JPH05231902A - Gas flowmeter - Google Patents

Gas flowmeter

Info

Publication number
JPH05231902A
JPH05231902A JP4033043A JP3304392A JPH05231902A JP H05231902 A JPH05231902 A JP H05231902A JP 4033043 A JP4033043 A JP 4033043A JP 3304392 A JP3304392 A JP 3304392A JP H05231902 A JPH05231902 A JP H05231902A
Authority
JP
Japan
Prior art keywords
flow rate
range
measured
flow
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4033043A
Other languages
Japanese (ja)
Other versions
JP3170335B2 (en
Inventor
Toshihiko Ito
稔彦 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Tokei Denki Co Ltd
Original Assignee
Aichi Tokei Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Tokei Denki Co Ltd filed Critical Aichi Tokei Denki Co Ltd
Priority to JP03304392A priority Critical patent/JP3170335B2/en
Publication of JPH05231902A publication Critical patent/JPH05231902A/en
Application granted granted Critical
Publication of JP3170335B2 publication Critical patent/JP3170335B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PURPOSE:To prevent the increase of measuring errors with time in the region of the small flow rate by performing calibration when the measured value of a thermal flow sensor is not larger than a value of the saturating region in the case where a measurement object is present in the range of the flow rate. CONSTITUTION:An area of the intermediate-large flow rate is measured by a fluidic oscillating device 1, while an area of the small flow rate is measured by a thermal flow sensor 4. Moreover, there is arranged an overlapping range where the measuring areas are overlapped. When a measurement object is present in this range of the flow rate, it is detected whether the measured value of the thermal flow sensor 4 is in the saturating area or not larger than a value of the saturating area. When the measured value is not larger than a value of the saturating area, the measured value of the thermal flow sensor is calibrated on the basis of the measured value of the fluidic oscillating device 1 as a reference.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は気体用流量計に関する。FIELD OF THE INVENTION This invention relates to gas flow meters.

【0002】[0002]

【従来の技術】計測範囲を拡大する目的で、二つのセン
サを用い、一方のセンサでは中〜大流量域を、他方のセ
ンサでは小流量域を計測する気体用流量計が、特開平3
−96817号公報と特開平3−264821号公報で
提案されている。
2. Description of the Related Art For the purpose of expanding a measurement range, a gas flow meter which uses two sensors, one of which measures a medium to large flow rate range and the other of which measures a small flow rate range, is disclosed in Japanese Patent Laid-Open No. Hei 3 (1999) -311.
-96817 and JP-A-3-264821.

【0003】これら両従来技術は、中〜大流量域をフル
ィディック発振素子で、小流量域を熱式フローセンサで
計測し、両者の計測域がオーバーラップする流量範囲を
設けておき、この流量範囲に測定対象流量があるとき、
安定性の高いフルィディツク発振素子(以下FDと言
う)の計測値を基準として、ダストや水分の付着及び経
年変化による誤差を生じやすい熱式フローセンサ(以下
FSと言う)の計測値を自動的に較正しながら使用する
構成になっている。
In both of these prior arts, a fluidic oscillation element is used to measure a medium to large flow rate range and a thermal type flow sensor is used to measure a small flow rate range, and a flow rate range in which both measurement ranges overlap is provided. When the flow rate to be measured is in the flow rate range,
Based on the measurement value of a highly stable fluid oscillation element (hereinafter referred to as FD), the measurement value of a thermal type flow sensor (hereinafter referred to as FS) that easily causes an error due to dust and water adhesion and secular change is automatically It is configured to be used while calibrating.

【0004】上記従来技術のうち、特開平3−9681
7号公報記載の流量計の概略を図3と図4により以下に
説明する。この気体用流量計は、図3に示すように、フ
ルィディック発振素子(FD)1と、該FD1の流体振
動を検知して電気信号に変換するセンサ2と、FDのノ
ズル部3の流速を検知して電気信号に変換する熱式フロ
ーセンサ(FS)4と、前記流体振動検知用センサ2と
流速検知用FS4の信号を演算して積算流量を求める電
子回路5と、該電子回路5で求めた積算流量を表示する
表示器6とを有している。
Among the above-mentioned conventional techniques, Japanese Patent Laid-Open No. 9681/1993
An outline of the flow meter described in Japanese Patent No. 7 will be described below with reference to FIGS. 3 and 4. As shown in FIG. 3, this gas flow meter includes a fluidic oscillation element (FD) 1, a sensor 2 that detects fluid vibration of the FD 1 and converts it into an electric signal, and a flow velocity of a nozzle portion 3 of the FD. A thermal type flow sensor (FS) 4 for detecting the flow rate and converting it into an electric signal, an electronic circuit 5 for calculating signals of the fluid vibration detecting sensor 2 and the flow velocity detecting FS 4 to obtain an integrated flow rate, and the electronic circuit 5 And an indicator 6 for displaying the integrated flow rate obtained in step 1.

【0005】流体振動検知用センサ2としては、高分子
圧電膜センサが、流速検知用FS4としては特開昭59
−182315号公報記載のようなFSが用いられる。
そして、流体振動検知用センサ2は、流体振動に対応し
た周波数の電気信号を生じ、FS4はノズル部3の流速
に対応してアナログ電気信号を生じる。
A polymer piezoelectric film sensor is used as the fluid vibration detection sensor 2, and a flow velocity detection FS4 is disclosed in Japanese Patent Laid-Open No. 59-59.
The FS as described in Japanese Patent Laid-Open No. 182315 is used.
Then, the fluid vibration detecting sensor 2 generates an electric signal having a frequency corresponding to the fluid vibration, and the FS 4 generates an analog electric signal corresponding to the flow velocity of the nozzle portion 3.

【0006】FS4はシリコンチップ上の流れが当たる
表面に発熱部の上流側と下流側に流体温度検出部を配置
した物で、流量に応じて発熱部の両側の流体温度検出部
の電気抵抗が変化するため、この変化を電気信号として
検出し、増幅、A/D変換してマイコンにより流量を求
める。
The FS4 has a fluid temperature detecting portion arranged on the upstream side and the downstream side of the heat generating portion on the surface of the silicon chip on which the flow hits. The electric resistance of the fluid temperature detecting portions on both sides of the heat generating portion depends on the flow rate. Since it changes, the change is detected as an electric signal, amplified and A / D converted, and the flow rate is obtained by a microcomputer.

【0007】電子回路5は図4に示す構成となってい
る。4AはA/D変換回路で、FS4で検知した小流量
域のアナログ電気信号を流量に比例したパルス数の電気
パルス信号にディジタル変換する。
The electronic circuit 5 has the structure shown in FIG. 4A is an A / D conversion circuit, which digitally converts an analog electric signal in the small flow rate region detected by the FS4 into an electric pulse signal having a pulse number proportional to the flow rate.

【0008】7はA/D変換回路4Aの出力である高速
の電気パルス(信号B)をマイコン8に入力するのに一
時的にストックするカウンタ、9は電源、10は圧電膜
回路部11と熱式フローセンサ回路部12とに供給する
駆動電圧を制御する電圧制御回路である。
Reference numeral 7 is a counter for temporarily stocking the high-speed electric pulse (signal B) output from the A / D conversion circuit 4A to the microcomputer 8, 9 is a power source, and 10 is a piezoelectric film circuit section 11. It is a voltage control circuit that controls a drive voltage supplied to the thermal flow sensor circuit unit 12.

【0009】13はセンサ2の電気信号を増幅するアナ
ログ増幅器、14はアナログ増幅器13の出力信号を矩
形波に整形する波形整形回路、15は波形整形回路14
の出力(信号A)を入力とし、その周波数が一定値以上
のときに信号Aを同じ周波数の信号Jとしてマイコン8
に伝送する信号判定回路である。
Reference numeral 13 is an analog amplifier for amplifying the electric signal of the sensor 2, 14 is a waveform shaping circuit for shaping the output signal of the analog amplifier 13 into a rectangular wave, and 15 is a waveform shaping circuit 14.
Output (signal A) is input, and when the frequency is equal to or higher than a certain value, the signal A is regarded as the signal J having the same frequency and the microcomputer 8
It is a signal determination circuit for transmitting to.

【0010】16はクロック制御回路で、マイコン8の
指令を受けてA/D変換するためクロック信号HをA/
D変換回路4Aへ送出する。センサ2の信号周波数、つ
まり信号Aの周波数が一定値以上のときは信号Jがマイ
コン8で演算されて流量積算値となる。又、信号Aの周
波数が一定値以下の小流量域ではFS4に基づく信号B
がマイコン8で演算され、信号Jと信号Bのパルス数の
合計の流量積算値が求められて表示器6に表示される。
Reference numeral 16 is a clock control circuit which receives a command from the microcomputer 8 and A / D converts the clock signal H for A / D conversion.
It is sent to the D conversion circuit 4A. When the signal frequency of the sensor 2, that is, the frequency of the signal A is equal to or higher than a certain value, the signal J is calculated by the microcomputer 8 and becomes a flow rate integrated value. Further, in the small flow rate region where the frequency of the signal A is below a certain value, the signal B based on FS4
Is calculated by the microcomputer 8 and the total flow rate integrated value of the pulse numbers of the signal J and the signal B is obtained and displayed on the display 6.

【0011】FS4のアナログ電圧は、クロック信号と
同期して、流量に比例したパルス数の流量信号BにA/
D変換回路4Aで変換される。この信号Bは間隔(周
期)T0 毎(例えばT0 =5秒)に出力され、その都度
のパルス数は流量0[l/h]で0パルス、流量50
[l/h]で300パルスにし、流量に比例したパルス
数になるように、A/D変換回路6の特性が定められて
いる。
The analog voltage of FS4 is synchronized with the clock signal, and A / A is applied to the flow rate signal B having a pulse number proportional to the flow rate.
It is converted by the D conversion circuit 4A. This signal B is output at every interval (cycle) T 0 (for example, T 0 = 5 seconds), and the number of pulses at each time is 0 pulse at a flow rate of 0 [l / h] and a flow rate of 50.
The characteristic of the A / D conversion circuit 6 is determined so that the number of pulses becomes 300 / l / h and the number of pulses is proportional to the flow rate.

【0012】そして、FDの計測値を基準として、FS
の計測値を較正するときは、FS4のアナログ信号をA
/D変換回路4Aで電気パルスにディジタル変換すると
きのパルス定数を変えることで較正していた。
Then, with the measured value of FD as a reference, FS
When calibrating the measured value of, the analog signal of FS4
It was calibrated by changing the pulse constant when digitally converting into an electric pulse in the / D conversion circuit 4A.

【0013】このような較正動作のより詳細は前記特開
平3−96817号公報で周知である。
The details of such a calibration operation are well known from the above-mentioned Japanese Patent Laid-Open No. 3-96817.

【0014】[0014]

【発明が解決しようとする課題】上記従来の技術では、
前記計測域がオーバーラップする流量域では、FDとF
Sの両者が、流量とセンサ出力との間に直線性を保つ領
域を用いている。
SUMMARY OF THE INVENTION In the above conventional technique,
In the flow rate range where the measurement range overlaps, FD and F
Both S use a region that maintains linearity between the flow rate and the sensor output.

【0015】この領域を広くとるには、FDの計測下限
の拡大とFSの計測上限の拡大を必要とし、技術的に困
難であった。そのために前記オーバーラップする計測域
である較正範囲が狹くて、この種の流量計をガス使用量
をはかる計量器としてのガスメータとして用いると、フ
ィールドにおけるガスの使用流量が較正範囲に入りずら
く、較正の機会が少なくなり、場合によっては較正出来
ないことが生じるという問題点があった。
To widen this region, it is necessary to expand the lower limit of FD measurement and the upper limit of FS measurement, which is technically difficult. Therefore, the calibration range, which is the overlapping measurement range, is narrow, and when this type of flow meter is used as a gas meter as a measuring instrument for measuring the gas usage amount, it is difficult for the gas usage flow rate in the field to fall within the calibration range. However, there is a problem that the chance of calibration is reduced, and in some cases, calibration cannot be performed.

【0016】そこで、本発明にかかる問題点を解消し
て、較正の機会を増大できるガスメータに好適な気体用
流量計を提供することを目的とする。
Therefore, it is an object of the present invention to solve the problems of the present invention and to provide a gas flowmeter suitable for a gas meter which can increase the chances of calibration.

【0017】[0017]

【課題を解決するための手段】上記目的を達成するため
に、本発明の気体用流量計は、中〜大流量域をフルィデ
ィック発振素子(1)で、小流量域を熱式フローセンサ
(4)で計測すると共に、両者の計測域がオーバーラッ
プする流量範囲を設けておき、この流量範囲に測定対象
流量があるとき、フルィディツク発振素子(1)の計測
値を基準として熱式フローセンサ(4)の計測値を較正
する流量計において、前記流量範囲に測定対象があると
きに熱式フローセンサ(4)の計測値が飽和領域にある
か飽和領域以下かを識別し、飽和領域以下のときに前記
較正動作を行なうことを特徴とする。
In order to achieve the above object, the gas flowmeter of the present invention is a fluidic oscillation element (1) in the medium to large flow rate range and a thermal type flow sensor in the small flow rate range. In addition to the measurement in (4), a flow rate range in which both measurement areas overlap is provided, and when there is a measurement target flow rate in this flow rate range, the thermal flow sensor is based on the measurement value of the fluidic oscillation element (1) as a reference. In the flow meter for calibrating the measurement value of (4), when there is a measurement target in the flow rate range, it is discriminated whether the measurement value of the thermal type flow sensor (4) is in a saturation region or below the saturation region, and below the saturation region. The calibration operation is performed at the time.

【0018】[0018]

【作用】FSが経時変化して感度が低下すると、流量に
対するセンサ出力が、初期の正常な感度曲線イに対し、
図2の曲線ロのようになる。従って、同図Bの流量範囲
でFDとオーバーラップして計測し、FSの出力特性
(感度曲線)の飽和領域以下の計測値を用いて、FDの
出力である曲線ハを基準に較正する。こうすることで、
従来技術の較正範囲Aに比較して、大幅に較正範囲が拡
大できる。
When the FS changes with time and the sensitivity decreases, the sensor output with respect to the flow rate is
It becomes like the curve B in FIG. Therefore, measurement is performed in the flow rate range of FIG. 9B overlapping with the FD, and the measurement is performed below the saturation region of the output characteristic (sensitivity curve) of the FS, and calibration is performed based on the curve C that is the output of the FD. By doing this,
Compared with the calibration range A of the prior art, the calibration range can be greatly expanded.

【0019】[0019]

【実施例】図1と図2に基づいて本発明の実施例を説明
するが、流量計のハードの構成は図3と図4で説明した
従来技術の場合と同じで、ソフトのみが異なっている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to FIGS. 1 and 2. The hardware structure of the flow meter is the same as that of the prior art described with reference to FIGS. 3 and 4, and only the software is different. There is.

【0020】図2において、曲線イとロはFSの流量と
出力(前記信号Bのパルス数)の関係を示し、イは初期
時のデータ、ロは経時変化等で初期時の60%近くに感
度が低下したときのデータで、何れの曲線とも、出力が
2000パルス程度で飽和する状態をFSが本質的にも
っている。
In FIG. 2, curves a and b show the relationship between the flow rate of the FS and the output (the number of pulses of the signal B), a is the initial data, and b is around 60% of the initial value due to changes over time. The FS essentially has a state in which the output is saturated at about 2000 pulses in any curve, which is data when the sensitivity is lowered.

【0021】ハはFDの特性で、比較的良い直線性を示
しているが、流量Q1 未満では発振が不安定であったり
発振不能で、計測できない。Q2 はFSで実用的に計測
可能な上限の流量で、Q1 とQ2 との間の符号Aで示す
流量範囲を、従来技術ではオーバーラップしFDとFS
の両者で計測して、較正範囲としている。
C shows the FD characteristic and shows relatively good linearity, but at a flow rate less than Q 1 , the oscillation is unstable or impossible and cannot be measured. Q 2 is the upper limit flow rate that can be practically measured by the FS, and the flow rate range indicated by the symbol A between Q 1 and Q 2 overlaps with the conventional technique and FD and FS
Both are measured and used as the calibration range.

【0022】そして、この従来技術での較正のフロー
は、図1のステップ33〜46と同じである。本発明で
は、較正範囲(オーバーラップする計測範囲)を図2の
Bのように(従来技術の範囲Aよりも)大幅に広げ、F
Sの計測データから2000パルス付近の飽和データを
除き(ステップ40)、飽和領域を除いたFSの計測値
を、FDの計測データを基準としてFSパルス定数を変
更して較正動作を完了する(図1のステップ34〜4
1) 流量がAの範囲にあるときは、ステップ42〜46の従
来と同じフローで較正が行なわれる。
The calibration flow in this prior art is the same as steps 33 to 46 in FIG. In the present invention, the calibration range (overlapping measurement range) is significantly widened as shown in FIG.
Saturation data around 2000 pulses is removed from the S measurement data (step 40), and the FS measurement value excluding the saturation region is changed with the FS pulse constant based on the FD measurement data to complete the calibration operation (Fig. Steps 34 to 4 of 1
1) When the flow rate is in the range of A, the calibration is performed by the same flow as in the conventional steps 42 to 46.

【0023】なお、この較正方法を用いたガスメータの
較正範囲Bを従来技術の較正範囲Aと比較して表1に示
す。メータ号数により、わずかに違うが、どのメータ
も、較正範囲がほぼ2.5倍に拡大改善されている。
The calibration range B of the gas meter using this calibration method is shown in Table 1 in comparison with the calibration range A of the prior art. Although slightly different depending on the number of meters, the calibration range of all meters has been expanded and improved by about 2.5 times.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【発明の効果】本発明の気体用流量計は、上述のように
構成されているので、熱式フローセンサの較正範囲を従
来の倍強にまで拡大できるため、熱式フローセンサが特
性変化した場合の較正の機会が多くなり、小流量域での
計測誤差が経時変化で増大することが防止できる。
Since the gas flow meter of the present invention is configured as described above, the calibration range of the thermal type flow sensor can be expanded to a little more than double that of the conventional type, and therefore the characteristic of the thermal type flow sensor has changed. In this case, the chances of calibration increase, and it is possible to prevent the measurement error in the small flow rate range from increasing with time.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例のフローチャート。FIG. 1 is a flowchart of an embodiment of the present invention.

【図2】流量とセンサ出力の線図。FIG. 2 is a diagram of flow rate and sensor output.

【図3】従来技術の系統図。FIG. 3 is a conventional system diagram.

【図4】従来技術の電子回路のブロック図。FIG. 4 is a block diagram of a prior art electronic circuit.

【符号の説明】[Explanation of symbols]

1 フルィディック発振素子 4 熱式フローセンサ 1 Fluidic oscillator 4 Thermal flow sensor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 中〜大流量域をフルィディック発振素子
(1)で、小流量域を熱式フローセンサ(4)で計測す
ると共に、両者の計測域がオーバーラップする流量範囲
を設けておき、この流量範囲に測定対象流量があると
き、フルィディツク発振素子(1)の計測値を基準とし
て熱式フローセンサ(4)の計測値を較正する流量計に
おいて、前記流量範囲に測定対象があるときに熱式フロ
ーセンサ(4)の計測値が飽和領域にあるか飽和領域以
下かを識別し、飽和領域以下のときに前記較正動作を行
なうことを特徴とする気体用流量計。
1. A medium to large flow rate range is measured by a fluidic oscillation element (1), a small flow rate range is measured by a thermal flow sensor (4), and a flow rate range in which both measurement ranges overlap is provided. Every other time, when there is a flow rate to be measured in this flow rate range, in the flow meter for calibrating the measurement value of the thermal type flow sensor (4) with the measurement value of the fluidic oscillation element (1) as a reference, there is a measurement target in the flow rate range. A gas flow meter, characterized in that the measured value of the thermal type flow sensor (4) is sometimes discriminated whether it is in a saturated region or below a saturated region, and the calibration operation is performed when the measured value is below the saturated region.
【請求項2】 ガス使用量をはかる計量器としてのガス
メータである請求項1の気体用流量計。
2. The gas flow meter according to claim 1, which is a gas meter as a meter for measuring the amount of gas used.
JP03304392A 1992-02-20 1992-02-20 Gas flow meter Expired - Fee Related JP3170335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03304392A JP3170335B2 (en) 1992-02-20 1992-02-20 Gas flow meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03304392A JP3170335B2 (en) 1992-02-20 1992-02-20 Gas flow meter

Publications (2)

Publication Number Publication Date
JPH05231902A true JPH05231902A (en) 1993-09-07
JP3170335B2 JP3170335B2 (en) 2001-05-28

Family

ID=12375765

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03304392A Expired - Fee Related JP3170335B2 (en) 1992-02-20 1992-02-20 Gas flow meter

Country Status (1)

Country Link
JP (1) JP3170335B2 (en)

Also Published As

Publication number Publication date
JP3170335B2 (en) 2001-05-28

Similar Documents

Publication Publication Date Title
US6708570B2 (en) Flow rate measurement method, ultrasonic flow rate meter, flow velocity measurement method, temperature or pressure measurement method, ultrasonic thermometer and ultrasonic pressure gage
JPS6140052B2 (en)
JP3470620B2 (en) Thermal air flow meter
JP3170335B2 (en) Gas flow meter
JP3456060B2 (en) Flow measurement device
JP3053486B2 (en) Fluidic gas meter
US7617738B2 (en) Method and apparatus for measuring flow rate of fluid
JP3146603B2 (en) Fluidic meter controller
JP2004093174A (en) Flowmeter
JPS5895230A (en) Method and apparatus for electronic type temperature measurement
JP3146601B2 (en) Fluidic meter controller
JPH10281709A (en) Method and device for measuring dynamic strain
JP3237366B2 (en) Vibration type flow meter
JP2633362B2 (en) Gas flow meter
JP3103700B2 (en) Flowmeter
JP3036217B2 (en) Flowmeter
JPH05273007A (en) Flowmeter
JP2001074529A (en) Flow measuring device
JP3093500B2 (en) Flowmeter
JPS5826346Y2 (en) Karman vortex flow meter or current meter
JP3146602B2 (en) Fluidic meter controller
JPH08159830A (en) Fluidic flow meter
JPS5921483B2 (en) fluid measuring device
JP3039114B2 (en) Flowmeter
JPH08145741A (en) Flowmeter

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees