JP3238984B2 - Heat-sensitive microbridge flowmeter - Google Patents

Heat-sensitive microbridge flowmeter

Info

Publication number
JP3238984B2
JP3238984B2 JP10804193A JP10804193A JP3238984B2 JP 3238984 B2 JP3238984 B2 JP 3238984B2 JP 10804193 A JP10804193 A JP 10804193A JP 10804193 A JP10804193 A JP 10804193A JP 3238984 B2 JP3238984 B2 JP 3238984B2
Authority
JP
Japan
Prior art keywords
resistor
heating element
temperature
room temperature
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP10804193A
Other languages
Japanese (ja)
Other versions
JPH06317440A (en
Inventor
誠 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Elemex Corp
Ricoh Co Ltd
Original Assignee
Ricoh Elemex Corp
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Elemex Corp, Ricoh Co Ltd filed Critical Ricoh Elemex Corp
Priority to JP10804193A priority Critical patent/JP3238984B2/en
Publication of JPH06317440A publication Critical patent/JPH06317440A/en
Application granted granted Critical
Publication of JP3238984B2 publication Critical patent/JP3238984B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Details Of Flowmeters (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、気体の流速を測定する
感熱式マイクロブリッジ型流速計に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat-sensitive microbridge-type current meter for measuring a gas flow velocity.

【0002】[0002]

【従来の技術】従来における流速計としては、特開昭6
1−235726号公報に「マスフローメータ及び流量
制御装置」なる名称で開示されているものがある。この
基本構造は、基板上に異方性エッチングにより堀を形成
し、この堀の上空に梁を渡し、この梁上に電気抵抗体か
らなる発熱体とこの発熱体を感熱する感熱部とを配設し
てなるものであり、これにより感熱部の熱容量を低減せ
しめ、基板と梁への熱損を小さくすることが可能とな
り、発熱や測温に要する投入電力の低減を図ることがで
きる。
2. Description of the Related Art Conventional velocimeters are disclosed in
Japanese Patent Application Laid-Open No. 1-235726 discloses one disclosed under the name of "mass flow meter and flow control device". In this basic structure, a moat is formed on a substrate by anisotropic etching, a beam is passed over the moat, and a heating element made of an electric resistor and a heat-sensitive portion for sensing the heating element are arranged on the beam. This makes it possible to reduce the heat capacity of the heat-sensitive portion, reduce the heat loss to the substrate and the beam, and reduce the heat generation and the input power required for temperature measurement.

【0003】[0003]

【発明が解決しようとする課題】このように従来の構成
では、梁を発熱体により熱し、その梁と流体との温度差
を一定するために投入された発熱体投入電力を感熱部か
ら出力として検出することにより流速の計測を行う方法
がとられている。
As described above, in the conventional structure, the beam is heated by the heating element, and the heating element input electric power supplied to stabilize the temperature difference between the beam and the fluid is output from the heat-sensitive section. A method of measuring the flow velocity by detecting the flow rate has been adopted.

【0004】しかし、このような計測方法では、以下に
述べるような問題がある。すなわち、梁と室温(流体)
との間の温度差を一定にするように梁上の発熱体への電
力供給を調整するが、室温(Tr)が上昇すると、その
上昇分(ΔTr)と発熱体抵抗材料の温度係数(α)か
ら算出される抵抗値変化分(αとΔTrとの積)が発熱
体出力に含まれてしまう。このようなことから、室温が
変化する毎に出力値が変化し正確な流速の検出を行うこ
とができなくなるという問題がある。
However, such a measuring method has the following problems. That is, beams and room temperature (fluid)
The power supply to the heating element on the beam is adjusted so as to keep the temperature difference between the temperature and the temperature constant constant. However, when the room temperature (Tr) rises, the rise (ΔTr) and the temperature coefficient of the heating element resistance material (α) ), The change in the resistance value (the product of α and ΔTr) is included in the heating element output. For this reason, there is a problem that the output value changes every time the room temperature changes, and accurate detection of the flow velocity cannot be performed.

【0005】また、流量計の長期使用に伴い、高温と高
い通電量にさらされる発熱体は熱的な劣化を受けてしま
うため、抵抗温度係数に経時変化を起こす結果となる。
このような経時変化により、長期間における正確な流速
の計測ができなくなるという問題がある。
[0005] Further, as the flowmeter is used for a long period of time, the heating element exposed to a high temperature and a large amount of electricity is thermally degraded, resulting in a change in the temperature coefficient of resistance with time.
Due to such a change with time, there is a problem that accurate measurement of the flow velocity over a long period of time becomes impossible.

【0006】[0006]

【課題を解決するための手段】請求項1記載の発明で
は、基板をエッチングすることにより堀を形成し、この
堀の上空を跨ぐように梁を形成し、この梁上に発熱体と
この発熱体の温度を計測する発熱体測温抵抗体とを設
け、前記基板上に流体の温度を計測する流体測温抵抗体
が設けられた感熱式マイクロブリッジ型流量計におい
て、前記基板上に流速出力信号の補正を行う前記発熱体
と直列に接続された室温校正用抵抗体を設け、基板外部
に電流量の計測を行う前記発熱体及び前記室温校正用抵
抗体に直列接続された電流計測用抵抗体を設け、前記発
熱体と前記流体測温抵抗体との温度差を一定にするため
に前記発熱体測温抵抗体と前記流体測温抵抗体とバラン
ス調整用抵抗体とが接続された電気ブリッジ回路を設
け、前記発熱体両端の電圧降下値と前記発熱体及び前記
室温校正用抵抗体の両端の電圧降下値と前記室温校正用
抵抗体両端の電圧降下値と前記電流計測用抵抗体両端の
電圧降下値との各電圧降下値を随時計測しデジタル信号
として出力する電気計測回路を設け、前記デジタル信号
を記憶保持するデジタルメモリを設け、室温変化による
誤差の除去の演算処理を行う演算処理回路を設けた。
According to the first aspect of the present invention, a moat is formed by etching a substrate, a beam is formed so as to straddle over the moat, and a heating element and the heat generating member are formed on the beam. A heat-generating microbridge flowmeter provided with a heating element for measuring the temperature of the body, and a fluid temperature sensor for measuring the temperature of the fluid on the substrate; A room temperature calibration resistor connected in series with the heating element for correcting a signal is provided, and the heating element for measuring the amount of current outside the substrate and a current measurement resistor connected in series to the room temperature calibration resistor. An electric body in which the heating element, the fluid temperature measuring resistor, and the balance adjusting resistor are connected in order to keep the temperature difference between the heating element and the fluid temperature measuring resistor constant. A bridge circuit is provided, and the voltage across the heating element is The respective voltage drop values of the lower value, the voltage drop value at both ends of the heating element and the room temperature calibration resistor, the voltage drop value at both ends of the room temperature calibration resistor, and the voltage drop value at both ends of the current measurement resistor are changed as needed. An electric measurement circuit for measuring and outputting as a digital signal is provided; a digital memory for storing and holding the digital signal is provided;

【0007】請求項2記載の発明では、基板をエッチン
グすることにより堀を形成し、この堀の上空を跨ぐよう
に梁を形成し、この梁上に発熱体とこの発熱体の温度を
計測する発熱体測温抵抗体とを設け、前記基板上に流体
の温度を計測する流体測温抵抗体が設けられた感熱式マ
イクロブリッジ型流量計において、前記基板上に流速出
力信号の補正を行う前記発熱体と直列に接続された室温
校正用抵抗体を設け、基板外部に電流量の計測を行う前
記発熱体及び前記室温校正用抵抗体に直列接続された電
流計測用抵抗体を設け、前記発熱体と前記流体測温抵抗
体との温度差を一定にするために前記発熱体測温抵抗体
と前記流体測温抵抗体とバランス調整用抵抗体とが接続
された電気ブリッジ回路を設け、前記発熱体両端の電圧
降下値と前記室温校正用抵抗体両端の電圧降下値と前記
電流計測用抵抗体両端の電圧降下値との各電圧降下値を
随時計測しデジタル信号として出力する電気計測回路を
設け、前記デジタル信号を記憶保持するデジタルメモリ
を設け、室温変化による誤差と長期使用からくる熱的疲
労による抵抗体の温度係数の変化による誤差の除去の演
算処理を行う演算処理回路を設けた。
According to the second aspect of the present invention, a moat is formed by etching a substrate, a beam is formed so as to straddle over the moat, and a heating element and a temperature of the heating element are measured on the beam. A heat-sensitive microbridge flowmeter provided with a heating element and a fluid temperature measuring resistor for measuring the temperature of a fluid on the substrate, wherein the flow rate output signal is corrected on the substrate. A room temperature calibration resistor connected in series with a heating element is provided, and the heating element for measuring the amount of current and a current measurement resistor connected in series to the room temperature calibration resistor are provided outside the substrate. An electric bridge circuit in which the heating element temperature measuring resistor, the fluid temperature measuring resistor, and the balance adjusting resistor are connected to make a temperature difference between the body and the fluid temperature measuring resistor constant; The voltage drop between both ends of the heating element and the room temperature An electric measurement circuit is provided which measures each voltage drop value between the voltage drop value across the positive resistor and the voltage drop value across the current measurement resistor as needed and outputs it as a digital signal, and stores and holds the digital signal. A memory is provided, and an arithmetic processing circuit is provided for performing arithmetic processing for removing errors caused by changes in room temperature and errors caused by changes in the temperature coefficient of the resistor due to thermal fatigue caused by long-term use.

【0008】[0008]

【作用】請求項1記載の発明においては、室温変動によ
る誤差成分を流速出力から随時自動的に除去することが
可能となる。
According to the first aspect of the invention, it is possible to automatically remove an error component due to room temperature fluctuation from the flow velocity output as needed.

【0009】請求項2記載の発明においては、室温変動
による誤差成分を流速出力から除去することが可能であ
ると共に、発熱体の抵抗温度係数の長期使用中における
経時変化による変動成分を随時自動的に除去することが
可能となる。
According to the second aspect of the present invention, it is possible to remove an error component due to room temperature fluctuation from the flow velocity output, and to automatically change a fluctuation component due to a temporal change in the temperature coefficient of resistance of the heating element during long-term use. Can be removed.

【0010】[0010]

【実施例】請求項1記載の発明の一実施例を図1に基づ
いて説明する。基板1はSiからなっており、この基板
1面上に酸化処理法、スパッター真空成膜法を用いて熱
絶縁層である図示しないSiO2 膜を形成する。この熱
絶縁層としては、Si34や、金属酸化物であるTa2
5、Al23、さらには、SiO2 膜とSi34膜と
を組み合わせた多層膜でもよい。この場合の膜厚として
は、0.5〜2μmとする。次に、このような基板1の
表面をKOHによる異方性エッチングを行うことによ
り、堀2を形成する。この堀2の深さとしては、測定す
る最少流速でできる熱境界層以上にする必要があり、こ
こでは150μm以上とした。次に、そのような異方性
エッチングを行うことにより堀2の上空を跨ぐように、
梁3を形成する。この梁3の面上には、この上部に形成
される膜との密着性を向上させるために、密着強度補強
層としてのTa25膜を形成する。なお、この密着強度
補強層としては、Ti、Cr、Ta、NiCr、TiN
を用いてもよい。次に、その梁3上に、発熱体(Rh)
4と、この発熱体4に隣接してその発熱体4の温度を計
測する発熱体測温抵抗体(Rs)5とを設ける。これら
発熱体4と発熱体測温抵抗体5の材料としては、比抵抗
の高い金属であるPtを用いるが、この他にNi、W、
Taを用いてもよい。なお、これらの材料に限定される
ものではなく、比抵抗特性に温度依存性をもつものであ
ればよい。次に、梁3と堀2の上流側に位置する基板1
上に、流体Aの温度を計測する流体測温抵抗体(Rf)
6を設ける。この流体測温抵抗体6は、発熱体4から熱
的に隔離された基板1面上に設置されており、抵抗温度
係数の高いPt等を用いる。このPt層は臨界密度を十
分に下回るようにする条件と、抵抗値設定の条件とか
ら、500〜5000Åがよい。
An embodiment of the present invention will be described with reference to FIG. The substrate 1 is made of Si, and an SiO 2 film (not shown), which is a heat insulating layer, is formed on the surface of the substrate 1 by using an oxidation method or a sputtering vacuum film forming method. The heat insulating layer is made of Si 3 N 4 or Ta 2 which is a metal oxide.
O 5 , Al 2 O 3 , or a multilayer film combining a SiO 2 film and a Si 3 N 4 film may be used. The film thickness in this case is 0.5 to 2 μm. Next, the moat 2 is formed by performing anisotropic etching with KOH on the surface of the substrate 1. The depth of the moat 2 needs to be equal to or greater than the thermal boundary layer that can be formed at the minimum flow velocity to be measured. Next, by performing such anisotropic etching, so as to straddle the sky above the moat 2,
The beam 3 is formed. On the surface of the beam 3, a Ta 2 O 5 film is formed as an adhesion strength reinforcing layer in order to improve the adhesion with the film formed thereon. Note that Ti, Cr, Ta, NiCr, TiN
May be used. Next, a heating element (Rh) is placed on the beam 3.
And a heating element temperature measuring resistor (Rs) 5 adjacent to the heating element 4 for measuring the temperature of the heating element 4. As a material for the heating element 4 and the heating element temperature measuring resistor 5, Pt which is a metal having a high specific resistance is used.
Ta may be used. Note that the material is not limited to these materials, and any material may be used as long as the specific resistance characteristics have temperature dependency. Next, the substrate 1 located upstream of the beam 3 and the moat 2
Above, a fluid temperature sensor (Rf) for measuring the temperature of fluid A
6 is provided. The fluid temperature measuring resistor 6 is provided on the surface of the substrate 1 which is thermally isolated from the heating element 4 and uses Pt or the like having a high temperature coefficient of resistance. The Pt layer preferably has a thickness of 500 to 5000 ° depending on the condition for sufficiently lowering the critical density and the condition for setting the resistance value.

【0011】次に、熱的に発熱体4から隔離されたヒー
トシンクとなるべき体積の大きい基板1の下流の縁部分
に、室温校正用抵抗体(Rc)7を配線する。この室温
校正用抵抗体7は、基板1上に流速出力信号の補正を行
う発熱体4と直列に接続されている。この室温校正用抵
抗体7の流体Aの流れに対しての設置場所は特に限定し
ないが、熱容量を大きくとれる十分な体積をもった基板
1上に形成することが望ましい。次に、このようにして
形成された発熱体4と発熱体測温抵抗体5と流体測温抵
抗体6と室温校正用抵抗体7とを含む全面に渡ってその
上部にTa25層を介して保護層(ともに図示しない)
を積層する。このTa25層が保護層を兼ねてもよい。
Next, a room temperature calibrating resistor (Rc) 7 is wired on the downstream edge of the large-volume substrate 1 to be a heat sink which is thermally isolated from the heating element 4. This room temperature calibration resistor 7 is connected in series with the heating element 4 for correcting the flow velocity output signal on the substrate 1. The location of the room temperature calibration resistor 7 with respect to the flow of the fluid A is not particularly limited, but is preferably formed on the substrate 1 having a sufficient volume to allow a large heat capacity. Next, a Ta 2 O 5 layer is formed over the entire surface including the heating element 4, the heating element temperature measuring resistor 5, the fluid temperature measuring resistor 6, and the room temperature calibrating resistor 7 formed as described above. Through a protective layer (both not shown)
Are laminated. This Ta 2 O 5 layer may also serve as a protective layer.

【0012】なお、上述したような構成において、密着
強度補強層であるTa25層は薄いほどよいが、SiO
2 (Si34でもよい)からなる保護層を形成する場合
は、Ptとの整合性を確保するために100〜700Å
程度がよい。また、保護層は、測温抵抗体感度の向上の
ためには熱容量を減少させるという目的と、量産性を向
上させるという目的から薄い方がよいが、保護膜として
は厚い方が好ましく、このため800〜5000Åの範
囲に膜厚を抑えるようにするとよい。さらに、密着強度
補強層と各抵抗体層とは、蒸着法、EB蒸着法、スパッ
ター法等の真空成膜法により形成することができる。ま
た、形状切り出しは、リフトオフ法、Arスパッターエ
ッチング法等により行うことができる。
In the above structure, the Ta 2 O 5 layer as the adhesion strength reinforcing layer is preferably as thin as possible.
In the case of forming a protective layer made of 2 (may be Si 3 N 4 ), 100 to 700 °
Good degree. Further, the protective layer is preferably thinner for the purpose of reducing the heat capacity and for the purpose of improving mass productivity in order to improve the sensitivity of the resistance temperature detector, but the protective layer is preferably thicker for the purpose. It is preferable that the film thickness be kept in the range of 800 to 5000 °. Further, the adhesion strength reinforcing layer and each resistor layer can be formed by a vacuum film forming method such as an evaporation method, an EB evaporation method, and a sputtering method. The shape can be cut out by a lift-off method, an Ar sputter etching method, or the like.

【0013】また、上述したような基板構造とされた本
感熱式マイクロブリッジ型流速計は、以下のような各種
測定回路を備えている。すなわち、図2は、図1の基板
1上の各抵抗体の配線回路のみを取り出したものであ
る。基板外部には電流量の計測を行う電流計測用抵抗体
(Ri)8が設けられており、この電流計測用抵抗体8
は発熱体4及び室温校正用抵抗体7に直列接続されてい
る。また、発熱体4と流体測温抵抗体6との温度差を一
定にするために、電気ブリッジ回路としてのホイースト
ンブリッジ回路8が設けられている。このホイーストン
ブリッジ8は、発熱体測温抵抗体5と流体測温抵抗体6
とバランス調整用抵抗体10a,10bとを接続して構
成されている。
Further, the thermosensitive microbridge type current meter having the above-mentioned substrate structure is provided with the following various measuring circuits. That is, FIG. 2 shows only the wiring circuit of each resistor on the substrate 1 of FIG. A current measurement resistor (Ri) 8 for measuring the amount of current is provided outside the substrate.
Is connected in series with the heating element 4 and the room temperature calibration resistor 7. Further, a Wheatstone bridge circuit 8 as an electric bridge circuit is provided to make the temperature difference between the heating element 4 and the fluid temperature measuring resistor 6 constant. The Wheatstone bridge 8 includes a heating element temperature measuring resistor 5 and a fluid temperature measuring resistor 6.
And the resistors 10a and 10b for balance adjustment.

【0014】さらに、図1に示すように、駆動補正回路
11とA/D変換回路12とからなる電気計測回路13
が本流量計の基板1の回路と接続されている。この電気
計測回路13は、発熱体4両端の電圧降下値Vhと、発
熱体4及び室温校正用抵抗体7の両端の電圧降下値Vou
t と、室温校正用抵抗体7両端の電圧降下値Vcと、電
流計測用抵抗体8両端の電圧降下値Viとの各電圧降下
値を随時計測し、デジタル信号に変換して出力する。ま
た、このような電気計測回路13は、室温変化による誤
差の除去の演算処理を行う演算処理回路14と接続され
ている。この演算処理回路14には、デジタル信号を記
憶保持するデジタルメモリとしての不揮発性メモリ15
が付設されている。
Further, as shown in FIG. 1, an electric measurement circuit 13 comprising a drive correction circuit 11 and an A / D conversion circuit 12
Are connected to the circuit of the substrate 1 of the present flowmeter. The electric measuring circuit 13 includes a voltage drop value Vh across the heating element 4 and a voltage drop value Vou across the heating element 4 and the room temperature calibration resistor 7.
t, a voltage drop value Vc across the room temperature calibration resistor 7 and a voltage drop value Vi across the current measurement resistor 8 are measured as needed, converted into digital signals and output. Further, such an electric measurement circuit 13 is connected to an arithmetic processing circuit 14 which performs arithmetic processing for removing an error due to a change in room temperature. The arithmetic processing circuit 14 includes a nonvolatile memory 15 as a digital memory for storing and holding digital signals.
Is attached.

【0015】このような構成において、以下、室温変動
成分を流速Aの流速出力から除去する演算処理について
述べる。ただし、ここでは、発熱体4はRh、発熱体測
温抵抗体5はRs、流体測温抵抗体6はRf、室温校正
用抵抗体7はRc、電流計測用抵抗体8はRiとして説
明する。
In such a configuration, a calculation process for removing the room temperature fluctuation component from the flow velocity output of the flow velocity A will be described below. However, here, the heating element 4 will be described as Rh, the heating element temperature measuring resistor 5 will be Rs, the fluid temperature measuring resistor 6 will be Rf, the room temperature calibration resistor 7 will be Rc, and the current measuring resistor 8 will be Ri. .

【0016】図2の回路において、予め校正温度点を設
定し、To(例えば、20°C)とする。RcとRhの
Toにおける校正抵抗値を計測しておき、その値をRco
とRhoとする。RcとRhは同一抵抗材料からなるた
め、同じ抵抗温度係数(α)をもつ。センサ素子の電気
駆動回路に駆動電圧Vdを印加すると、RhとRcとR
iには電流iが流れる。そして、今、駆動時に室温Tr
が更正点ToからΔTrだけ変動したとする。目標とす
る室温と梁3の温度との差をΔTとすると、Rhの温度
上昇ΔThは、 ΔTh=ΔT+ΔTr …(1) となる。この場合、(1)式におけるΔTのみによるR
hの出力を室温の変動ΔTrの大きさにかかかわらず計
測することが本実施例における目的である。そこで、R
hとRcとの両端の電圧降下値Vout と、Rcのみの電
圧降下値Vcとを計測する。さらに、RhとRcを流れ
る電流値を監視する目的で温度係数の非常に小さいRi
を直列に接続し、この電圧降下値Viを計測し電流値i
を算出しておく。通電している時、Rhは(1)式に示
したようにΔThの温度上昇をし、そのRhの値は、 Rh=Rho(1+α・ΔTh) …(2) となる。また、Rcは、発熱部から熱的に隔離されてい
るため、校正点からの室温変化であるΔTrのみの温度
上昇をし、そのRcの値は、 Rc=Rco(1+α・ΔTr) …(3) となる。ここで、RhoとRcoとは、校正温度Tcにおけ
る抵抗値であり、予め計測してあり定数である。αはR
hとRcの温度係数である。この場合、RcをRhに直
列に接続するため、Rcの配置される基板1における発
熱が生じ問題になりそうであるが、しかし、Siからな
る基板1は熱伝導率が非常に高いため、この発熱に対し
てヒートシンクとして働き、実際には基板1は非常に小
さい温度の上昇しかない。さらに、計測は熱的定常状態
になった時点で行うため、Rc自己発熱による基板温度
の上昇はいわゆるΔTrに含まれるので何ら問題はな
い。
In the circuit of FIG. 2, a calibration temperature point is set in advance and is set to To (for example, 20 ° C.). The calibration resistance value of Rc and Rh at To is measured in advance, and the value is calculated as Rco
And Rho. Since Rc and Rh are made of the same resistance material, they have the same temperature coefficient of resistance (α). When a drive voltage Vd is applied to the electric drive circuit of the sensor element, Rh, Rc and R
A current i flows through i. Then, at the time of driving, the room temperature Tr
Has changed from the correction point To by ΔTr. Assuming that the difference between the target room temperature and the temperature of the beam 3 is ΔT, the temperature rise ΔTh of Rh is as follows: ΔTh = ΔT + ΔTr (1) In this case, R is determined only by ΔT in equation (1).
It is an object of this embodiment to measure the output of h regardless of the magnitude of the room temperature fluctuation ΔTr. Then, R
The voltage drop value Vout at both ends of h and Rc and the voltage drop value Vc of only Rc are measured. Furthermore, in order to monitor the current values flowing through Rh and Rc, Ri having a very small temperature coefficient is used.
Are connected in series, the voltage drop value Vi is measured, and the current value i
Is calculated in advance. When the power is supplied, Rh increases the temperature by ΔTh as shown in the equation (1), and the value of Rh becomes Rh = Rho (1 + α · ΔTh) (2). Further, since Rc is thermally isolated from the heat generating portion, the temperature rises only in ΔTr, which is a change in room temperature from the calibration point, and the value of Rc is: ). Here, Rho and Rco are resistance values at the calibration temperature Tc, which are measured in advance and are constants. α is R
Temperature coefficients of h and Rc. In this case, since Rc is connected in series with Rh, heat generation is likely to occur in the substrate 1 on which Rc is disposed, but this is likely to be a problem. Acting as a heat sink against heat generation, the substrate 1 actually has only a very small temperature rise. Furthermore, since the measurement is performed at the time when the thermal steady state is reached, there is no problem since the rise in the substrate temperature due to the Rc self-heating is included in the so-called ΔTr.

【0017】一方、各抵抗体の電圧降下値は、 Vh=i・Rh …(4) Vc=i・Rc …(5) のようになる。(1)式から室温変動分を取り除いた温
度上昇は、 ΔT=ΔTh−ΔTr …(6) となる。変動成分を取り除いたRhの真の電圧降下値V
trueである出力信号は、 Vtrue=i・{Rho(1+α・ΔT)} …(7) となる。(2)〜(5)式から各々の抵抗体における温
度変化は、 ΔTh=(1/α){Vh/(i・Rho)−1} …(8) ΔTr=(1/α){Vc/(i・Rco)−1} …(9) となり、(6)、(8)、(9)式を(7)式に代入す
ることによって、室温変動成分が除去された出力信号
は、 Vtrue=Vh+i・Rho−Vc・Rho/Rco …(10) と表わすことができる。
On the other hand, the voltage drop value of each resistor is as follows: Vh = i · Rh (4) Vc = i · Rc (5) The temperature rise obtained by removing the fluctuation of the room temperature from the equation (1) is as follows: ΔT = ΔTh−ΔTr (6) True voltage drop V of Rh from which the fluctuation component has been removed
An output signal that is true is as follows: Vtrue = i · {Rho (1 + α · ΔT)} (7) From the equations (2) to (5), the temperature change in each resistor is as follows: ΔTh = (1 / α) {Vh / (i · Rho) −1} (8) ΔTr = (1 / α) {Vc / (I · Rco) −1} (9) By substituting the equations (6), (8), and (9) into the equation (7), the output signal from which the room temperature fluctuation component has been removed is Vtrue = Vh + i · Rho−Vc · Rho / Rco (10)

【0018】本実施例においては、予め、(10)式の
RhoとRcoとを計測しておき、その値を不揮発性メモリ
15に保持しておく。そして、Vh(若しくは、Vou
t)、Vc、Viの3つの電圧値降下値を駆動補正回路1
1にて随時検出を行っていく。次に、このようにして検
出されたアナログ電圧降下値をA/D変換回路12を用
いてA/D変換をしてデジタル値に変換した後、演算処
理回路14において(10)式に基づいたデジタル演算
処理を行う。この演算処理の際に、校正した同信号強度
を予め不揮発性メモリ15に保持してある補間関数若し
くは補間参照データ表を用いて流速値に変換する。
In this embodiment, Rho and Rco in the equation (10) are measured in advance, and the values are stored in the nonvolatile memory 15. And Vh (or Vou
t), Vc, Vi, the three voltage drop values,
In step 1, detection is performed as needed. Next, the analog voltage drop value thus detected is converted into a digital value by A / D conversion using the A / D conversion circuit 12, and then, based on the equation (10) in the arithmetic processing circuit 14. Perform digital arithmetic processing. At the time of this arithmetic processing, the calibrated signal intensity is converted into a flow velocity value using an interpolation function or an interpolation reference data table stored in the nonvolatile memory 15 in advance.

【0019】従って、このような一連の処理を行うこと
によって、室温変動の影響を取り除いた正確な流速を検
出することができる。このように本実施例では、室温変
動による誤差を随時自動的に除去することができるた
め、流速の検出を高い精度で行うことができる。また、
図1のような基板構造では従来の基板構造に比べて2つ
の抵抗体Rc,Riが増加する結果となるが、Rcは素
子が配設される基板1に同一の抵抗体パターンで作れ、
Riは外付け用部品として1個だけ増えるだけであり、
全体的な電気回路の構成としては複雑化しないため、生
産性に何ら影響を及ぼすようなことはない。
Therefore, by performing such a series of processes, it is possible to detect an accurate flow rate without the influence of room temperature fluctuation. As described above, in the present embodiment, the error due to the fluctuation in the room temperature can be automatically removed at any time, so that the flow velocity can be detected with high accuracy. Also,
In the substrate structure as shown in FIG. 1, two resistors Rc and Ri increase as compared with the conventional substrate structure. However, Rc can be formed on the substrate 1 on which the elements are provided by the same resistor pattern.
Ri only increases by one as an external component,
Since the configuration of the entire electric circuit is not complicated, there is no influence on productivity.

【0020】次に、請求項2記載の発明の一実施例につ
いて説明する。なお、請求項1記載の発明と同一部分に
ついての説明は省略し、その同一部分については同一符
号を用いる。
Next, an embodiment of the present invention will be described. The description of the same parts as those of the first aspect is omitted, and the same reference numerals are used for the same parts.

【0021】本実施例では、図1の電気計測回路13及
び演算処理回路14の内部構成を替えたものである。す
なわち、電気計測回路13は、発熱体(Rh)4の両端
の電圧降下値Vhと、室温校正用抵抗体(Rc)7の両
端の電圧降下値Vcと、電流計測用抵抗体(Ri)8の
両端の電圧降下値Viとの各電圧降下値を随時計測しデ
ジタル信号として出力するようにしたものである。ま
た、演算処理回路14は、室温変化ΔTrによる誤差の
除去のみならず、長期使用からくる熱的疲労による抵抗
体の温度係数の変化による誤差の除去をも演算処理する
ようにしたものである。
In the present embodiment, the internal configurations of the electric measurement circuit 13 and the arithmetic processing circuit 14 in FIG. 1 are changed. That is, the electrical measurement circuit 13 includes a voltage drop value Vh across the heating element (Rh) 4, a voltage drop value Vc across the room temperature calibration resistor (Rc) 7, and a current measurement resistor (Ri) 8. , And each voltage drop value with respect to the voltage drop value Vi at both ends is measured at any time and output as a digital signal. Further, the arithmetic processing circuit 14 performs arithmetic processing not only for the removal of the error due to the room temperature change ΔTr, but also for the removal of the error due to the change in the temperature coefficient of the resistor due to thermal fatigue caused by long-term use.

【0022】このような構成において、以下、室温変動
成分と発熱体抵抗温度係数の経時変化による変動成分を
共に流速出力から除去する演算処理について述べる。長
期間のおける流速計の使用においては、Rhは熱的な疲
労劣化をおこし、抵抗温度係数αにゆるやかな変化をも
たらす。そこで、今、流速計としての使用の前に素子を
十分にエージング処理を行う、これにより安定化した時
の抵抗温度係数をα0とし、不揮発性メモリ15に保持
しておく。実際の使用においては、抵抗温度係数はほぼ
線形に変動するため、 α=β・α0≒(1+x)α0 …(11) に近似する。
In such a configuration, an arithmetic process for removing both the room temperature fluctuation component and the fluctuation component due to the temporal change of the heating element resistance temperature coefficient from the flow velocity output will be described below. When the current meter is used for a long period of time, Rh causes thermal fatigue deterioration, and causes a gradual change in the temperature coefficient of resistance α. Therefore, the element is now subjected to a sufficient aging process before being used as a current meter, and the temperature coefficient of resistance when stabilized by this is set to α 0 and stored in the nonvolatile memory 15. In actual use, since the temperature coefficient of resistance fluctuates almost linearly, it approximates α = β · α 0 1 (1 + x) α 0 (11).

【0023】ここで、高温に熱せられるRhは疲労を受
けやすく、ヒートシンクに形成されたRcは疲労を受け
にくいことに注目する。このことから、(2)式のRh
は、 Rh=Rho(1+β・α0・ΔTh) …(12) となるが、(3)式のRcは影響を受けない。これと同
様に、(7)式も、 Vtrue=i・Rho(1+β・α0・ΔTh) …(13) となり、これにより求めたい室温変動成分を除去した流
速出力は、 Vtrue=Vh+β・i・Rho−β・Vc・Rho/Rco …(14) となる。
Here, it should be noted that Rh heated to a high temperature is susceptible to fatigue, and Rc formed on the heat sink is less susceptible to fatigue. From this, Rh in equation (2)
Is as follows: Rh = Rho (1 + β · α 0 · ΔTh) (12), but Rc in the equation (3) is not affected. Similarly, equation (7) also, Vtrue = i · Rho (1 + β · α 0 · ΔTh) ... (13) , and the flow rate output to remove room temperature fluctuation component to be thereby determined is, Vtrue = Vh + β · i · Rho−β · Vc · Rho / Rco (14)

【0024】次に、βの値を求める。Vh、Vcは、 Vh=i・Rho(1+β・α0・ΔTh) …(15) Vc=i・Rco(1+β・α0・ΔTh) …(16) であるため、ここで整理しなおすと、 β・α0・ΔTh=Vh/(i・Rho)−1 …(17) α0・ΔTr=Vc/(i・Rco)−1 …(18) となる。そして、(17)と(18)との差をとると、 α0(β・ΔTh−ΔTr)=Vh/(i・Rho)−Vc/(i・Rco) …(19) となる。Next, the value of β is determined. Vh, Vc is, because it is a Vh = i · Rho (1 + β · α 0 · ΔTh) ... (15) Vc = i · Rco (1 + β · α 0 · ΔTh) ... (16), and re-organize here, the β · α 0 · ΔTh = Vh / (i · Rho) -1 ... (17) α 0 · ΔTr = Vc / (i · Rco) -1 ... (18). Then, when the difference between (17) and (18) is taken, α 0 (β · Th−ΔTr) = Vh / (i · Rho) −Vc / (i · Rco) (19)

【0025】ここで、β≒(1+x)であるため、xを
求めることにより流速出力の(14)式を解くことがで
きる。そして、(19)式をxについて展開すると、
Here, since β ≒ (1 + x), equation (14) of the flow velocity output can be solved by obtaining x. Then, when Expression (19) is expanded for x,

【0026】[0026]

【数1】 (Equation 1)

【0027】の式を得ることができる。この場合、計測
値であるVcの値は判明しているため、ΔTrの値は
(9)式から算出することができる。また、(20)式
内の係数は、予め計っておいた定数か、随時計測された
値か、随時演算処理から得られる値であるため、抵抗温
度係数の変動成分であるxは随時求めることができる。
このxの値を(14)式のβに代入することによって、
抵抗温度係数の経時変化による誤差を取り除くと共に、
室温の変動成分ΔTrを取り除いた流速計測を行うこと
ができる。
The following equation can be obtained. In this case, since the value of the measured value Vc is known, the value of ΔTr can be calculated from equation (9). Further, since the coefficient in the equation (20) is a constant measured in advance, a value measured as needed, or a value obtained from an arbitrary calculation process, x which is a fluctuation component of the resistance temperature coefficient should be obtained as needed. Can be.
By substituting the value of x into β in equation (14),
In addition to eliminating errors due to changes in the temperature coefficient of resistance over time,
Flow velocity measurement from which the room temperature fluctuation component ΔTr has been removed can be performed.

【0028】従って、本実施例では、室温変動による誤
差成分ΔTrを流速出力から除去することができると共
に、Rhの抵抗温度係数の長期使用中における経時変化
による変動成分xを随時自動的に除去することができ、
これにより、流速検出を高い精度で長期間行うことがで
きる。
Therefore, in this embodiment, the error component ΔTr due to room temperature fluctuation can be removed from the flow velocity output, and the fluctuation component x due to the temporal change of the resistance temperature coefficient of Rh during long-term use is automatically removed as needed. It is possible,
Thereby, the flow velocity can be detected with high accuracy for a long period of time.

【0029】[0029]

【発明の効果】請求項1記載の発明は、基板をエッチン
グすることにより堀を形成し、この堀の上空を跨ぐよう
に梁を形成し、この梁上に発熱体とこの発熱体の温度を
計測する発熱体測温抵抗体とを設け、前記基板上に流体
の温度を計測する流体測温抵抗体が設けられた感熱式マ
イクロブリッジ型流量計において、前記基板上に流速出
力信号の補正を行う前記発熱体と直列に接続された室温
校正用抵抗体を設け、基板外部に電流量の計測を行う前
記発熱体及び前記室温校正用抵抗体に直列接続された電
流計測用抵抗体を設け、前記発熱体と前記流体測温抵抗
体との温度差を一定にするために前記発熱体測温抵抗体
と前記流体測温抵抗体とバランス調整用抵抗体とが接続
された電気ブリッジ回路を設け、前記発熱体両端の電圧
降下値と前記発熱体及び前記室温校正用抵抗体の両端の
電圧降下値と前記室温校正用抵抗体両端の電圧降下値と
前記電流計測用抵抗体両端の電圧降下値との各電圧降下
値を随時計測しデジタル信号として出力する電気計測回
路を設け、前記デジタル信号を記憶保持するデジタルメ
モリを設け、室温変化による誤差の除去の演算処理を行
う演算処理回路を設けたので、室温変動による誤差成分
を流速出力から随時自動的に除去することができ、これ
により高い精度で流速検出を行うことができるものであ
る。
According to the first aspect of the present invention, a moat is formed by etching a substrate, a beam is formed so as to straddle over the moat, and a heating element and a temperature of the heating element are formed on the beam. In a heat-sensitive micro-bridge flowmeter provided with a heating element and a resistance temperature sensor for measuring the temperature of a fluid on the substrate, the correction of the flow velocity output signal is performed on the substrate. Providing a resistor for room temperature calibration connected in series with the heating element to be performed, and providing a resistor for current measurement serially connected to the heating element and the resistor for room temperature calibration to measure the amount of current outside the substrate, In order to keep the temperature difference between the heating element and the fluid temperature measuring resistor constant, an electric bridge circuit is provided in which the heating element temperature measuring resistor, the fluid temperature measuring resistor and the balance adjusting resistor are connected. The voltage drop across the heating element and the heat generation The voltage drop values at both ends of the room temperature calibration resistor, the voltage drop values at both ends of the room temperature calibration resistor, and the voltage drop values at both ends of the current measurement resistor are measured as needed and are digital signals. An electric measurement circuit for outputting the digital signal is provided, a digital memory for storing and holding the digital signal is provided, and an arithmetic processing circuit for performing an arithmetic processing for removing an error due to a change in room temperature is provided. Thus, the flow velocity can be detected with high accuracy.

【0030】請求項2記載の発明は、基板をエッチング
することにより堀を形成し、この堀の上空を跨ぐように
梁を形成し、この梁上に発熱体とこの発熱体の温度を計
測する発熱体測温抵抗体とを設け、前記基板上に流体の
温度を計測する流体測温抵抗体が設けられた感熱式マイ
クロブリッジ型流量計において、前記基板上に流速出力
信号の補正を行う前記発熱体と直列に接続された室温校
正用抵抗体を設け、基板外部に電流量の計測を行う前記
発熱体及び前記室温校正用抵抗体に直列接続された電流
計測用抵抗体を設け、前記発熱体と前記流体測温抵抗体
との温度差を一定にするために前記発熱体測温抵抗体と
前記流体測温抵抗体とバランス調整用抵抗体とが接続さ
れた電気ブリッジ回路を設け、前記発熱体両端の電圧降
下値と前記室温校正用抵抗体両端の電圧降下値と前記電
流計測用抵抗体両端の電圧降下値との各電圧降下値を随
時計測しデジタル信号として出力する電気計測回路を設
け、前記デジタル信号を記憶保持するデジタルメモリを
設け、室温変化による誤差と長期使用からくる熱的疲労
による抵抗体の温度係数の変化による誤差の除去の演算
処理を行う演算処理回路を設けたので、室温変動による
誤差成分を流速出力から除去することができると共に、
発熱体の抵抗温度係数の長期使用中における経時変化に
よる変動成分を随時自動的に除去することができ、これ
により、一段と高い精度で流速検出を長期間行うことが
できるものである。
According to the second aspect of the present invention, a moat is formed by etching a substrate, a beam is formed so as to straddle over the moat, and a heating element and a temperature of the heating element are measured on the beam. A heat-sensitive microbridge flowmeter provided with a heating element and a fluid temperature measuring resistor for measuring the temperature of a fluid on the substrate, wherein the flow rate output signal is corrected on the substrate. A room temperature calibration resistor connected in series with a heating element is provided, and the heating element for measuring the amount of current and a current measurement resistor connected in series to the room temperature calibration resistor are provided outside the substrate. An electric bridge circuit in which the heating element temperature measuring resistor, the fluid temperature measuring resistor, and the balance adjusting resistor are connected to make a temperature difference between the body and the fluid temperature measuring resistor constant; The voltage drop across the heating element and the room temperature A digital memory for storing an electric measurement circuit for measuring each voltage drop value of a voltage drop value between both ends of the resistor for use and a voltage drop value between both ends of the resistor for current measurement and outputting the digital signal as a digital signal, and storing and holding the digital signal And an arithmetic processing circuit that removes errors caused by changes in room temperature and errors caused by changes in the temperature coefficient of the resistor due to thermal fatigue caused by long-term use. Be able to
A fluctuation component due to a temporal change in the resistance temperature coefficient of the heating element during long-term use can be automatically removed as needed, and thus, the flow velocity can be detected with higher accuracy for a long time.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例である感熱式マイクロブリッ
ジ型流量計を示す構成図である。
FIG. 1 is a configuration diagram showing a heat-sensitive microbridge type flow meter according to an embodiment of the present invention.

【図2】各種抵抗体を接続してなる電気回路構成を示す
回路図である。
FIG. 2 is a circuit diagram showing an electric circuit configuration formed by connecting various resistors.

【符号の説明】[Explanation of symbols]

1 基板 2 堀 3 梁 4 発熱体 5 発熱体測温抵抗体 6 流体測温抵抗体 7 室温校正用抵抗体 8 電流計測用抵抗体 9 電気ブリッジ回路 10a,10b バランス調整用抵抗体 13 電気計測回路 14 演算処理回路 15 デジタルメモリ Reference Signs List 1 board 2 moat 3 beam 4 heating element 5 heating element temperature measuring resistor 6 fluid temperature measuring resistor 7 room temperature calibration resistor 8 current measurement resistor 9 electric bridge circuit 10a, 10b balance adjustment resistor 13 electric measurement circuit 14 arithmetic processing circuit 15 digital memory

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−235726(JP,A) 特開 昭63−201529(JP,A) 特開 平2−281108(JP,A) 特開 平4−332867(JP,A) 特開 平1−296111(JP,A) 特表 平3−500687(JP,A) (58)調査した分野(Int.Cl.7,DB名) G01F 1/68 - 1/699 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-61-235726 (JP, A) JP-A-63-201529 (JP, A) JP-A-2-281108 (JP, A) JP-A-4- 332867 (JP, A) JP-A-1-296111 (JP, A) JP-A-3-500687 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) G01F 1/68-1 / 699

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 基板をエッチングすることにより堀を形
成し、この堀の上空を跨ぐように梁を形成し、この梁上
に発熱体とこの発熱体の温度を計測する発熱体測温抵抗
体とを設け、前記基板上に流体の温度を計測する流体測
温抵抗体が設けられた感熱式マイクロブリッジ型流量計
において、前記基板上に流速出力信号の補正を行う前記
発熱体と直列に接続された室温校正用抵抗体を設け、基
板外部に電流量の計測を行う前記発熱体及び前記室温校
正用抵抗体に直列接続された電流計測用抵抗体を設け、
前記発熱体と前記流体測温抵抗体との温度差を一定にす
るために前記発熱体測温抵抗体と前記流体測温抵抗体と
バランス調整用抵抗体とが接続された電気ブリッジ回路
を設け、前記発熱体両端の電圧降下値と前記発熱体及び
前記室温校正用抵抗体の両端の電圧降下値と前記室温校
正用抵抗体両端の電圧降下値と前記電流計測用抵抗体両
端の電圧降下値との各電圧降下値を随時計測しデジタル
信号として出力する電気計測回路を設け、前記デジタル
信号を記憶保持するデジタルメモリを設け、室温変化に
よる誤差の除去の演算処理を行う演算処理回路を設けた
ことを特徴とする感熱式マイクロブリッジ型流量計。
A moat is formed by etching a substrate, a beam is formed so as to straddle over the moat, and a heating element and a heating element temperature measuring resistor for measuring the temperature of the heating element on the beam. In a heat-sensitive micro-bridge type flow meter provided with a fluid temperature measuring resistor for measuring the temperature of a fluid on the substrate, connected in series with the heating element for correcting a flow velocity output signal on the substrate. Provide a room temperature calibration resistor, provided a heating element and a current measurement resistor connected in series to the room temperature calibration resistor to measure the amount of current outside the substrate,
In order to keep the temperature difference between the heating element and the fluid temperature measuring resistor constant, an electric bridge circuit is provided in which the heating element temperature measuring resistor, the fluid temperature measuring resistor and the balance adjusting resistor are connected. A voltage drop value at both ends of the heating element, a voltage drop value at both ends of the heating element and the room temperature calibration resistor, a voltage drop value at both ends of the room temperature calibration resistor, and a voltage drop value at both ends of the current measurement resistor. An electrical measurement circuit that measures each voltage drop value at any time and outputs it as a digital signal, a digital memory that stores and holds the digital signal is provided, and an arithmetic processing circuit that performs arithmetic processing for removing an error due to a change in room temperature is provided. A heat-sensitive micro-bridge type flow meter characterized by the following.
【請求項2】 基板をエッチングすることにより堀を形
成し、この堀の上空を跨ぐように梁を形成し、この梁上
に発熱体とこの発熱体の温度を計測する発熱体測温抵抗
体とを設け、前記基板上に流体の温度を計測する流体測
温抵抗体が設けられた感熱式マイクロブリッジ型流量計
において、前記基板上に流速出力信号の補正を行う前記
発熱体と直列に接続された室温校正用抵抗体を設け、基
板外部に電流量の計測を行う前記発熱体及び前記室温校
正用抵抗体に直列接続された電流計測用抵抗体を設け、
前記発熱体と前記流体測温抵抗体との温度差を一定にす
るために前記発熱体測温抵抗体と前記流体測温抵抗体と
バランス調整用抵抗体とが接続された電気ブリッジ回路
を設け、前記発熱体両端の電圧降下値と前記室温校正用
抵抗体両端の電圧降下値と前記電流計測用抵抗体両端の
電圧降下値との各電圧降下値を随時計測しデジタル信号
として出力する電気計測回路を設け、前記デジタル信号
を記憶保持するデジタルメモリを設け、室温変化による
誤差と長期使用からくる熱的疲労による抵抗体の温度係
数の変化による誤差の除去の演算処理を行う演算処理回
路を設けたことを特徴とする感熱式マイクロブリッジ型
流量計。
2. A moat is formed by etching a substrate, a beam is formed so as to straddle over the moat, and a heating element and a heating element temperature measuring resistor for measuring the temperature of the heating element on the beam. In a heat-sensitive micro-bridge type flow meter provided with a fluid temperature measuring resistor for measuring the temperature of a fluid on the substrate, connected in series with the heating element for correcting a flow velocity output signal on the substrate. Provide a room temperature calibration resistor, provided a heating element and a current measurement resistor connected in series to the room temperature calibration resistor to measure the amount of current outside the substrate,
In order to keep the temperature difference between the heating element and the fluid temperature measuring resistor constant, an electric bridge circuit is provided in which the heating element temperature measuring resistor, the fluid temperature measuring resistor and the balance adjusting resistor are connected. Electrical measurement for measuring the voltage drop values at both ends of the heating element, the voltage drop values at both ends of the room temperature calibration resistor, and the voltage drop values at both ends of the current measurement resistor at any time, and outputting them as digital signals. A digital memory for storing and holding the digital signal; and an arithmetic processing circuit for performing an arithmetic processing for removing an error due to a change in room temperature and an error due to a change in a temperature coefficient of the resistor due to thermal fatigue resulting from long-term use. A heat-sensitive micro-bridge type flow meter characterized by the following.
JP10804193A 1993-05-10 1993-05-10 Heat-sensitive microbridge flowmeter Expired - Fee Related JP3238984B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10804193A JP3238984B2 (en) 1993-05-10 1993-05-10 Heat-sensitive microbridge flowmeter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10804193A JP3238984B2 (en) 1993-05-10 1993-05-10 Heat-sensitive microbridge flowmeter

Publications (2)

Publication Number Publication Date
JPH06317440A JPH06317440A (en) 1994-11-15
JP3238984B2 true JP3238984B2 (en) 2001-12-17

Family

ID=14474448

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10804193A Expired - Fee Related JP3238984B2 (en) 1993-05-10 1993-05-10 Heat-sensitive microbridge flowmeter

Country Status (1)

Country Link
JP (1) JP3238984B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4966526B2 (en) 2005-09-07 2012-07-04 日立オートモティブシステムズ株式会社 Flow sensor
WO2009085840A2 (en) * 2007-12-28 2009-07-09 Lam Research Corporation Wafer carrier drive apparatus and method for operating the same
CN109481804B (en) * 2017-09-13 2022-05-31 深圳迈瑞生物医疗电子股份有限公司 Breathing machine

Also Published As

Publication number Publication date
JPH06317440A (en) 1994-11-15

Similar Documents

Publication Publication Date Title
US7647843B2 (en) Universal sensor controller for a thermal anemometer
EP2230491B1 (en) Method of calibrating a thermal mass flowmeter
EP2063233A1 (en) Thermal flow rate sensor
WO2000065315A1 (en) Thermal flow sensor, method and apparatus for identifying fluid, flow sensor, and method and apparatus for flow measurement
EP2924405B1 (en) Intake air temperature sensor and flow measurement device
JP2000503407A (en) Differential scanning calorimeter
JPH1151797A (en) Apparatus and method for measurement of heat-loss pressure
JP2021124415A (en) Temperature sensor module
US6813570B2 (en) Optimized convection based mass airflow sensor circuit
Leclercq et al. Apparatus for simultaneous temperature and heat‐flow measurements under transient conditions
WO2003029759A1 (en) Flow rate measuring instrument
US20030041664A1 (en) Flow measuring apparatus
JP3238984B2 (en) Heat-sensitive microbridge flowmeter
JP2946400B2 (en) Heating resistor temperature control circuit
Sarma et al. Automated constant voltage anemometer for measurements with fluid temperature drifts
Pallàs-Areny et al. Optimal two-point static calibration of measurement systems with quadratic response
JPH09318412A (en) Thermal flow velocity sensor
JP3454265B2 (en) Thermal flow sensor
JP2964186B2 (en) Thermal flow meter
JP3762115B2 (en) Fusion radiation measurement system
JPH08159834A (en) Thermo-sensitive flow meter
JP5062720B2 (en) Flow detection device
JPH0829227A (en) Micro bridge type thermosensitive semiconductor flow velocity detection element and device using the same
JPH07190822A (en) Heat-sensitive flow velocity sensor
JP2000039348A (en) Flow-rate measurement method using thermal type flow- velocity sensor

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071005

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081005

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091005

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101005

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111005

Year of fee payment: 10

LAPS Cancellation because of no payment of annual fees