicate a display device (display or recorder). R 1 and R 2 are resistances, and C 1 is variable capacitance.

Claims (1)

【特許請求の範囲】 1 測定用信号としてパルス信号を用いた湿度測
定装置であつて、 該パルス信号を発生するパルス発振回路2と;
該パルス発振回路2よりのパルス信号を受領して
積分し、比較用積分波形信号を出力する比較用積
分回路4と;湿度により静電容量が変化する感湿
センサ1aと抵抗器R2とで構成される積分回路
1と;該比較用積分回路4の出力と該積分回路1
の出力とを受領し、その差信号を出力する差動増
幅器3と;該差動増幅器3の出力信号を受領し、
その最大振幅値を保持して出力する最大信号振幅
値保持回路5と;該パルス発振回路2のパルス信
号を受領し、このパルス信号に同期して該最大信
号振幅値保持回路5の動作をリセツトするリセツ
トパルス回路6と;該最大信号振幅値保持回路5
の出力信号を表示又は記録するための表示装置8
とを備えたことを特徴とする湿度測定装置。
[Claims] 1. A humidity measuring device that uses a pulse signal as a measurement signal, comprising: a pulse oscillation circuit 2 that generates the pulse signal;
a comparison integration circuit 4 that receives and integrates the pulse signal from the pulse oscillation circuit 2 and outputs an integrated waveform signal for comparison; and a humidity sensor 1a whose capacitance changes depending on humidity and a resistor R2 . An integrator circuit 1 configured; the output of the comparison integrator circuit 4 and the integrator circuit 1;
a differential amplifier 3 receiving the output of the differential amplifier 3 and outputting a difference signal thereof; receiving the output signal of the differential amplifier 3;
a maximum signal amplitude value holding circuit 5 that holds and outputs the maximum amplitude value; receives a pulse signal from the pulse oscillation circuit 2 and resets the operation of the maximum signal amplitude value holding circuit 5 in synchronization with this pulse signal; a reset pulse circuit 6; and a maximum signal amplitude value holding circuit 5.
Display device 8 for displaying or recording the output signal of
A humidity measuring device comprising:
JP7337681A 1981-05-18 1981-05-18 Measuring device for humidity Granted JPS57189049A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7337681A JPS57189049A (en) 1981-05-18 1981-05-18 Measuring device for humidity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7337681A JPS57189049A (en) 1981-05-18 1981-05-18 Measuring device for humidity

Publications (2)

Publication Number Publication Date
JPS57189049A JPS57189049A (en) 1982-11-20
JPH0222338B2 true JPH0222338B2 (en) 1990-05-18

Family

ID=13516396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7337681A Granted JPS57189049A (en) 1981-05-18 1981-05-18 Measuring device for humidity

Country Status (1)

Country Link
JP (1) JPS57189049A (en)

Also Published As

Publication number Publication date
JPS57189049A (en) 1982-11-20

Similar Documents

Publication Publication Date Title
US4210024A (en) Temperature measurement apparatus
GB1591620A (en) Signal-conditioning circuits
CN1086012A (en) Pulsed pressure sensor circuit and using method thereof
JP2583833Y2 (en) Pulse measuring device
JPH0868809A (en) Voltage-resistance synthesis device
JP2005535900A (en) Pressure measuring device with capacitive pressure sensor in amplifier feedback path
JPS592349B2 (en) power measurement device
JPH0222338B2 (en)
US3892281A (en) Temperature measuring system having sensor time constant compensation
JPS6257227B2 (en)
JP4809837B2 (en) How to operate a heat loss pressure sensor with resistance
JPS62195580A (en) Measuring instrument for generation quantity of radiation
JP3053486B2 (en) Fluidic gas meter
RU2229692C2 (en) Procedure establishing temperature
JPH10281709A (en) Method and device for measuring dynamic strain
JP3170335B2 (en) Gas flow meter
SU1024718A1 (en) Device for measurining atmospheric pressure in barometric levelling
SU693279A1 (en) Pulsed meter of current transfer coefficient of transistors in low signal mode
JPS60203843A (en) Gas detecting apparatus
JPS5819465Y2 (en) thermometer
SU938220A1 (en) Device for measuring transistor current differential transmission coefficient
SU1428946A1 (en) Deep-sea thermometer
SU805148A1 (en) Device for measuring initial signal amplitude in a free nuclear precession
SU429266A1 (en) REMOVE BULK WELLPUT METER
JPS6111370B2 (en)