JP2000277164A - Battery performance recovery method of lithium secondary battery - Google Patents

Battery performance recovery method of lithium secondary battery

Info

Publication number
JP2000277164A
JP2000277164A JP11081882A JP8188299A JP2000277164A JP 2000277164 A JP2000277164 A JP 2000277164A JP 11081882 A JP11081882 A JP 11081882A JP 8188299 A JP8188299 A JP 8188299A JP 2000277164 A JP2000277164 A JP 2000277164A
Authority
JP
Japan
Prior art keywords
battery
voltage
discharge
negative electrode
performance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11081882A
Other languages
Japanese (ja)
Inventor
Jun Sugiyama
純 杉山
Yasuhito Kondo
康仁 近藤
Tatsuo Noritake
達夫 則竹
Jiro Mizuno
二郎 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP11081882A priority Critical patent/JP2000277164A/en
Publication of JP2000277164A publication Critical patent/JP2000277164A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To effectively recover battery performance against continuous charge- discharge in a high-temperature environment, capacity degradation during storage and power degradation by keeping the battery in an overdischarge state of which overcharge voltage is in a specific range when the battery performance is degraded. SOLUTION: By bringing a battery of which battery performance is degraded into an overdischarge state, a film of a Li containing compound formed on the surface of a negative electrode is decomposed and Li in the film is dissolved in an electrolyte and returns to a positive electrode. Thereby, the positive and negative electrodes return to a state like that of a new product, so that the battery performance is recovered. The battery voltage in overdischarge is set to 1.2-2.5. When the voltage is too low, the film of the Li containing compound formed on the surface of the negative electrode is entirely decomposed, this situation is not desirable for the stabilization of charge and discharge, and metal ions are dissolved from a negative electrode collector so that the adhesion between the collector and a negative electrode material is degraded. When the voltage is too high, the recovery performance of the battery tends to be degraded as well.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電池
に関し、更に詳しくは、電池の使用により、或いは保存
中に電池性能が低下したときに、この電池性能を回復さ
せる方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a method for restoring battery performance when battery performance is reduced during use or during storage.

【0002】[0002]

【従来の技術】近年、リチウム二次電池が高電圧・高エ
ネルギー密度を有し、小型・軽量化が図れるということ
で注目されている。そして、そのリチウム二次電池の正
極材料としては、当初コバルト酸リチウム(LiCoO
)が用いられ、次いで、この材料にはコスト・資源等
の面で問題があるとして、スピネル型結晶構造を有する
リチウムマンガン複合酸化物(LiMn)系材料
が用いられるようになり、更には上記したLiCoO
と同じ結晶構造(規則配列層状岩塩型構造)のリチウム
ニッケル複合酸化物(LiNiO)系材料等の開発も
進められている。
2. Description of the Related Art In recent years, attention has been paid to the fact that lithium secondary batteries have a high voltage and a high energy density and can be reduced in size and weight. As a positive electrode material of the lithium secondary battery, lithium cobalt oxide (LiCoO
2 ) is used, and then this material is considered to be problematic in terms of cost, resources, etc., and a lithium manganese composite oxide (LiMn 2 O 4 ) -based material having a spinel type crystal structure has been used. Further, the above-mentioned LiCoO 2
Development of a lithium-nickel composite oxide (LiNiO 2 ) -based material having the same crystal structure (ordered layered rock salt type structure) as that described above is also underway.

【0003】また、負極材料には、電解液中のリチウム
イオンを吸蔵し、一旦吸蔵したリチウムを電解液中に放
出可能な材料として人造黒鉛、カーボンブラック等の炭
素材料が一般的に用いられている。
As the negative electrode material, carbon materials such as artificial graphite and carbon black are generally used as materials capable of absorbing lithium ions in an electrolytic solution and releasing the lithium once absorbed into the electrolytic solution. I have.

【0004】更に、電解液としては、非水系のエチレン
カーボネート(EC)やプロピレンカーボネート(P
C)、ジエチルカーボネート(DEC)が用いられ、電
解質には6フッ化リン酸リチウム(LiPF)や4フ
ッ化ホウ酸リチウム(LiBF )等が用いられてい
る。
Further, non-aqueous ethylene is used as an electrolyte.
Carbonate (EC) and propylene carbonate (P
C) and diethyl carbonate (DEC)
Lithium hexafluorophosphate (LiPF)6) And 4
Lithium borate (LiBF 4) Etc. are used
You.

【0005】そして、このリチウム二次電池は、充電時
には正極のリチウムが電解液中に溶出し、電解液中のリ
チウムイオンが負極に吸蔵され、放電時には負極に吸蔵
されているリチウムが電解液中に放出され、電解液中の
リチウムイオンが正極に戻され、この挙動の繰り返しに
よって電池性能が発揮されるものである。その作動電圧
範囲は3〜4.2V程度で、平均放電電圧は3.7V程
度と従来の電池に比べて高いのが特徴である。
In this lithium secondary battery, lithium on the positive electrode elutes into the electrolytic solution during charging, lithium ions in the electrolytic solution are occluded by the negative electrode, and lithium occluded by the negative electrode during discharging discharges the lithium in the electrolytic solution. The lithium ions in the electrolytic solution are returned to the positive electrode, and the battery performance is exhibited by repeating this behavior. Its operating voltage range is about 3 to 4.2 V, and the average discharge voltage is about 3.7 V, which is higher than that of a conventional battery.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、この種
のリチウム二次電池は、充放電の繰り返し使用により電
池容量やパワーが低下する。この主な原因は、充放電繰
り返しによって負極表面にLi含有化合物が徐々に堆積
し、このため可動のLiイオン量が減少することにあ
る。そして、これにより電池容量の低下を引き起こし、
更に負極表面に不動態被膜が形成されることにより電池
の直流抵抗が増加し、電池パワーも大幅に低下してしま
うのである。そして、特にニッケル水素蓄電池に比べ
て、高温使用環境下(例えば60℃)における繰り返し
充放電や高温保存での容量低下やパワー低下が大きいと
いう問題がある。
However, in this type of lithium secondary battery, battery capacity and power are reduced by repeated use of charge and discharge. The main reason is that the Li-containing compound is gradually deposited on the surface of the negative electrode due to repeated charge and discharge, and the amount of movable Li ions is reduced. And this causes a decrease in battery capacity,
In addition, the formation of a passivation film on the negative electrode surface increases the DC resistance of the battery and significantly reduces the battery power. In addition, there is a problem that the capacity and power decrease during repeated charge / discharge and high-temperature storage under a high-temperature use environment (for example, 60 ° C.) are greater than those of a nickel-metal hydride storage battery.

【0007】これに対して、従来は、電解液への添加物
の配合や負極の表面処理により、容量低下を抑制しよう
としてきた。しかし、抜本的解決には至らず、高温度
(60℃)での繰り返し充放電で初期容量の80%を維
持できるのは、せいぜい数100サイクル程度だった。
そして、使用環境が穏やかな携帯用電子機器への応用で
は、この程度で十分であるが、今後の電気自動車用のエ
ネルギー源への応用を考えると、高温環境での連続走行
や長期間駐車の後に最悪の場合動けなくなるという重大
な問題がある。
[0007] On the other hand, conventionally, it has been attempted to suppress a decrease in capacity by adding an additive to an electrolytic solution or surface treatment of a negative electrode. However, no drastic solution was achieved, and at most about several hundred cycles, 80% of the initial capacity could be maintained by repeated charging and discharging at a high temperature (60 ° C.).
This level is sufficient for applications in portable electronic devices that have a mild use environment.However, considering future applications to energy sources for electric vehicles, continuous driving in high-temperature environments and long-term parking There is a serious problem later that in the worst case, you get stuck.

【0008】本発明の解決しようとする課題は、リチウ
ム二次電池の使用に際して、高温環境(例えば60℃)
における連続充放電や貯蔵中に電池の容量の低下やパワ
ー低下が生じたときに、この電池性能を回復する方法を
提供しようとするものである。
The problem to be solved by the present invention is that when using a lithium secondary battery, a high temperature environment (for example, 60 ° C.)
It is an object of the present invention to provide a method of restoring the battery performance when the capacity or power of the battery decreases during continuous charge / discharge or storage in the above.

【0009】[0009]

【課題を解決するための手段】この課題を解決するため
に本発明に係るリチウム二次電池の性能回復法は、Li
を含有する遷移金属酸化物を正極に用いるリチウム二次
電池において、電池性能が低下したときに、該電池を過
放電電圧1.2V〜2.5Vの範囲の過放電状態に保持
するようにしたことを要旨とするものである。
In order to solve this problem, a method for restoring the performance of a lithium secondary battery according to the present invention is described by using Li
In a lithium secondary battery using a transition metal oxide containing as a positive electrode, when battery performance is reduced, the battery is maintained in an overdischarge state in an overdischarge voltage range of 1.2 V to 2.5 V. The gist is that.

【0010】この場合、正極に用いられる「Liを含有
する複合酸化物」としては、LiCoO、LiNiO
、LiMn等のリチウムと遷移金属との複合酸
化物が好適なものとして挙げられる。
In this case, the “composite oxide containing Li” used for the positive electrode includes LiCoO 2 , LiNiO
2 , a composite oxide of lithium and a transition metal such as LiMn 2 O 4 is preferred.

【0011】また、負極としては、充・放電時に電解液
中のリチウムイオンを吸蔵・放出する炭素材料であれば
限定はなく、人造黒鉛やカーボンブラック等が好適なも
のとして用いられる。
The negative electrode is not limited as long as it is a carbon material capable of occluding and releasing lithium ions in the electrolyte during charge and discharge, and artificial graphite and carbon black are preferably used.

【0012】そして、電池性能が低下したときに、これ
を回復するため過放電状態とすることにより、負極表面
に形成されたLi含有化合物の被膜が分解され、被膜中
のLiが電解液中に溶けて正極に戻ることとなる。この
ため正極と負極は、あたかも新品の状態に戻ったように
なり、電池性能が回復する。
When the battery performance is reduced, the over-discharge state is set to recover the battery performance, whereby the film of the Li-containing compound formed on the surface of the negative electrode is decomposed, and the Li in the film is dissolved in the electrolyte. It will melt and return to the positive electrode. Therefore, the positive electrode and the negative electrode are as if they were new, and the battery performance is restored.

【0013】この場合に、過放電状態での印加電圧(過
放電電圧)が低すぎると、負極表面に形成されていたL
i含有化合物の被膜が全て分解してしまう。この負極表
面のLi含有化合物の被膜は、充放電の安定化のために
若干形成されているのが望ましい。特に、初回の充電で
負極表面にLi含有化合物の被膜が形成されることによ
り、その後の安定な充放電が可能となるもので、このL
i含有化合物の被膜が全て分解してしまうことは避ける
必要がある。
In this case, if the applied voltage (overdischarge voltage) in the overdischarged state is too low, the L
The coating of the i-containing compound is completely decomposed. It is desirable that the film of the Li-containing compound on the surface of the negative electrode is slightly formed to stabilize charge and discharge. In particular, since a film of the Li-containing compound is formed on the surface of the negative electrode during the first charge, stable charge and discharge can be performed thereafter.
It is necessary to avoid that the coating of the i-containing compound is completely decomposed.

【0014】また、過放電時の電池電圧が低いと、負極
集電体(通常は銅箔が用いられている。)から金属イオ
ン(銅イオン)が溶出し、このため集電体と負極材料と
の密着性が極端に低下する。そして、結果として電極抵
抗が増大し、電池容量やパワーの低下を引き起こすこと
になる。そのため過放電電圧の範囲は、「1.2V以
上」とすることが必要であり、これにより電池の使用或
いは保存中に低下した電池性能を回復できることにな
る。
If the battery voltage at the time of overdischarge is low, metal ions (copper ions) elute from the negative electrode current collector (usually a copper foil is used). Adhesion with the film extremely decreases. As a result, the electrode resistance increases, causing a reduction in battery capacity and power. For this reason, the range of the overdischarge voltage needs to be "1.2 V or more", so that the battery performance reduced during use or storage of the battery can be recovered.

【0015】尚、過放電時の電池電圧が高すぎても電池
の回復性能が低下する傾向があり、過放電電圧は「2.
5V以下」(2.5Vを越えない)とすることが望まし
い。
Incidentally, even if the battery voltage at the time of overdischarge is too high, the recovery performance of the battery tends to decrease.
5 V or less "(not exceeding 2.5 V).

【0016】[0016]

【発明の実施の形態】以下に、本発明の好適な一実施の
形態を図面を参照して詳細に説明する。図1に円筒形リ
チウム二次電池の概略構成を示す。このリチウム二次電
池10は、電池缶12内に正極シートを負極シートとを
セパレータを介して渦巻状に巻回して構成される電極集
合体14を装着したものである。そして、正極シートか
ら引き出された正極集電リード16は、電池缶12に被
着されるキャップ17に接続され、また負極シートから
引き出された負極集電リード18は、電池缶12に接続
されている。尚、電池缶12の内底面及び電極集合体1
4の上部には夫々インシュレータ(絶縁板20)が装着
される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows a schematic configuration of a cylindrical lithium secondary battery. The lithium secondary battery 10 has a battery can 12 having an electrode assembly 14 formed by spirally winding a positive electrode sheet and a negative electrode sheet via a separator. The positive current collecting lead 16 drawn from the positive electrode sheet is connected to a cap 17 attached to the battery can 12, and the negative current collecting lead 18 drawn from the negative sheet is connected to the battery can 12. I have. The inner bottom surface of the battery can 12 and the electrode assembly 1
An insulator (insulating plate 20) is mounted on the upper part of each of the four.

【0017】次に、この電池の作製方法について説明す
る。正極活物質には、スピネル型結晶構造のリチウムマ
ンガン複合酸化物を用いた。そして、正極の作製には、
炭酸リチウム(LiCO)と二酸化マンガン(Mn
)をモル比でLi:Mn=1.1:1.9の割合に
なるようにエタノールを溶媒としてよく混合した。混合
はボールミルにより行い、この混合粒子を乾燥後、85
0℃×8時間、空気気流中で保持し、その後室温まで1
℃/分で炉冷して、マンガン酸リチウム(Li 1.1
1.9)粉末を得た。これを活物質とし、導電材
としてグラファイト5重量%、結着材としてポリフッ化
ビニリデン5重量%を混合した後、n−メチルピロリド
ンを溶媒として加えて正極合材ペーストを作製した。こ
のペーストをアルミニウム箔からなる集電体の両面に塗
布し、乾燥・圧延して正極シートとした。
Next, a method of manufacturing this battery will be described.
You. The positive electrode active material includes a lithium matrix having a spinel crystal structure.
A gangue composite oxide was used. And for the production of the positive electrode,
Lithium carbonate (Li2CO3) And manganese dioxide (Mn)
O2) In a molar ratio of Li: Mn = 1.1: 1.9.
Mix well using ethanol as solvent. mixture
Is performed by a ball mill, and after drying the mixed particles, 85
Hold at 0 ° C. for 8 hours in an air stream, then reach room temperature for 1 hour.
The furnace was cooled at a rate of ° C / minute, and lithium manganate (Li 1.1M
n1.9O4) A powder was obtained. Using this as an active material, conductive material
5% by weight as graphite, polyfluoride as binder
After mixing 5% by weight of vinylidene, n-methylpyrrolid
Was added as a solvent to prepare a positive electrode mixture paste. This
Paste on both sides of the current collector made of aluminum foil.
The cloth was then dried and rolled to form a positive electrode sheet.

【0018】次に、負極活物質には、人造黒鉛を用い、
この人造黒鉛粉末に結着材としてポリフッ化ビニリデン
5重量%を混合した後、n−メチルピロリドンを溶媒と
して加えて負極合材ペーストを作製した。このペースト
を銅箔からなる集電体の両面に塗布し、乾燥、圧延して
負極シートとした。
Next, artificial graphite is used as the negative electrode active material.
After 5% by weight of polyvinylidene fluoride as a binder was mixed with the artificial graphite powder, n-methylpyrrolidone was added as a solvent to prepare a negative electrode mixture paste. This paste was applied to both sides of a current collector made of copper foil, dried and rolled to obtain a negative electrode sheet.

【0019】そして、上記正極シートと負極シートはと
もに、上記塗工部以外に未塗工部を設け、その未塗工部
に集電リードを溶接し、これら正極シートと負極シート
を多孔性のポリプロピレンフィルムからなるセパレータ
と共に巻回し、スパイラル状の電極集合体14とした。
この電極集合体14を電池缶12内に挿入した後、この
電池缶内に非水電解液を注入するもので、電解液には、
エチレンカーボネート(EC)とジエチレンカーボネー
ト(DEC)とを3:7の体積比で混合した溶液中に1
mol/lとなるように6フッ化リン酸リチウム(Li
PF)を溶解したものを用いた。
Both the positive electrode sheet and the negative electrode sheet are provided with an uncoated portion other than the coated portion, and a current collecting lead is welded to the uncoated portion, and the positive electrode sheet and the negative electrode sheet are made porous. It was wound together with a separator made of a polypropylene film to form a spiral electrode assembly 14.
After inserting the electrode assembly 14 into the battery can 12, a non-aqueous electrolyte is injected into the battery can.
One solution is prepared by mixing ethylene carbonate (EC) and diethylene carbonate (DEC) in a volume ratio of 3: 7.
mol / l lithium hexafluorophosphate (Li
It was prepared by dissolving the PF 6).

【0020】次に、このリチウム二次電池について充放
電試験を行ったので、これについて説明する。初めに第
1回目の初期充放電を行ったときの初回充放電条件につ
いて説明する。この第1回目の充電は、0.2mA/c
の定電流で電圧が4.2Vに到達するまで行った
(今後、これを「充電終止電圧」が4.2Vと表現す
る)。そして、この4.2Vの定電圧での充電を継続
し、合計の充電時間は6時間だった。次いで、この充電
終了後に放電を開始した。この第1回目の放電は、放電
電流密度0.2mA/cmの定電流で3Vに到達する
まで行った(今後、これを「放電終止電圧」が3Vと表
現する)。このような充電方式を「定電流定電圧充電−
定電流放電」と称する。尚、雰囲気温度は20℃だっ
た。
Next, a charge / discharge test was performed on this lithium secondary battery, which will be described. First, initial charge / discharge conditions when the first initial charge / discharge is performed will be described. This first charge is 0.2 mA / c
The measurement was performed at a constant current of m 2 until the voltage reached 4.2 V (hereinafter, this is referred to as “charging end voltage” as 4.2 V). Then, the charging at the constant voltage of 4.2 V was continued, and the total charging time was 6 hours. Next, after the completion of the charging, the discharging was started. This first discharge was performed at a constant current of a discharge current density of 0.2 mA / cm 2 until the voltage reached 3 V (hereinafter, this is referred to as “discharge end voltage” is 3 V). Such a charging method is referred to as “constant current / constant voltage charging−
This is referred to as “constant current discharge”. The ambient temperature was 20 ° C.

【0021】そして、この第1回目の充放電を行った
後、更に充電終止電圧4.2V、放電終止電圧3Vで、
定電流定電圧充電−定電流放電を行った。電流密度は充
放電ともに1mA/cm、充電時間の合計は2時間
で、雰囲気温度は20℃だった。この充放電を1サイク
ルとし、計4サイクルの充放電を実施した。その4サイ
クル目(通算5サイクル目)の放電容量を「基準容量」
とした。以上の5サイクルの充放電を以後「初期充放
電」と称する。
After the first charge / discharge, the charge end voltage is further reduced to 4.2 V and the discharge end voltage is set to 3 V.
Constant current constant voltage charge-constant current discharge was performed. The current density was 1 mA / cm 2 for both charging and discharging, the total charging time was 2 hours, and the ambient temperature was 20 ° C. This charge / discharge was defined as one cycle, and a total of four cycles of charge / discharge were performed. The discharge capacity of the fourth cycle (fifth cycle in total) is referred to as “reference capacity”.
And The above five cycles of charging and discharging are hereinafter referred to as “initial charging and discharging”.

【0022】この5サイクルの「初期充放電」を終えた
後、次にサイクル耐久性試験を行ったので、その条件に
ついて説明する。この「初期充放電」により基準容量を
測定した後、このリチウム二次電池を充電終止電圧4.
2V、放電終止電圧3Vで充放電した。この場合、充電
終止電圧に到達した後、直ちに放電状態に移っている。
このような充放電方式を「定電流充電−定電流放電」と
称する。電流密度は充放電ともに1mA/cmで、雰
囲気温度は60℃だった。この充放電を1サイクルとし
計100サイクル(通算105サイクル)の耐久試験を
実施した。この電池を「比較試料C1」とした。この1
00サイクルの充放電の繰り返しを「100サイクル耐
久試験」と称することとする。
After the five cycles of "initial charge / discharge", a cycle durability test was performed. The conditions will be described. After measuring the reference capacity by the “initial charge / discharge”, the lithium secondary battery is charged to a final charge voltage of 4.
The battery was charged and discharged at a discharge termination voltage of 3 V at 2 V. In this case, immediately after the charging end voltage is reached, the state is immediately shifted to the discharging state.
Such a charging / discharging method is referred to as “constant current charging-constant current discharging”. The current density was 1 mA / cm 2 for both charging and discharging, and the ambient temperature was 60 ° C. With this charge / discharge as one cycle, a durability test was performed for a total of 100 cycles (105 cycles in total). This battery was referred to as “Comparative Sample C1”. This one
The repetition of the charge and discharge of 00 cycles is referred to as “100 cycle durability test”.

【0023】そして、サイクル耐久試験後に、このリチ
ウム二次電池の性能回復のために、放電終止電圧1.5
V、充電終止電圧3Vで、定電流定電圧放電−定電流充
電を行った。電流密度は充放電ともに0.1mA/cm
、放電終止電圧1.5Vでの保持時間は1時間、雰囲
気温度20℃だった。この電池を「本実施例試料1」と
した。また、本実施例試料1とは別の100サイクル耐
久試験後の電池を、各々0.1mA/cmの定電流
で、放電終止電圧を各々0.5、1、2、2.5V、充
電終止電圧3Vで、定電流定電圧放電−定電流充電を行
った。放電終止電圧での保持時間は各々1時間だった。
これらの電池を各々「比較試料C2」、「比較試料C
3」、「本実施例試料2」、「本実施例試料3」とし
た。以後、この1サイクルの放充電「性能回復処理」と
称することとする。
After the cycle endurance test, in order to recover the performance of this lithium secondary battery, a discharge end voltage of 1.5
V, constant-current constant-voltage discharge-constant-current charging was performed at a charge end voltage of 3 V. The current density is 0.1 mA / cm for both charging and discharging.
2. The holding time at a discharge end voltage of 1.5 V was 1 hour, and the ambient temperature was 20 ° C. This battery was referred to as “Sample 1 of this example”. The batteries after the 100-cycle endurance test different from Sample 1 of this example were charged at a constant current of 0.1 mA / cm 2 , and the discharge end voltages were set to 0.5, 1, 2 , and 2.5 V, respectively. At a final voltage of 3 V, constant-current constant-voltage discharge-constant-current charging was performed. The retention time at the discharge termination voltage was 1 hour each.
These batteries were referred to as “Comparative Sample C2” and “Comparative Sample C”, respectively.
3 "," Example 2 ", and" Example 3 ". Hereinafter, this one-cycle discharging and charging will be referred to as “performance recovery processing”.

【0024】次に、この「性能回復処理」を行った後、
各電池を充電終止電圧4.2V、放電終止電圧3Vで、
定電流定電圧充電−定電流放電を行った。電流密度は充
放電ともに1mA/cm、充電時間の合計は2時間
で、雰囲気温度は20℃だった。この際の放電容量を
「耐久後容量」とした。以後、この1サイクルの充放電
を「容量確認」と称することとする。
Next, after performing the “performance recovery processing”,
Each battery was charged at a final charge voltage of 4.2V and a final discharge voltage of 3V.
Constant current constant voltage charge-constant current discharge was performed. The current density was 1 mA / cm 2 for both charging and discharging, the total charging time was 2 hours, and the ambient temperature was 20 ° C. The discharge capacity at this time was defined as “capacity after durability”. Hereinafter, this one-cycle charge / discharge will be referred to as “capacity check”.

【0025】このようにして各電池について、初期充放
電(1サイクル)、100サイクル耐久試験、性能回復
処理(1サイクル)、容量確認(1サイクル)を順番に
行った後、各電池の性能回復度を調べた。この性能回復
度は、100サイクル耐久性後容量と基準容量の比で判
断される。これらの結果をまとめて次の表1に示す。
尚、「比較例C1」については性能回復処理を施してい
ない。
As described above, the initial charge / discharge (1 cycle), the 100-cycle durability test, the performance recovery process (1 cycle), and the capacity check (1 cycle) are sequentially performed on each battery, and then the performance recovery of each battery is performed. I checked the degree. This degree of performance recovery is determined by the ratio of the capacity after 100 cycles durability and the reference capacity. The results are shown in Table 1 below.
Note that the performance recovery processing was not performed on “Comparative Example C1”.

【0026】[0026]

【表1】 [Table 1]

【0027】この表1のデータから明らかなように、放
電終止電圧が1Vより高い性能回復処理が施された本実
施例試料1、2、3は、性能回復処理が施されなかった
比較例C1より、サイクル耐久性後の容量の低下が大き
く抑えられていることが判る。一方、放電終止電圧が1
V以下の性能回復処理を施された比較例C2、C3の耐
久後容量は、比較例C1より低下した。これは黒鉛状負
極の表面被膜がほぼ完全に分解することと、負極芯材に
用いた銅箔が電解液に溶解して負極材料の密着性が低下
するためであった。
As is clear from the data in Table 1, Samples 1, 2, and 3 of the present invention, which had been subjected to the performance recovery processing in which the discharge end voltage was higher than 1 V, were Comparative Examples C1 to which the performance recovery processing was not performed. This indicates that the decrease in capacity after cycle durability is greatly suppressed. On the other hand, when the discharge end voltage is 1
The post-durability capacities of Comparative Examples C2 and C3 subjected to the performance recovery processing of V or less were lower than Comparative Example C1. This was because the surface coating of the graphite-like negative electrode was almost completely decomposed, and the copper foil used for the negative electrode core material was dissolved in the electrolytic solution to lower the adhesiveness of the negative electrode material.

【0028】次に、「放電終止電圧」を更に多段階に亘
って選択し、電池性能の回復傾向を試験したので、その
結果を図2に示す。この図2では、「放電終止電圧」と
「100サイクル耐久後容量/基準容量」との関係で電
池性能の回復傾向を示している。そして、この図2から
100サイクル耐久後の容量が基準容量の90%以上を
保つためには、放電終止電圧の範囲は1.2V以上、
2.5V以下であることが望ましいことが理解できる。
Next, the "discharge end voltage" was selected over more steps to test the tendency of the battery performance to recover. The results are shown in FIG. In FIG. 2, the recovery tendency of the battery performance is shown by the relationship between "discharge end voltage" and "capacity after 100 cycles durability / reference capacity". From FIG. 2, in order for the capacity after 100 cycles of durability to maintain 90% or more of the reference capacity, the range of the discharge end voltage is 1.2 V or more.
It can be understood that the voltage is desirably 2.5 V or less.

【0029】更に、各試料について60℃での100サ
イクル耐久試験、20℃での性能回復処理、60℃での
100サイクル耐久試験、20℃での性能回復処理とい
うように、60℃での100サイクル耐久試験と20℃
での性能回復処理とを繰り返して、総計で1000サイ
クルの耐久試験を行った。図3は、本実施例試料1と比
較試料C1との比較において、定電流充電−定電流放電
での放電容量と耐久サイクル数との関係を示している。
そして、この図3に示されるように、比較試料C1と比
較すると、本実施例試料1は100サイクル毎に容量が
ほぼ初期値に戻り、1000サイクル耐久後の放電容量
の低下傾向は殆ど認められないことが確認された。
Further, for each sample, a 100-cycle durability test at 60 ° C., a performance recovery process at 20 ° C., a 100-cycle durability test at 60 ° C., and a performance recovery process at 20 ° C. Cycle endurance test and 20 ℃
, And the durability test was repeated for a total of 1000 cycles. FIG. 3 shows a relationship between the discharge capacity and the number of endurance cycles in constant current charging-constant current discharging in comparison between the sample 1 of the present embodiment and the comparative sample C1.
As shown in FIG. 3, when compared with the comparative sample C1, the capacity of the sample 1 of the present embodiment returned to almost the initial value every 100 cycles, and the tendency of the discharge capacity to decrease after the endurance of 1000 cycles was almost recognized. Not confirmed.

【0030】尚、データを示さなかったが、今回の性能
回復法により電池容量のみならず、パワーも同様に回復
した。更に高温環境(およそ60℃)で保存して容量が
低下した電池に対しても、本発明の性能回復法を施すこ
とにより、基準容量の90%以上の容量が得られた。ま
た、正極活物質にLiCoOやその部分置換系、Li
NiOやその部分置換系を用いた電池でも、意図的な
過放電でほぼ同様に性能が回復し、結果として長期の高
温サイクル耐久による容量の劣化を抑えることができる
ことも確認された。
Although no data was shown, not only the battery capacity but also the power were recovered by the current performance recovery method. Furthermore, by performing the performance recovery method of the present invention, a capacity of 90% or more of the reference capacity was obtained for a battery having a reduced capacity after storage in a high-temperature environment (about 60 ° C.). In addition, LiCoO 2 or its partially substituted system, LiCoO 2
It was also confirmed that the performance of a battery using NiO 2 or a partial substitution system thereof was almost similarly restored by intentional overdischarge, and as a result, deterioration of capacity due to long-term high-temperature cycle durability could be suppressed.

【0031】本発明は、上記した実施例に何等限定され
るものではなく、本発明の趣旨を逸脱しない範囲で種々
の改変が可能である。例えば、上記実施例では、性能回
復処理における充電終止電圧3V、電流密度を0.1m
A/cm(充放電時ともに)としたが、この条件は適
宜変更することができる。上記実施例では、正極材料と
してLiMnについて説明したが、これ以外のL
iCoO、LiNiO等についても適用できること
は勿論であり、更にまた、負極材料には球状黒鉛を用い
たが、これ以外のLi吸蔵放出可能な炭素(カーボンブ
ラック等)の他、金属リチウム、リチウム化合物、リチ
ウム合金等も使用できる。
The present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the spirit of the present invention. For example, in the above embodiment, the charging end voltage is 3 V and the current density is 0.1 m in the performance recovery process.
A / cm 2 (both during charging and discharging), but this condition can be changed as appropriate. In the above embodiment, LiMn 2 O 4 was described as a positive electrode material.
Needless to say, the present invention can be applied to iCoO 2 , LiNiO 2, and the like. Further, spherical graphite was used as the negative electrode material. Compounds, lithium alloys and the like can also be used.

【0032】[0032]

【発明の効果】本発明に係るリチウムイオン二次電池の
性能回復法によれば、電池を所定の条件下で過放電状態
に保持することにより電池性能が回復されるので、電池
の寿命が伸び、その経済的効果が大きいばかりでなく、
電池容量やパワーが繰り返しの使用によっても高い状態
に維持されるものであるから、パソコンや携帯電話等の
各種の情報通信機器類等の電源電池としての利用度は益
々高まる。そして、何よりも自動車用電源等の比較的高
温度(およそ60℃)での使用環境においても、その電
池容量やパワーが維持されるものであるから、使用温度
条件の過酷な用途への適用拡大も図れるという利益も存
するものである。
According to the method for restoring the performance of a lithium ion secondary battery according to the present invention, the battery performance is restored by maintaining the battery in an overdischarged state under predetermined conditions, thereby extending the life of the battery. , Not only the economic effect is great,
Since the battery capacity and the power are maintained at a high level even by repeated use, the usage as a power supply battery for various information communication devices such as a personal computer and a mobile phone is further increased. Above all, the battery capacity and power are maintained even in a use environment at a relatively high temperature (about 60 ° C.) such as a power supply for an automobile, so that the application to severe use under the use temperature condition is expanded. There is also a benefit that can be achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明が適用される一実施形態としてのリチウ
ム二次電池の概略構成を示した図である。
FIG. 1 is a diagram showing a schematic configuration of a lithium secondary battery as one embodiment to which the present invention is applied.

【図2】電池性能回復処理における「放電終止電圧」と
「100サイクル耐久後/基準容量」との関係を示した
図である。
FIG. 2 is a diagram showing a relationship between “discharge end voltage” and “after 100 cycles of durability / reference capacity” in a battery performance recovery process.

【図3】100サイクル毎に性能回復処理を施した「本
実施例試料1」と、性能回復処理を施さなかった「比較
試料C1」との比較において、定電流充電−定電流放電
での放電容量とサイクル数との関係を示した図である。
FIG. 3 shows a comparison between “Sample 1 of the present example” subjected to the performance recovery processing every 100 cycles and “Comparative Sample C1” not subjected to the performance recovery processing. FIG. 4 is a diagram illustrating a relationship between a capacity and the number of cycles.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 則竹 達夫 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 (72)発明者 水野 二郎 愛知県愛知郡長久手町大字長湫字横道41番 地の1 株式会社豊田中央研究所内 Fターム(参考) 5H029 AJ02 AK03 AL07 AL08 AM03 AM05 AM07 BJ02 BJ14 HJ18 5H030 AA01 AA10 AS08 BB01 FF43 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tatsuo Noritake 41-Cho, Yokomichi, Nagakute-cho, Aichi-gun, Aichi Prefecture Inside Toyota Central Research Laboratory Co., Ltd. No. 41, Yokomichi, 1st place, Toyota Central Research Laboratory Co., Ltd. F term (reference) 5H029 AJ02 AK03 AL07 AL08 AM03 AM05 AM07 BJ02 BJ14 HJ18 5H030 AA01 AA10 AS08 BB01 FF43

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 Liを含有する複合酸化物を正極に用い
たリチウム二次電池において、電池の使用により、或い
は保存中に低下した電池性能を回復するため、過放電電
圧1.2V以上2.5V以下の過放電状態に電池を保持
することを特徴とするリチウム二次電池の電池性能回復
法。
1. In a lithium secondary battery using a composite oxide containing Li for a positive electrode, an overdischarge voltage of 1.2 V or more in order to recover battery performance that has deteriorated during use or during storage. A method for recovering battery performance of a lithium secondary battery, comprising maintaining the battery in an overdischarge state of 5 V or less.
JP11081882A 1999-03-25 1999-03-25 Battery performance recovery method of lithium secondary battery Pending JP2000277164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11081882A JP2000277164A (en) 1999-03-25 1999-03-25 Battery performance recovery method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11081882A JP2000277164A (en) 1999-03-25 1999-03-25 Battery performance recovery method of lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2000277164A true JP2000277164A (en) 2000-10-06

Family

ID=13758836

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11081882A Pending JP2000277164A (en) 1999-03-25 1999-03-25 Battery performance recovery method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2000277164A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159545A (en) * 2010-02-02 2011-08-18 Toyota Motor Corp Charge/discharge control device of lithium ion secondary battery
JP2012248412A (en) * 2011-05-27 2012-12-13 Toyota Motor Corp Method for manufacturing solid secondary battery
JP2013069659A (en) * 2011-09-08 2013-04-18 Toyota Motor Corp Nonaqueous electrolytic secondary battery
WO2013108396A1 (en) * 2012-01-20 2013-07-25 トヨタ自動車株式会社 Production method for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2018092748A (en) * 2016-11-30 2018-06-14 トヨタ自動車株式会社 Method and system for recovering capacity of secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159545A (en) * 2010-02-02 2011-08-18 Toyota Motor Corp Charge/discharge control device of lithium ion secondary battery
JP2012248412A (en) * 2011-05-27 2012-12-13 Toyota Motor Corp Method for manufacturing solid secondary battery
JP2013069659A (en) * 2011-09-08 2013-04-18 Toyota Motor Corp Nonaqueous electrolytic secondary battery
WO2013108396A1 (en) * 2012-01-20 2013-07-25 トヨタ自動車株式会社 Production method for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN104067435A (en) * 2012-01-20 2014-09-24 丰田自动车株式会社 Production method for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
CN104067435B (en) * 2012-01-20 2016-09-28 丰田自动车株式会社 The manufacture method of rechargeable nonaqueous electrolytic battery and rechargeable nonaqueous electrolytic battery
JP2018092748A (en) * 2016-11-30 2018-06-14 トヨタ自動車株式会社 Method and system for recovering capacity of secondary battery

Similar Documents

Publication Publication Date Title
JP5210776B2 (en) Charge / discharge control device for lithium ion secondary battery
JP2001110418A (en) Positive electrode for lithium secondary battery and the lithium secondary battery
KR101488043B1 (en) Method for activating high capacity lithium secondary battery
JPH08213053A (en) Lithium secondary battery
US20120321955A1 (en) Lithium-ion secondary battery
JP2003077458A (en) Lithium secondary battery electrode and lithium secondary battery
JPH10188953A (en) Non-aqueous electrolyte secondary battery
JP2016042461A (en) Positive electrode material, positive electrode including the same and lithium battery including the positive electrode
JP3030996B2 (en) Non-aqueous electrolyte secondary battery
JP2003308880A (en) Method of manufacturing lithium secondary battery
KR101520118B1 (en) Method for improving cycle performance of lithium secondary battery
JPH05144472A (en) Secondary battery with nonaqueous electrolyte
JP2005285545A (en) Lithium secondary battery
JPH09213305A (en) Nonaqueous electrolyte secondary cell
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2000260472A (en) Non-aqueous electrolyte secondary battery
JP2000277164A (en) Battery performance recovery method of lithium secondary battery
JP2002117832A (en) Lithium secondary battery
JP2000149996A (en) Manufacture of nonaqueous electrolyte secondary battery
JP2003100351A (en) Method of measuring self-discharge amount of lithium ion secondary cell and method of manufacturing lithium ion secondary cell
JP3292777B2 (en) Manufacturing method of lithium secondary battery
JPH06349524A (en) Secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP3030995B2 (en) Non-aqueous electrolyte secondary battery
KR20220015222A (en) Anode for lithium secondary battery and lithium secondary battery including the same