JP3151482B2 - Battery inspection method - Google Patents
Battery inspection methodInfo
- Publication number
- JP3151482B2 JP3151482B2 JP26129691A JP26129691A JP3151482B2 JP 3151482 B2 JP3151482 B2 JP 3151482B2 JP 26129691 A JP26129691 A JP 26129691A JP 26129691 A JP26129691 A JP 26129691A JP 3151482 B2 JP3151482 B2 JP 3151482B2
- Authority
- JP
- Japan
- Prior art keywords
- battery
- inspection
- active material
- constant voltage
- batteries
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、電池の検査方法に関
し、詳しくは正極と負極とセパレータと有機電解液とを
備えた二次電池の検査方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for testing a battery, and more particularly, to a method for testing a secondary battery including a positive electrode, a negative electrode, a separator, and an organic electrolyte.
【0002】[0002]
【従来の技術】近年、ポータブル機器が普及するにつれ
て、その電源として繰り返し使用可能な二次電池の需要
が増大している。軽量で高エネルギ−密度の非水電池に
ついても従来の一次電池だけでなく、いくつかの種類の
二次電池が使用されるようになってきている。2. Description of the Related Art In recent years, as portable devices have become widespread, the demand for secondary batteries that can be used repeatedly as power sources has been increasing. As for non-aqueous batteries of light weight and high energy density, not only conventional primary batteries but also some types of secondary batteries have been used.
【0003】これら非水二次電池には、負極活物質にア
ルカリ金属やその合金を用いたもの、あるいはアルカリ
金属イオンをドープ、脱ドープする炭素質材料などを用
いたものがあり、この中でも、例えば、特開昭62−9
0863に開示されているような負極活物質に炭素質材
料を用いた非水二次電池は充電、放電を繰り返しても負
極にアルカリ金属が析出しないことからサイクル性など
の面で優れている。[0003] These nonaqueous secondary batteries include those using an alkali metal or an alloy thereof as a negative electrode active material, and those using a carbonaceous material which is doped or dedoped with an alkali metal ion. For example, JP-A-62-9
A non-aqueous secondary battery using a carbonaceous material as a negative electrode active material as disclosed in JP 0863 is excellent in terms of cyclability and the like since an alkali metal is not deposited on the negative electrode even after repeated charging and discharging.
【0004】また高エネルギー化の要求から、正極活物
質についても、例えば、特開昭62−90863に開示
されているような高起電力の得られるAxMyNzO2
(Aはアルカリ金属の少なくとも1種を表し、Mは遷移
金属の少なくとも1種を表し、NはAl、In、Snの
群から選ばれた少なくとも1種を評し、x,y,zは各
々0.05≦x≦1.10,0.85≦y≦1.00,
0≦z≦0.10の数である)で表されるもの等が用い
られるようになってきている。[0004] Further, due to the demand for higher energy, a positive electrode active material, for example, AxMyNzO 2 which can obtain a high electromotive force as disclosed in JP-A-62-90863 is also used.
(A represents at least one kind of alkali metal, M represents at least one kind of transition metal, N describes at least one kind selected from the group of Al, In and Sn, and x, y and z are each 0.05 ≦ x ≦ 1.10, 0.85 ≦ y ≦ 1.00,
0 ≦ z ≦ 0.10), and the like.
【0005】従来、これらの二次電池を検査する方法と
しては一定電流で一定時間充電する定電流充電を行い、
続いて一定電流で一定電圧まで放電して個々の電池の放
電容量を測定するという方法が採られている。この場合
電池1個に対して電源及び容量検査用放電機が必要とな
るが、ニッケルカドミウム二次電池の検査などでは大き
な電流で充電、放電させることにより検査時間の短縮を
行い、高価な検査機を効率よく使用して検査のコストの
低減に努めてきた。Conventionally, as a method of inspecting these secondary batteries, a constant current charge of charging at a constant current for a fixed time is performed.
Subsequently, a method is employed in which the battery is discharged at a constant current to a constant voltage and the discharge capacity of each battery is measured. In this case, a power supply and a discharge machine for capacity inspection are required for one battery, but in the inspection of nickel cadmium secondary batteries, etc., the inspection time is shortened by charging and discharging with a large current, and an expensive inspection machine is used. Has been used to reduce the cost of inspection.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、例えば
負極活物質に炭素質材料を用いた非水二次電池を充電す
る場合、アルカリ金属を析出させずに炭素質材料に十分
にアルカリ金属イオンをドープするには充電時に一定電
圧に保持する定電圧充電が必要である。また高起電力の
得られる正極活物質を使用した二次電池では、電解液の
分解などを防ぐためにも、一定電圧以上の充電は好まし
くないため、定められた電圧範囲で大きな容量を取り出
すために定電圧充電が必要となる。However, for example, when charging a non-aqueous secondary battery using a carbonaceous material as the negative electrode active material, the carbonaceous material is sufficiently doped with alkali metal ions without depositing the alkali metal. To do this, constant-voltage charging is required to maintain a constant voltage during charging. In addition, in a secondary battery using a positive electrode active material with high electromotive force, charging over a certain voltage is not preferable in order to prevent decomposition of an electrolytic solution. Constant voltage charging is required.
【0007】一方、非水二次電池の場合は、充電量に対
する放電量の比がほぼ100%であるため、個々の電池
を直列に組み合わせて使用する場合、容量の異なる電池
を組み合わせると、容量の小さな電池が過充電されて性
能が劣化して好ましくない。このため、正確に個々の電
池の容量を調べる必要があるが、非水電池は使用される
電解液自体の導電性が比較的低いために大きな電流を取
り出すことが難しく、容量の検査は個々に小さな電流で
行う必要がある。ところが容量を検査する放電機は、電
池の電圧を個々に測定しながら一定の電圧で個々の電池
の放電を終了する機能が必要なために大変高価である。
このため定電圧充電を必要とする非水二次電池を検査す
る場合は、従来の二次電池の検査のように、充電、放電
を電池1個に対して一台の検査機で行うと、電池1個当
りの検査機占有時間が長くなり、効率的でないうえに検
査のコストも高くなるという問題点があった。On the other hand, in the case of non-aqueous secondary batteries, the ratio of the amount of discharge to the amount of charge is almost 100%. Battery is overcharged and the performance deteriorates, which is not preferable. For this reason, it is necessary to accurately check the capacity of each individual battery.However, it is difficult to extract a large current from a non-aqueous battery because the conductivity of the electrolytic solution itself is relatively low, and the capacity test must be performed individually. It needs to be performed with a small current. However, the discharge machine for inspecting the capacity is very expensive because it requires a function of terminating the discharge of each battery at a constant voltage while individually measuring the voltage of the battery.
For this reason, when testing a non-aqueous secondary battery that requires constant voltage charging, as in the conventional secondary battery test, charging and discharging are performed for one battery with one testing machine. There has been a problem that the occupation time of the inspection machine per battery becomes longer, the efficiency of the inspection becomes higher and the cost of the inspection becomes higher.
【0008】本発明はかかる従来の問題に着目し、非水
二次電池の検査に際して、検査機を効率的に使用するこ
とにより、検査のコストを低減する検査法を提供するこ
とを目的とする。An object of the present invention is to provide an inspection method that reduces the cost of inspection by efficiently using an inspection machine when inspecting a non-aqueous secondary battery, focusing on the conventional problem. .
【0009】[0009]
【課題を解決するための手段】かかる目的を達成するた
めに、本発明は、正極と負極とセパレータと有機電解液
とを備えた二次電池の検査方法において、少なくとも2
つ以上の電池を、並列に接続後一定電圧に保持して充電
し、次に直列に接続後一定電流で一定時間放電した後、
個々の電池毎に一定電流で一定電圧まで放電することを
特徴とする電池の検査方法である。According to the present invention, there is provided a method for inspecting a secondary battery comprising a positive electrode, a negative electrode, a separator, and an organic electrolyte.
After connecting two or more batteries in parallel and holding them at a constant voltage to charge them, then connecting them in series and discharging them at a constant current for a certain time,
A battery inspection method characterized in that each battery is discharged to a constant voltage with a constant current.
【0010】さらには、上記二次電池の正極の活物質が
AxMyNzO2(Aはアルカリ金属の少なくとも1種
を表し、Mは遷移金属の少なくとも1種を表し、NはA
l、In、Snの群から選ばれた少なくとも1種を評
し、x,y,zは各々0.05≦x≦1.10,0.8
5≦y≦1.00,0≦z≦0.10の数である)で表
されることを特徴とする電池の検査方法である。Further, the active material of the positive electrode of the secondary battery is AxMyNzO 2 (A represents at least one kind of alkali metal, M represents at least one kind of transition metal, and N represents A
At least one selected from the group consisting of l, In, and Sn was evaluated, and x, y, and z were 0.05 ≦ x ≦ 1.10, 0.8, respectively.
5 ≦ y ≦ 1.00, 0 ≦ z ≦ 0.10).
【0011】本発明によれば、少なくとも2つ以上の電
池を、並列に接続後一定電圧に保持して充電することに
より、充電に必要な定電圧電源装置の台数を少なくする
ことができるので、検査のコストを低減することができ
る。さらに、このようにして充電された電池を充電用電
源装置から取り外し、これらを一旦、直列に接続後、安
価な放電機とタイマーで一定電流で一定時間放電するこ
とによって、全ての電池から一定容量だけ放電させるこ
とができる。さらに続けて、従来の容量検査機で個々の
電池毎に一定電流で一定電圧まで放電する。電池個々の
容量は、直列に接続して放電した容量と個々に一定電圧
まで放電した容量との和で求められる。この検査方法を
とることにより、完全に充電された電池を1個ずつ高価
な容量検査機で一定電圧まで放電させる従来のやり方よ
りも、容量検査機に対する電池1個当りの占有時間が短
縮され、検査機を効率的に使用でき検査のコストを低減
することができる。According to the present invention, the number of constant voltage power supplies required for charging can be reduced by charging at least two or more batteries while maintaining a constant voltage after connecting them in parallel. Inspection costs can be reduced. Furthermore, the batteries charged in this manner are removed from the charging power supply device, connected once in series, and then discharged with a constant current at a constant current using an inexpensive discharger and a timer, so that all batteries have a constant capacity. Can only be discharged. Subsequently, each battery is discharged at a constant current to a constant voltage by a conventional capacity tester. The capacity of each battery is obtained by the sum of the capacity discharged in series connection and the capacity discharged individually to a constant voltage. By taking this test method, the occupation time per battery for the capacity tester is reduced as compared to the conventional method of discharging a fully charged battery to a constant voltage one by one using an expensive capacity tester, Inspection machines can be used efficiently, and inspection costs can be reduced.
【0012】本発明の検査法で検査を行う非水二次電池
の正極活物質としてはMoS2 、TiS2 、V2 O5 、
MnO2 などの遷移金属カルコゲン化合物、ポリアニリ
ン、ポリアセチレンなどの導電性高分子、AxMyNz
O2 (Aはアルカリ金属の少なくとも1種を表し、Mは
遷移金属の少なくとも1種を表し、NはAl、In、S
nの群から選ばれた少なくとも1種を評し、x,y,z
は各々0.05≦x≦1.10,0.85≦y≦1.0
0,0≦z≦0.10の数である)で表される化合物と
してLiCoO2 、LiNiO2 、LiMnO2 、Li
x Ni(1-x) CoO2 などがあるが、特にAxMyNz
O2 (Aはアルカリ金属の少なくとも1種を表し、Mは
遷移金属の少なくとも1種を表し、NはAl、In、S
nの群から選ばれた少なくとも1種を評し、x,y,z
は各々0.05≦x≦1.10,0.85≦y≦1.0
0,0≦z≦0.10の数である)で表される化合物を
正極活物質に用いた非水二次電池は高い起電力を有する
ため、その検査には本発明が有効である。As the positive electrode active material of the non-aqueous secondary battery to be inspected by the inspection method of the present invention, MoS 2 , TiS 2 , V 2 O 5 ,
Transition metal chalcogen compounds such as MnO 2 , conductive polymers such as polyaniline and polyacetylene, AxMyNz
O 2 (A represents at least one kind of alkali metal, M represents at least one kind of transition metal, and N represents Al, In, S
n, at least one selected from the group consisting of x, y, z
Are 0.05 ≦ x ≦ 1.10 and 0.85 ≦ y ≦ 1.0, respectively.
LiCoO 2 , LiNiO 2 , LiMnO 2 , Li
x Ni (1-x) CoO 2 etc., but especially AxMyNz
O 2 (A represents at least one kind of alkali metal, M represents at least one kind of transition metal, and N represents Al, In, S
n, at least one selected from the group consisting of x, y, z
Are 0.05 ≦ x ≦ 1.10 and 0.85 ≦ y ≦ 1.0, respectively.
Since the nonaqueous secondary battery using the compound represented by the formula (0, 0 ≦ z ≦ 0.10) as a positive electrode active material has a high electromotive force, the present invention is effective for the inspection.
【0013】本発明の検査法で検査を行う非水二次電池
の負極活物質としてはリチウム等の軽金属またはその合
金、ポリアセチレンなどの導電性高分子、LiWO2 等
の層間化合物、炭素質材料などがあるが、特に炭素質材
料を負極活物質に用いた非水二次電池はアルカリ金属を
析出させずに炭素質材料に十分にアルカリ金属イオンを
ドープさせるためにも、その検査には本発明が有効であ
る。The negative electrode active material of the non-aqueous secondary battery to be inspected by the inspection method of the present invention includes light metals such as lithium or alloys thereof, conductive polymers such as polyacetylene, interlayer compounds such as LiWO 2 , carbonaceous materials and the like. In particular, non-aqueous secondary batteries using a carbonaceous material as the negative electrode active material do not have to deposit alkali metal and dope the carbonaceous material sufficiently with alkali metal ions. Is valid.
【0014】[0014]
【実施例】以下に、本発明の実施例を具体的に説明する
が、本発明は以下の実施例に限定されるものではない。The present invention will now be described in more detail with reference to Examples, but it should be understood that the present invention is by no means restricted to such specific Examples.
【0015】[0015]
【実施例1】正極として、活物質LiCoO2 に対し
て、5%の炭素系導電助剤を加えてなるコンパウンドに
ポリビニリデンフルオライドの5%DMF溶液を同量加
えて懸濁液とし、これをアルミニウム箔に300g/m
2 で均一に添着したもの、また、負極には、活物質とし
て平均粒径10μmの炭素質材料にポリビニリデンフル
オライドの5%DMF溶液を同量加えて懸濁液とし、こ
れを銅箔に150g/m2 で均一に添着したものをそれ
ぞれ使用して40×300mm電極を作成し、これらに
LiClO4 0.6mol/lのプロピレンカーボネイ
ト溶液を含浸して直径16.5mm高さ50mmの電池
缶に密閉した。EXAMPLE 1 As a positive electrode, a 5% solution of polyvinylidene fluoride in DMF was added to a compound obtained by adding 5% of a carbon-based conductive additive to the active material LiCoO 2 to form a suspension. 300g / m on aluminum foil
In the negative electrode, the same amount of a 5% DMF solution of polyvinylidene fluoride was added to a carbonaceous material having an average particle diameter of 10 μm as an active material to form a suspension. A 40 × 300 mm electrode was prepared by using each of the electrodes uniformly attached at 150 g / m 2 , and these were impregnated with a propylene carbonate solution of 0.6 mol / l LiClO 4 and a battery can having a diameter of 16.5 mm and a height of 50 mm. And sealed.
【0016】この電池を100本並列に接続し、最大8
V、20Aの能力の定電流定電圧電源を用いて4.20
Vまで定電圧充電した。完全に充電した電池を20本直
列に接続し、最大110V、100Wの能力の電子負荷
抵抗器で、0.6A定電流で60分間放電した。定電流
放電を終えた電池を容量検査機にセットして0.3A定
電流で2.7Vまで放電して個々の電池の残りの容量を
検査した。このとき16時間で電流100本を処理する
のに必要な最小の検査機の台数を表1に示す。[0016] 100 batteries are connected in parallel, and a maximum of 8
4.20 V using a constant current and constant voltage power supply with a capacity of 20 A
The battery was charged to a constant voltage up to V. Twenty fully charged batteries were connected in series and discharged at a constant current of 0.6 A for 60 minutes using an electronic load resistor having a maximum capacity of 110 V and 100 W. The battery after the constant current discharge was set in a capacity tester and discharged to 2.7 V at a constant current of 0.3 A, and the remaining capacity of each battery was tested. Table 1 shows the minimum number of inspection machines required to process 100 currents in 16 hours.
【0017】[0017]
【比較例1】実施例1の電池を、定電圧充電可能な容量
検査機に1本ずつ接続し、4.20Vまで定電圧充電
し、0.3A定電流で2.7Vまで放電を行って個々の
容量を検査した。このとき16時間で電池100本を処
理するのに必要な最少の検査機の台数を表1に示す。Comparative Example 1 The batteries of Example 1 were connected one by one to a capacity tester capable of constant voltage charging, charged at a constant voltage to 4.20 V, and discharged to 2.7 V at a constant current of 0.3 A. Individual volumes were examined. Table 1 shows the minimum number of inspection machines required to process 100 batteries in 16 hours.
【0018】[0018]
【比較例2】実施例1の電池を100本並列に接続し、
最大8V20Aの能力の定電流定電圧電源を用いて4.
20Vまで定電圧充電した後、容量検査機にセットして
0.3A定電流で2.7Vまで放電を行って個々の容量
を検査した。このとき16時間で電池100本を処理す
るのに必要な最少の検査機の台数を表1に示す。Comparative Example 2 100 batteries of Example 1 were connected in parallel,
3. Using a constant current and constant voltage power supply with a maximum capacity of 8V20A.
After charging to a constant voltage of 20 V, the battery was set in a capacity tester and discharged to 2.7 V at a constant current of 0.3 A to check the individual capacities. Table 1 shows the minimum number of inspection machines required to process 100 batteries in 16 hours.
【0019】この表1から明らかなように、比較例1お
よび2の検査方法では検査に要する検査機の数が多く、
特に高価な容量検査機の数が多いのに対し、本発明の実
施例1の検査方法は検査に要する検査機の数を少なくで
き、検査のコストを低減できる。As apparent from Table 1, the inspection methods of Comparative Examples 1 and 2 require a large number of inspection machines for inspection.
In particular, while the number of expensive capacity inspection machines is large, the inspection method according to the first embodiment of the present invention can reduce the number of inspection machines required for inspection and reduce the cost of inspection.
【0020】[0020]
【表1】 [Table 1]
【0021】[0021]
【発明の効果】本発明の検査方法により、非水二次電池
の検査に際して、高価な検査機の使用台数を低減でき、
検査のコストを低減することができる。According to the inspection method of the present invention, the number of expensive inspection machines used can be reduced when inspecting non-aqueous secondary batteries.
Inspection costs can be reduced.
Claims (3)
を備えた二次電池の検査方法において、 少なくとも2つ以上の電池を、並列に接続後一定電圧に
保持して充電し、次に直列に接続後一定電流で一定時間
放電した後、個々の電池毎に一定電流で一定電圧まで放
電することを特徴とする電池の検査方法。1. A method for testing a secondary battery comprising a positive electrode, a negative electrode, a separator, and an organic electrolyte, wherein at least two or more batteries are connected in parallel, charged at a constant voltage, and then connected in series. And discharging the battery to a constant voltage at a constant current for each battery after discharging for a fixed time at a constant current after connection.
料であることを特徴とする電池の検査方法。2. A battery inspection method according to claim 1, wherein the negative electrode active material is a carbonaceous material.
NzO2 (Aはアルカリ金属の少なくとも1種を表し、
Mは遷移金属の少なくとも1種を表し、NはAl、I
n、Snの群から選ばれた少なくとも1種を評し、x,
y,zは各々0.05≦x≦1.10,0.85≦y≦
1.00,0≦z≦0.10の数である)で表されるこ
とを特徴とする電池の検査方法。3. The active material for a positive electrode according to claim 1, wherein the active material is AxMy.
NzO 2 (A represents at least one kind of alkali metal,
M represents at least one transition metal, N represents Al, I
n, at least one selected from the group consisting of Sn, x,
y and z are 0.05 ≦ x ≦ 1.10 and 0.85 ≦ y ≦
1.00, 0 ≦ z ≦ 0.10).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26129691A JP3151482B2 (en) | 1991-09-13 | 1991-09-13 | Battery inspection method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26129691A JP3151482B2 (en) | 1991-09-13 | 1991-09-13 | Battery inspection method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0574492A JPH0574492A (en) | 1993-03-26 |
JP3151482B2 true JP3151482B2 (en) | 2001-04-03 |
Family
ID=17359829
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26129691A Expired - Lifetime JP3151482B2 (en) | 1991-09-13 | 1991-09-13 | Battery inspection method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3151482B2 (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3684150B2 (en) | 1999-12-27 | 2005-08-17 | キヤノン株式会社 | Polyhydroxyalkanoate |
JP3748537B2 (en) | 2001-03-01 | 2006-02-22 | キヤノン株式会社 | POLYHYDROXYALKANOATE AND PROCESS FOR PRODUCING THE SAME, AND ω- (2-THIENYLSULFANYL) ALKANOIC ACID AND PROCESS FOR PRODUCING THE SAME |
US6808907B2 (en) | 2001-03-27 | 2004-10-26 | Canon Kabushiki Kaisha | Method and apparatus for producing polyhydroxyalkanoate |
US7153622B2 (en) | 2001-04-27 | 2006-12-26 | Canon Kabushiki Kaisha | Electrostatic charge image developing toner, producing method therefor, image forming method and image forming apparatus utilizing the toner, construct and method for making the construct |
KR100528749B1 (en) | 2001-04-27 | 2005-11-15 | 캐논 가부시끼가이샤 | Novel polyhydroxyalkanoates having in its side chain phenylsulfinyl structure and/or phenyl sulfonyl structure and production process therefor, charge control agent, toner binder and toner containing same, and image forming method and image forming apparatus using the toner |
US8137884B2 (en) | 2007-12-14 | 2012-03-20 | Xerox Corporation | Toner compositions and processes |
EP2284261B1 (en) | 2008-04-23 | 2017-03-29 | Toyota Jidosha Kabushiki Kaisha | Method for production of polyester copolymer using genetically modified microorganism |
EP2377945B1 (en) | 2008-10-27 | 2015-09-02 | Toyota Jidosha Kabushiki Kaisha | Method for production of polylactate using recombinant microorganism |
US8603720B2 (en) | 2010-02-24 | 2013-12-10 | Xerox Corporation | Toner compositions and processes |
JP6883396B2 (en) * | 2016-08-25 | 2021-06-09 | 矢崎総業株式会社 | Quick charging device |
-
1991
- 1991-09-13 JP JP26129691A patent/JP3151482B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0574492A (en) | 1993-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108427077A (en) | A kind of experimental method for analysing lithium using reference electrode monitoring cathode | |
US9455480B2 (en) | Assembled battery | |
JP2001516130A (en) | Electrolyte for storage battery | |
CN1977418A (en) | Method for charging a lithium-ion accumulator with a negative electrode | |
JP2009181907A (en) | Charging method and charging system for lithium-ion secondary battery | |
JP2007335360A (en) | Lithium secondary cell | |
JP3151482B2 (en) | Battery inspection method | |
JPH11204148A (en) | Discharge capacity recovery method of nonaqueous electrolyte secondary battery and circuit therefor | |
JP2009259607A (en) | Battery pack | |
KR102477915B1 (en) | Method of producing lithium-ion battery | |
JPH0422066A (en) | Nonaqueous secondary battery | |
JP2013134843A (en) | Inspection method of secondary battery | |
JPH01204361A (en) | Secondary battery | |
JP4365625B2 (en) | Electrochemical cell | |
JPH1167265A (en) | Lithium battery | |
KR102255524B1 (en) | Establishing method for charging protocol for secondary battery and battery management system for secondary battery comprising the charging protocol established by the same | |
JPH0878058A (en) | Lithium secondary battery | |
JP2004227931A (en) | Nonaqueous electrolyte rechargeable battery | |
JP4618025B2 (en) | Battery pack and charge control method thereof | |
JPH09251860A (en) | Electrolyte for lithium secondary battery and lithium secondary battery | |
Mouais et al. | A Comprehensive Review of the Li‐Ion Batteries Fast‐Charging Protocols | |
JP2000277164A (en) | Battery performance recovery method of lithium secondary battery | |
US20240347787A1 (en) | Methods and Systems for Restoring Lithium Metal Liquid-Electrolyte Electrochemical Cells | |
Grobler | Performance and applications of lithium titanite oxide cells | |
JP2012209026A (en) | Method for manufacturing battery pack |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20001128 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080126 Year of fee payment: 7 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090126 Year of fee payment: 8 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100126 Year of fee payment: 9 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110126 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 11 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120126 Year of fee payment: 11 |