JP2003308880A - Method of manufacturing lithium secondary battery - Google Patents

Method of manufacturing lithium secondary battery

Info

Publication number
JP2003308880A
JP2003308880A JP2002113736A JP2002113736A JP2003308880A JP 2003308880 A JP2003308880 A JP 2003308880A JP 2002113736 A JP2002113736 A JP 2002113736A JP 2002113736 A JP2002113736 A JP 2002113736A JP 2003308880 A JP2003308880 A JP 2003308880A
Authority
JP
Japan
Prior art keywords
battery
active material
lithium
electrode active
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002113736A
Other languages
Japanese (ja)
Inventor
Jo Sasaki
丈 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2002113736A priority Critical patent/JP2003308880A/en
Publication of JP2003308880A publication Critical patent/JP2003308880A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery having improved reliability and a service life performance. <P>SOLUTION: A positive electrode active material layer containing as a main component a composite oxide represented by LiaNibCocMdO<SB>2</SB>, (where 0≤a≤1.1, 0.7≤b≤0.9, 0.1≤c≤0.3, 0≤d≤0.1, b+c+d=1, and M is at least one type of element selected from the group of Al, Mg, Ti, Mo, B, W, Nb) and a negative electrode active material layer capable of storing or releasing lithium ions are opposed to each other via a separator and impregnated with an organic electrolyte containing lithium ions. After a voltage of 4.0-4.3 V is applied between the positive electrode active material layer and the negative electrode active material layer at 45-60°C in such a voltage range that lithium is not deposited on a negative electrode, they are sealed into a battery case in a closed condition. <P>COPYRIGHT: (C)2004,JPO

Description

【発明の詳細な説明】 【0001】 【発明の属する技術分野】本発明はリチウム二次電池の
製造方法に関する。 【0002】 【従来の技術】例えば、正極活物質にリチウム遷移金属
複合酸化物、負極活物質に炭素質材料、電解質にリチウ
ム塩を支持塩とする有機電解液が用いられているリチウ
ム二次電池は、従来の電池と比較して高エネルギー密
度、長寿命であり、例えば、携帯電話、ノート型パソコ
ンなどの電源として用いられている。このようなリチウ
ム二次電池では、特に正極活物質が放電容量、放電電
圧、サイクル寿命特性、安全性などの性能を決定する重
要な構成要素である。 【0003】リチウム二次電池の正極活物質としては、
原材料として埋蔵量が多く安価なマンガンを使用したリ
チウムマンガン複合化合物について盛んに研究が行われ
ている。しかし、リチウムマンガン複合化合物はスピネ
ル構造の活物質であるためリチウムの拡散係数が低く、
重負荷特性、及び低温特性が必ずしも十分とは言えな
い。また、エネルギー密度も低いという問題がある。 【0004】一方、現在市販されている小型リチウム二
次電池は、正極活物質として層状構造を有するコバルト
酸リチウムが用いられることが多い。コバルト酸リチウ
ムは、リチウムイオンの拡散係数がスピネル構造の活物
質の10〜100倍程度と著しく大きく、エネルギー密
度が高いが、原材料となるコバルトが希少金属で価格が
不安定であるという問題がある。 【0005】そこで、正極活物質として、従来のコバル
トと比較して安価であり、かつコバルトと同様の層状化
合物を形成可能なニッケルをコバルトと併用するリチウ
ムニッケルコバルト複合酸化物を用いることが考えられ
ている。 【0006】しかしながら、リチウムニッケルコバルト
複合酸化物では、初期充電時や高温放置時に、従来のも
のと比較して大量のガスが発生するため、電池の膨れと
内部抵抗の上昇をもたらし、その結果電池寿命等の電池
性能が低下するという問題がある。 【0007】 【発明が解決しようとする課題】本発明は上記のような
事情に基づいて完成されたものであって、電池製造後の
使用時における電池の膨れを抑制し、電池の信頼性と寿
命性能に優れるリチウム二次電池を提供することを目的
とするものである。 【0008】 【課題を解決するための手段】上記課題を解決するため
の請求項1のリチウム二次電池の製造方法は、LiaN
ibCocMdO(ただし、0≦a≦1.1、0.7
≦b≦0.9、0.1≦c≦0.3、0≦d≦0.1、
b+c+d=1、M=Al、Mg、Ti、Mo、B、
W、Nbからなる群から選択される少なくとも1種の元
素)で表される複合酸化物を主成分とする正極活物質層
と、リチウムイオンを吸蔵・脱離可能な負極活物質層と
を、セパレータを介して対向させ、リチウムイオンを含
有する有機電解液に含浸させた後、正極活物質層と負極
活物質層の間に45〜60℃にて4.0〜4.3Vであ
り、かつ負極上にリチウムが析出しない電圧範囲で充電
し、その後電池容器内に密閉状態に封口するところに特
徴を有する。 【0009】本発明においてLiaNibCocMdO
で表される複合酸化物のa値は、原料中にリチウムが
過剰に含まれる場合に、1以上となる。また、製造後に
はリチウムの吸蔵放出がおきるため、a値は結局0〜
1.1の範囲で変動する。 【0010】また、bの値は0.7〜0.9であること
が好ましい。0.7以上であると、従来から正極活物質
として使用されているLiCoOよりも高容量とす
ることができ、0.9以下とすることで寿命性能が向上
するからである。 【0011】CoはNi系活物質の構造安定性に効果的
であり、かつ放電容量の減少も他の置換元素と比較して
少ない。高い構造安定性を維持し、かつコストを抑える
ためには、c値は0.1〜0.3の割合で混合すること
が好ましい。 【0012】さらに、LiaNibCocMdO中の
Mで表される置換元素M(Al、Mg、Ti、Mo、
B、W、Nbからなる群から選択される少なくとも1種
の元素)は、主に構造安定性にCo以上の効果がある
が、放電容量の減少をもたらすため、d値は0〜0.1
とすることが好ましい。 【0013】本発明においては、まず、上記LiaNi
bCocMdOで表される複合酸化物を主成分とする
正極活物質層と負極活物質層とをセパレータを介して対
向させ、有機電解液に含浸させた後、両極活物質層間
に、45〜60℃にて4.0〜4.3Vであり、かつ負
極上にリチウムが析出しない電圧範囲で充電する。この
ようにすることで、製造途中の段階で、製造後の電池の
使用時に発電要素から発生する可能性のあるガスを予め
大方除去することができる。 【0014】なお、電池温度を60℃以上、電池電圧を
4.3V以上にすると、電池性能が著しく劣化する。ま
た、電池温度が45℃未満、電圧が4.0V未満で充電
すると、ガスの発生速度が遅くなり、充分にガスが放出
されない恐れがある。 【0015】このような作業を電池容器外あるいは電池
容器内で行った後、電池容器内に収容された発電要素を
密閉状態に封口することにより、電池が製造される。こ
のような電池では、上述したように発電要素からのガス
の発生が大幅に抑制されるため、電池の膨れが極めて起
こり難くなり、電池の寿命性能が向上する。 【0016】本発明の正極活物質であるリチウムニッケ
ルコバルト複合酸化物は、公知の方法、例えば、リチウ
ムの炭酸塩、リチウムの硝酸塩、リチウムの酸化物、リ
チウムの水酸化物と、ニッケルの炭酸塩、ニッケルの硝
酸塩、ニッケルの酸化物、ニッケルの水酸化物と、コバ
ルトの炭酸塩、コバルトの硝酸塩、コバルトの酸化物、
コバルトの水酸化物と、原料となる金属元素M(M=A
l、Mg、Ti、Mo、B、W、Nbからなる群から選
択される少なくとも1種の元素)を含む化合物としての
酸化物、水酸化物、オキシ水酸化物、塩化物、硝酸塩、
硫酸塩等とを所定割合で粉砕混合して、酸素含有の雰囲
気中で例えば600〜900℃で焼成して得ることがで
きる。なお、金属元素Mを含む化合物の代わりに単体金
属Mを使用してもよい。これらは、1種のものを単独で
使用してもよく、2種以上を混合して使用してもよい。 【0017】そして、正極は例えば以下のようにして製
造される。正極活物質をグラファイトやカーボンブラッ
ク等の導電剤とポリフッ化ビニリデン等の結着剤と共に
混合して、正極合剤とする。そして、この正極合剤をN
−メチルピロリドン等の溶媒に分散させてスラリーとす
る。これを例えばアルミニウム、ニッケル、又はステン
レス製の正極集電体の両面に塗布、乾燥後、ロールプレ
ス等により圧縮平滑化して正極が製造される。 【0018】また、負極活物質としては、特に限定され
ず、例えば公知のコークス類、ガラス状炭素類、グラフ
ァイト類、難黒鉛化性炭素類、熱分解炭素類、炭素繊維
などの炭素質材料、あるいは金属リチウム、リチウム合
金、ポリアセン、あるいは、酸化スズ系ガラス、リチウ
ム/チタン複合酸化物、酸化鉄、酸化ルテニウム、酸化
モリブデン、酸化タングステン、酸化チタン、酸化ス
ズ、酸化硅素等の金属酸化物等を単独でまたは二種以上
を混合して使用することができるが、特に、安全性の高
さから炭素質材料を用いるのが望ましい。 【0019】負極は例えば以下のようにして製造され
る。負極活物質をポリフッ化ビニリデン等の結着剤と共
に混合して、負極合剤とする。そして、この負極合剤を
N−メチルピロリドン等の溶媒に分散させてスラリーと
する。これを負極集電体の両面に塗布、乾燥後、ロール
プレス等により圧縮平滑化して負極が製造される。 【0020】セパレータとしては、特に限定されず、例
えば公知の織布、不織布、合成樹脂微多孔膜等を用いる
ことができ、特に合成樹脂微多孔膜が好適に用いること
ができる。中でもポリエチレン及びポリプロピレン製微
多孔膜、又はこれらを複合した微多孔膜等のポリオレフ
ィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適
に用いられる。 【0021】本発明の有機電解液としては、特に限定さ
れず、例えばエチレンカーボネートとメチルエチルカー
ボネートとの混合溶媒あるいはエチレンカーボネートと
ジメチルカーボネートとの混合溶媒を用いる。前記混合
溶媒に、プロピレンカーボネート、ブチレンカーボネー
ト、ビニレンカーボネート、トリフルオロプロピレンカ
ーボネート、γ−ブチロラクトン、2−メチル−γ−ブ
チルラクトン、アセチル−γ−ブチロラクトン、γ−バ
レロラクトン、スルホラン、1,2−ジメトキシエタ
ン、1,2−ジエトキシエタン、テトラヒドロフラン、
2−メチルテトラヒドロフラン、3−メチル−1,3−
ジオキソラン、酢酸メチル、酢酸エチル、プロピオン酸
メチル、プロピオン酸エチル、ジメチルカーボネート、
ジエチルカーボネート、メチルエチルカーボネート、ジ
プロピルカーボネート、メチルプロピルカーボネート、
エチルイソプロピルカーボネート、ジブチルカーボネー
ト等を単独でまたは二種以上用いてこれを混合して使用
しても良い。 【0022】有機電解液の溶質としての電解質塩は、特
に限定されず例えばLiClO、LiAsF、L
iPF、LiBF、LiCFSO、Li
CFCFSO、LiCFCFCFSO
、LiN(CFSO、LiN(C
SO等を単独でまたは二種以上を混合して使用
することができる。電解質塩としては中でもLiPF
を用いるのが好ましい。 【0023】本発明で得られるリチウム二次電池の形状
には特に制約はない。シート状(いわゆるフイルム
状)、折り畳み状、巻回型円筒形、巻回型角形、コイン
形等が用途に応じて選択される。 【0024】以下、本発明の実施例を示すが、本発明は
これに限定されるものではない。 【実施例1】実施例1−1〜1−4、比較例1−1〜1
−6において、以下の方法でリチウム二次電池を作製し
た。まず、正極活物質として、炭酸リチウム1モルと、
水酸化ニッケル0.8モルと、水酸化コバルト0.5モ
ルと、硫酸アルミニウム0.025モルとを混合し、こ
の混合物を、空気中、温度750℃で15時間焼成し
た。この生成物は、LiNi0.8Co0.15Al
0.05と推察される。 【0025】このLiNi0.8Co0.15Al
0.05を90重量部と、導電材のアセチレンブラ
ック5重量部と、結着剤のポリフッ化ビニリデン5重量
部とを混合し、N−メチル−2−ピロリドンを適宜加え
て分散させ、スラリーを調製した。このスラリーを15
〜30μmのアルミニウム製の正極集電体の両面に厚さ
60μmとなるように均一に塗布、乾燥させた後、ロー
ルプレスで圧縮成形することにより、正極を用意した。 【0026】負極合剤は、鱗片状黒鉛90重量部と、ポ
リフッ化ビニリデン10重量部とを混合し、N−メチル
−2−ピロリドンを適宜加えて分散させ、スラリーを調
製した。このスラリーを厚さ10μmの銅製の負極集電
体に均一に塗布、乾燥させた後、ロールプレスで圧縮成
形することにより負極を作製した。 【0027】セパレータには、厚さ25μmの微多孔性
ポリエチレンフィルムを用いた。 【0028】有機電解液としては、エチレンカーボネー
ト(EC)とジエチルカーボネート(DEC)とを容積
比30:70で混合し、この溶液にLiPFを1.2
モル/リットル溶解したものを用いた。 【0029】上述の正極と負極とをセパレータを介して
対向させて巻回し、電池容器内に収容した後、注液孔よ
り有機電解液を注入して含浸させた。比較例1−6では
有機電解液を含浸させた後、電池容器を密閉封口した。 【0030】(実施例1−1)上記発電要素に対し、大
気中、45℃の恒温槽中にて、正極活物質1gあたり1
50mAの電流密度で4.1Vまで定電流充電し、その
後4.1Vの電圧で10時間定電圧充電し、電池容器を
密閉封口してリチウム二次電池を得た。 【0031】(実施例1−2)充電電圧を4.3Vにす
る以外は上記実施例1−1と同条件でリチウム二次電池
を得た。 【0032】(実施例1−3)充電温度を60℃とし、
充電電圧を4Vとする以外は上記実施例1−1と同条件
でリチウム二次電池を得た。 【0033】(実施例1−4)充電温度を60℃とし、
充電電圧を4.3Vとする以外は上記実施例1−1と同
条件でリチウム二次電池を得た。 【0034】(比較例1−1)充電温度を40℃とし、
充電電圧を4.3Vとする以外は上記実施例1−1と同
条件でリチウム二次電池を得た。 【0035】(比較例1−2)充電温度を80℃とし、
充電電圧を4Vとする以外は上記実施例1−1と同条件
でリチウム二次電池を得た。 【0036】(比較例1−3)充電電圧を4.5Vとす
る以外は上記実施例1−1と同条件でリチウム二次電池
を得た。 【0037】(比較例1−4)充電温度を60℃とし、
充電電圧を3.8Vとする以外は上記実施例1−1と同
条件でリチウム二次電池を得た。 【0038】(比較例1−5)充電温度を60℃とし、
充電電圧を4.5Vとする以外は上記実施例1−1と同
条件でリチウム二次電池を得た。 【0039】(比較例1−6)電池ケースを密閉封口し
た後に、上記実施例1−1と同条件で定電流充電および
定電圧充電を行うことにより、リチウム二次電池を得
た。 【0040】上記実施例1−1〜1−4、比較例1−1
〜1−6の電池について、充放電サイクル試験を25℃
の環境下で行った。充電は1CmAの定電流で4.1V
まで、さらに4.1V定電圧で合計3時間行い、放電は
1CmAの定電流で終止電圧2.75Vまで行った。 【0041】上記結果を以下に示す。 【表1】 【0042】上記結果から明らかなように、充電温度が
45〜60℃の範囲内であり、かつ充電電圧が4.0〜
4.3Vの範囲内である実施例1−1〜1−4について
は、いずれもサイクル寿命が500回以上と高く、電池
の膨れもなかった。 【0043】これに対し、充電温度が40℃と低い比較
例1−1では、サイクル寿命が400回と低下し、電池
の膨れも生じた。これは、電池容器の密閉封口前にガス
が充分に放出されなかったためと考えられる。また、充
電温度が80度と高い比較例1−2においては、サイク
ル寿命が250回と著しく低下した。 【0044】一方、充電温度が45〜60℃の範囲内で
あっても、充電電圧が4.5Vと高い比較例1−3にお
いても、サイクル寿命が200回と著しく低下した。逆
に、充電電圧が3.8Vと低い比較例1−4では、サイ
クル寿命が350回と低下するとともに、電池にわずか
な膨れが生じた。 【0045】また、比較例1−5のようにリチウムの析
出がある場合や、比較例1−6のように充電前に電池容
器を密閉封口した場合にも、サイクル寿命が低下すると
ともに、電池に膨れが生じた。 【0046】 【実施例2】実施例2−1〜2−4、比較例2−1〜2
−6において、以下の方法でリチウム二次電池を作製し
た。正極活物質として、炭酸リチウム1モルと、水酸化
ニッケル0.7モルと、水酸化コバルト0.28モル
と、硫酸チタン0.01モルと、水酸化ニオブ0.01
モルとを混合し、この混合物を、空気中、温度750℃
で15時間焼成した。この生成物は、LiNi0.7
0.28Ti0.01Nb0.01と推察され
る。 【0047】このLiNi0.7Co0.28Ti
0.01Nb0.01を用い、上記実施例1と同様
の方法により、正極を用意した。また、上記実施例1と
同様の負極、セパレータ、有機電解液を用意し、正極と
負極とをセパレータを介して対向させて巻回し、電池容
器内に収容した後、注液孔より有機電解液を注入して含
浸させた。比較例2−6では有機電解液を含浸させた
後、電池容器を密閉封口した。 【0048】そして、上記実施例1−1〜1−4および
比較例1−1〜1−6と同条件により、リチウム二次電
池を得た(実施例2−1〜2−4および比較例2−1〜
2−6)。 【0049】上記実施例2−1〜2−4、比較例2−1
〜2−6の電池について、充放電サイクル試験を25℃
の環境下で行った。充電は1CmAの定電流で4.1V
まで、さらに4.1V定電圧で合計3時間行い、放電は
1CmAの定電流で終止電圧2.75Vまで行った。 【0050】上記結果を以下に示す。 【表2】 【0051】上記結果から明らかなように、充電温度が
45〜60℃の範囲内であり、かつ充電電圧が4.0〜
4.3Vの範囲内である実施例2−1〜2−4について
は、いずれもサイクル寿命が480回以上と高く、電池
の膨れもなかった。 【0052】これに対し、充電温度が40℃と低い比較
例2−1では、サイクル寿命が390回と低下し、電池
の膨れも生じた。また、充電温度が80度と高い比較例
2−2においては、サイクル寿命が260回と著しく低
下した。 【0053】一方、充電温度が45〜60℃の範囲内で
あっても、充電電圧が4.5Vと高い比較例2−3にお
いても、サイクル寿命が210回と著しく低下した。逆
に、充電電圧が3.8Vと低い比較例2−4では、サイ
クル寿命が370回と低下するとともに、電池にわずか
な膨れが生じた。 【0054】また、比較例2−5のようにリチウムの析
出がある場合や、比較例2−6のように充電前に電池容
器を密閉封口した場合にも、サイクル寿命が低下すると
ともに、電池に膨れが生じた。 【0055】 【実施例3】実施例3−1〜3−4、比較例3−1〜3
−6において、以下の方法でリチウム二次電池を作製し
た。正極活物質として、炭酸リチウム1モルと、水酸化
ニッケル0.7モルと、水酸化コバルト0.28モル
と、酸化モリブデン0.01モルと、酸化タングステン
0.01モルとを混合し、この混合物を、空気中、温度
850℃で15時間焼成した。この生成物は、LiNi
0.7Co0.28Mo 0.010.01と推察
される。 【0056】このLiNi0.7Co0.28Mo
0.010.01を用い、上記実施例1と同様の
方法により、正極を用意した。また、上記実施例1と同
様の負極、セパレータ、有機電解液を用意し、正極と負
極とをセパレータを介して対向させて巻回し、電池容器
内に収容した後、注液孔より有機電解液を注入して含浸
させた。比較例3−6では有機電解液を含浸させた後、
電池容器を密閉封口した。 【0057】そして、上記実施例1−1〜1−4および
比較例1−1〜1−6と同条件により、リチウム二次電
池を得た(実施例3−1〜3−4および比較例3−1〜
3−6)。 【0058】上記実施例3−1〜3−4、比較例3−1
〜3−6の電池について、充放電サイクル試験を25℃
の環境下で行った。充電は1CmAの定電流で4.1V
まで、さらに4.1V定電圧で合計3時間行い、放電は
1CmAの定電流で終止電圧2.75Vまで行った。 【0059】上記結果を以下に示す。 【表3】【0060】上記結果から明らかなように、充電温度が
45〜60℃の範囲内であり、かつ充電電圧が4.0〜
4.3Vの範囲内である実施例3−1〜3−4について
は、いずれもサイクル寿命が400回以上と高く、電池
の膨れもなかった。 【0061】これに対し、充電温度が40℃と低い比較
例3−1では、サイクル寿命が380回と低下し、電池
の膨れも生じた。また、充電温度が80度と高い比較例
3−2においては、サイクル寿命が190回と著しく低
下した。 【0062】一方、充電温度が45〜60℃の範囲内で
あっても、充電電圧が4.5Vと高い比較例3−3にお
いても、サイクル寿命が180回と著しく低下した。逆
に、充電電圧が3.8Vと低い比較例3−4では、サイ
クル寿命が340回と低下するとともに、電池にわずか
な膨れが生じた。 【0063】また、比較例3−5のようにリチウムの析
出がある場合や、比較例3−6のように充電前に電池容
器を密閉封口した場合にも、サイクル寿命が低下すると
ともに、電池に膨れが生じた。 【0064】以上の結果より、高い電池寿命を維持する
ためには、電池温度を45〜60℃、4.0〜4.3V
でかつリチウムが析出しない電圧範囲で、充電を行うこ
とが好ましい。 【0065】なお、本実施例においては、正極活物質と
してLiNi0.8Co0.15Al0.05、L
iNi0.7Co0.28Ti0.01Nb0.01
、LiNi0.7Co0.28Mo0.01
0.01を用いたが、その他例えばLi1.05
0.82Co0.15Mg0.03等、一般式L
iaNibCocMdO2((ただし、0≦a≦1.
1、0.7≦b≦0.9、0.1≦c≦0.3、0≦d
≦0.1、b+c+d=1、M=Al、Mg、Ti、M
o、B、W、Nbからなる群から選択される少なくとも
1種の元素))で表される活物質を用いても同様の効果
が得られることは明らかである。 【0066】 【発明の効果】本発明によるリチウム二次電池の製造方
法によれば、電池製造後の使用時における電池の膨れが
なく、信頼性と寿命性能に優れるリチウム二次電池を得
ることができる。
DETAILED DESCRIPTION OF THE INVENTION [0001] The present invention relates to a lithium secondary battery.
It relates to a manufacturing method. [0002] 2. Description of the Related Art For example, a lithium transition metal is used as a positive electrode active material.
Composite oxide, carbonaceous material for negative electrode active material, lithium for electrolyte
Lithium using an organic electrolyte solution that uses a salt as a supporting salt
Rechargeable batteries have higher energy density compared to conventional batteries.
Degree, long life, for example, mobile phone, notebook type
It is used as a power source for devices. Such a Lichu
In a secondary battery, in particular, the positive electrode active material
Pressure, cycle life characteristics, safety, etc.
It is a key component. As a positive electrode active material of a lithium secondary battery,
A resource that uses inexpensive manganese with large reserves as a raw material
Active research has been conducted on titanium-manganese composite compounds.
ing. However, lithium manganese composite compounds
Low diffusion coefficient of lithium because it is an active material with
Heavy load characteristics and low temperature characteristics are not always sufficient
No. There is also a problem that the energy density is low. On the other hand, small lithium batteries currently on the market are
Secondary batteries have a layered structure of cobalt as the positive electrode active material.
Lithium oxide is often used. Lithium cobaltate
Is a spinel-structured active material with a lithium ion diffusion coefficient
It is extremely large, about 10 to 100 times the quality,
Despite its high degree, the raw material cobalt is a rare metal and the price is high
There is a problem of instability. [0005] Therefore, as a positive electrode active material, conventional Kobal
Inexpensive as compared to cobalt, and layered like cobalt
Lithium using nickel capable of forming a compound together with cobalt
Possible use of nickel-cobalt composite oxide
ing. However, lithium nickel cobalt
With composite oxides, conventional batteries can be used during initial charging or when left at high temperatures.
Because a large amount of gas is generated in comparison with
This will cause the internal resistance to increase, resulting in battery life
There is a problem that performance is reduced. [0007] SUMMARY OF THE INVENTION The present invention
It was completed based on circumstances, and
Reduces battery swelling during use, ensuring battery reliability and longevity
Aim to provide lithium secondary batteries with excellent life performance
It is assumed that. [0008] [MEANS FOR SOLVING THE PROBLEMS]
The method for manufacturing a lithium secondary battery according to claim 1,
ibCocMdO2(However, 0 ≦ a ≦ 1.1, 0.7
≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0 ≦ d ≦ 0.1,
b + c + d = 1, M = Al, Mg, Ti, Mo, B,
At least one element selected from the group consisting of W and Nb
Positive electrode active material layer containing a composite oxide represented by
And a negative electrode active material layer capable of inserting and extracting lithium ions.
With a lithium ion
After being impregnated with an organic electrolyte having a positive electrode active material layer and a negative electrode
4.0 to 4.3 V at 45 to 60 ° C. between the active material layers
Charge within the voltage range where lithium does not precipitate on the negative electrode
And then seal it tightly inside the battery container.
Have signs. In the present invention, LiaNibCocMdO is used.
2The value a of the composite oxide represented by
If it is contained excessively, it becomes one or more. Also, after production
Since the absorption and release of lithium occur, the a value is eventually 0
It fluctuates in the range of 1.1. The value of b is 0.7 to 0.9.
Is preferred. If it is 0.7 or more, the conventional positive electrode active material
LiCoO used as2Higher capacity than
Life is improved by setting it to 0.9 or less.
Because you do. Co is effective for structural stability of Ni-based active material
And the discharge capacity is reduced compared to other substitution elements.
Few. Maintain high structural stability and reduce costs
For this purpose, the c value should be mixed at a ratio of 0.1 to 0.3.
Is preferred. Further, LiaNibCocMdO2In
A substitution element M represented by M (Al, Mg, Ti, Mo,
At least one selected from the group consisting of B, W, and Nb
Element) is more effective than Co mainly in structural stability.
However, the d value is 0 to 0.1 to reduce the discharge capacity.
It is preferable that In the present invention, first, the above-mentioned LiaNi
bCocMdO2A composite oxide represented by
The positive electrode active material layer and the negative electrode active material layer are
Orientation and impregnated with organic electrolyte
4.0-4.3 V at 45-60 ° C. and negative
The battery is charged in a voltage range in which lithium is not deposited on the pole. this
By doing so, at the stage of manufacture,
Preliminary gas that may be generated from power generation elements during use
Most can be removed. When the battery temperature is over 60 ° C. and the battery voltage is
When the voltage is set to 4.3 V or more, the battery performance is significantly deteriorated. Ma
Also, charging at a battery temperature of less than 45 ° C and a voltage of less than 4.0V
Then, the gas generation speed becomes slow and the gas is released enough
May not be done. [0015] Such an operation is carried out outside the battery container or the battery.
After the operation inside the container, the power generation element
The battery is manufactured by sealing in a closed state. This
As described above, in a battery such as
Battery generation is greatly suppressed, and battery swelling extremely occurs.
This makes it harder to scrape and improves the battery life performance. Lithium nickel as the positive electrode active material of the present invention
Rucobalt composite oxide can be obtained by a known method, for example,
Carbonate, lithium nitrate, lithium oxide, lithium
Titanium hydroxide, nickel carbonate, nickel nitrate
Acid salts, nickel oxides, nickel hydroxides,
Carbonate, cobalt nitrate, cobalt oxide,
A hydroxide of cobalt and a metal element M as a raw material (M = A
1, Mg, Ti, Mo, B, W, Nb
At least one selected element)
Oxides, hydroxides, oxyhydroxides, chlorides, nitrates,
Sulfate, etc., are ground and mixed at a predetermined ratio to obtain an atmosphere containing oxygen.
For example, it can be obtained by firing at 600 to 900 ° C in the air.
Wear. In addition, instead of the compound containing the metal element M,
The genus M may be used. These are one kind alone
They may be used, or two or more kinds may be used as a mixture. The positive electrode is manufactured, for example, as follows.
Built. Use a graphite or carbon black
Together with a conductive agent such as rubber and a binder such as polyvinylidene fluoride
Mix to form a positive electrode mixture. Then, this positive electrode mixture is
-Disperse in a solvent such as methylpyrrolidone to form a slurry.
You. This can be, for example, aluminum, nickel, or stainless steel.
Coating and drying on both sides of a positive electrode current collector
The positive electrode is manufactured by compression smoothing with a gas or the like. The negative electrode active material is not particularly limited.
For example, known cokes, glassy carbons, graphs
Graphites, non-graphitizable carbons, pyrolytic carbons, carbon fiber
Such as carbonaceous materials, metallic lithium, and lithium
Gold, polyacene, or tin oxide glass, lithium
/ Titanium composite oxide, iron oxide, ruthenium oxide, oxidation
Molybdenum, tungsten oxide, titanium oxide, sulfur oxide
Or metal oxides such as silicon oxide alone or in combination of two or more
Can be used in combination,
Therefore, it is desirable to use a carbonaceous material. The negative electrode is manufactured, for example, as follows.
You. Use the negative electrode active material together with a binder such as polyvinylidene fluoride.
To form a negative electrode mixture. And this negative electrode mixture
Dispersed in a solvent such as N-methylpyrrolidone to form a slurry
I do. This is applied to both sides of the negative electrode current collector, dried, and rolled.
The negative electrode is manufactured by compression smoothing by a press or the like. The separator is not particularly limited.
For example, using a known woven fabric, nonwoven fabric, synthetic resin microporous membrane, or the like
In particular, a synthetic resin microporous membrane is preferably used.
Can be. Among them, polyethylene and polypropylene fine
Polyolefins such as porous membranes or composite microporous membranes
Thin microporous membrane is suitable in terms of thickness, membrane strength, membrane resistance, etc.
Used for The organic electrolyte of the present invention is not particularly limited.
Not possible, for example, ethylene carbonate and methyl ethyl carbonate
Mixed solvent with carbonate or ethylene carbonate
A mixed solvent with dimethyl carbonate is used. Mixing
Propylene carbonate, butylene carbonate
G, vinylene carbonate, trifluoropropylene carbonate
Carbonate, γ-butyrolactone, 2-methyl-γ-butane
Tyllactone, acetyl-γ-butyrolactone, γ-ba
Relolactone, sulfolane, 1,2-dimethoxy eta
1,2-diethoxyethane, tetrahydrofuran,
2-methyltetrahydrofuran, 3-methyl-1,3-
Dioxolan, methyl acetate, ethyl acetate, propionic acid
Methyl, ethyl propionate, dimethyl carbonate,
Diethyl carbonate, methyl ethyl carbonate, di
Propyl carbonate, methyl propyl carbonate,
Ethyl isopropyl carbonate, dibutyl carbonate
Or a mixture of two or more of these
You may. The electrolyte salt as a solute of the organic electrolyte is particularly
Not limited to, for example, LiClO4, LiAsF6, L
iPF6, LiBF4, LiCF3SO3, Li
CF3CF2SO3, LiCF3CF2CF2SO
3, LiN (CF3SO2)2, LiN (C2F5
SO2)2Used alone or in combination of two or more
can do. Among the electrolyte salts, LiPF
6It is preferable to use Shape of lithium secondary battery obtained by the present invention
Has no particular restrictions. Sheet form (so-called film
Shape), foldable, wound cylindrical, wound square, coin
The shape and the like are selected according to the application. Hereinafter, examples of the present invention will be described.
It is not limited to this. Example 1 Examples 1-1 to 1-4, Comparative Examples 1-1 to 1
At -6, a lithium secondary battery was fabricated by the following method.
Was. First, as a positive electrode active material, 1 mol of lithium carbonate,
0.8 mol of nickel hydroxide and 0.5 mol of cobalt hydroxide
And 0.025 mol of aluminum sulfate.
Is calcined in air at a temperature of 750 ° C. for 15 hours.
Was. This product is LiNi0.8Co0.15Al
0.05O2It is inferred. This LiNi0.8Co0.15Al
0.05O290 parts by weight and acetylene bra of conductive material
5 parts by weight and 5 parts by weight of polyvinylidene fluoride as a binder
And N-methyl-2-pyrrolidone as appropriate.
And dispersed to prepare a slurry. Add this slurry to 15
Thickness on both sides of aluminum positive electrode current collector of ~ 30 μm
After evenly applying and drying to a thickness of 60 μm,
A positive electrode was prepared by compression molding with a press. The negative electrode mixture was composed of 90 parts by weight of flaky graphite,
A mixture of 10 parts by weight of vinylidene refluoride and N-methyl
-2-Pyrrolidone is appropriately added and dispersed, and the slurry is prepared.
Made. This slurry is used to collect a 10 μm thick copper negative electrode.
After uniformly applying and drying on the body, compression
The negative electrode was produced by shaping. The separator has a microporous thickness of 25 μm.
A polyethylene film was used. As the organic electrolyte, ethylene carbonate is used.
(EC) and diethyl carbonate (DEC)
Mix at a ratio of 30:70 and add LiPF to this solution.6To 1.2
The solution dissolved in mol / liter was used. The above positive electrode and negative electrode are interposed via a separator.
Wrap it facing each other, store it in the battery container,
An organic electrolyte was injected and impregnated. In Comparative Example 1-6,
After impregnation with the organic electrolyte, the battery container was hermetically sealed. (Example 1-1) The power generating element was
1 g per 1 g of positive electrode active material in a constant temperature bath at 45 ° C.
The battery is charged at a constant current of 4.1 mA at a current density of 50 mA,
After that, the battery was charged at a constant voltage of 4.1 V for 10 hours, and the battery container was removed.
The container was hermetically sealed to obtain a lithium secondary battery. (Example 1-2) The charging voltage was set to 4.3 V.
Lithium secondary battery under the same conditions as in Example 1-1 except that
I got Example 1-3 The charging temperature was set to 60 ° C.
Same conditions as in Example 1-1 except that the charging voltage was 4 V
Thus, a lithium secondary battery was obtained. Example 1-4 The charging temperature was set to 60 ° C.
Same as Example 1-1 except that the charging voltage was 4.3 V.
Under the conditions, a lithium secondary battery was obtained. (Comparative Example 1-1) The charging temperature was set to 40 ° C.
Same as Example 1-1 except that the charging voltage was 4.3 V.
Under the conditions, a lithium secondary battery was obtained. (Comparative Example 1-2) The charging temperature was set to 80 ° C.
Same conditions as in Example 1-1 except that the charging voltage was 4 V
Thus, a lithium secondary battery was obtained. (Comparative Example 1-3) The charging voltage was set to 4.5V.
Lithium secondary battery under the same conditions as in Example 1-1 except that
I got Comparative Example 1-4 The charging temperature was set to 60 ° C.
Same as Example 1-1 except that the charging voltage was 3.8 V
Under the conditions, a lithium secondary battery was obtained. (Comparative Example 1-5) The charging temperature was set to 60 ° C.
Same as Example 1-1 except that the charging voltage was 4.5 V
Under the conditions, a lithium secondary battery was obtained. (Comparative Example 1-6) The battery case was hermetically sealed.
After that, constant-current charging and charging were performed under the same conditions as in Example 1-1.
By performing constant voltage charging, a lithium secondary battery is obtained.
Was. Examples 1-1 to 1-4, Comparative Example 1-1
1−1-6 for the charge / discharge cycle test at 25 ° C.
Under the environment. Charging is 4.1V at a constant current of 1CmA
Up to 4.1V constant voltage for a total of 3 hours.
The operation was performed at a constant current of 1 CmA to a final voltage of 2.75 V. The results are shown below. [Table 1] As is clear from the above results, the charging temperature is
Within the range of 45 to 60 ° C. and the charging voltage is 4.0 to
Examples 1-1 to 1-4 in the range of 4.3 V
Have a high cycle life of 500 times or more,
There was no blister. On the other hand, the charging temperature was as low as 40 ° C.
In Example 1-1, the cycle life was reduced to 400 times, and
Swelling also occurred. This means that the gas can be
Is not released sufficiently. In addition,
In Comparative Example 1-2 in which the charging temperature was as high as 80 degrees,
The tool life was significantly reduced to 250 times. On the other hand, when the charging temperature is in the range of 45 to 60 ° C.
Even in the case of Comparative Example 1-3, the charging voltage was as high as 4.5 V,
Even so, the cycle life was significantly reduced to 200 times. Reverse
Meanwhile, in Comparative Example 1-4 in which the charging voltage was as low as 3.8 V,
Battery life is reduced to 350 times, and
Swelling occurred. Further, as in Comparative Example 1-5, precipitation of lithium
Battery or before charging as in Comparative Example 1-6.
If the cycle life is shortened even when the
In both cases, the battery swelled. [0046] Example 2 Examples 2-1 to 2-4 and Comparative Examples 2-1 and 2
At -6, a lithium secondary battery was fabricated by the following method.
Was. 1 mol of lithium carbonate and hydroxide
0.7 mol of nickel and 0.28 mol of cobalt hydroxide
And 0.01 mol of titanium sulfate and 0.01 mol of niobium hydroxide
And the mixture is heated in air at a temperature of 750 ° C.
For 15 hours. This product is LiNi0.7C
o0.28Ti0.01Nb0.01O2Inferred
You. This LiNi0.7Co0.28Ti
0.01Nb0.01O2And the same as in the first embodiment.
A positive electrode was prepared by the above method. In addition, the first embodiment and
Prepare the same negative electrode, separator and organic electrolyte, and
The battery is wound facing the negative electrode with a separator in between.
After being contained in the vessel, the organic electrolyte is injected through the injection hole to contain
Soaked. In Comparative Example 2-6, the organic electrolyte was impregnated.
Thereafter, the battery container was hermetically sealed. Then, the above Examples 1-1 to 1-4 and
Under the same conditions as in Comparative Examples 1-1 to 1-6, the lithium secondary
Ponds were obtained (Examples 2-1 to 2-4 and Comparative Examples 2-1 to 4-2).
2-6). Examples 2-1 to 2-4 and Comparative example 2-1
About 2-6 batteries were subjected to a charge / discharge cycle test at 25 ° C.
Under the environment. Charging is 4.1V at a constant current of 1CmA
Up to 4.1V constant voltage for a total of 3 hours.
The operation was performed at a constant current of 1 CmA to a final voltage of 2.75 V. The results are shown below. [Table 2] As is clear from the above results, the charging temperature is
Within the range of 45 to 60 ° C. and the charging voltage is 4.0 to
Examples 2-1 to 2-4 in the range of 4.3 V
Means that the cycle life is as high as 480 times or more,
There was no blister. On the other hand, the charging temperature was as low as 40 ° C.
In Example 2-1, the cycle life was reduced to 390 times,
Swelling also occurred. Comparative example in which the charging temperature is as high as 80 degrees.
In 2-2, the cycle life was extremely low at 260 times.
I dropped it. On the other hand, when the charging temperature is in the range of 45 to 60 ° C.
Even in the case of Comparative Example 2-3, the charging voltage was as high as 4.5 V,
Even so, the cycle life was significantly reduced to 210 times. Reverse
In Comparative Example 2-4 where the charging voltage was as low as 3.8 V,
The battery life is reduced to 370 times and the battery
Swelling occurred. Further, as shown in Comparative Example 2-5,
Out of the battery or before charging as in Comparative Example 2-6.
If the cycle life is shortened even when the
In both cases, the battery swelled. [0055] Example 3 Examples 3-1 to 3-4 and Comparative Examples 3-1 to 3-4
At -6, a lithium secondary battery was fabricated by the following method.
Was. 1 mol of lithium carbonate and hydroxide
0.7 mol of nickel and 0.28 mol of cobalt hydroxide
And 0.01 mol of molybdenum oxide and tungsten oxide
0.01 mol, and the mixture is heated in air at a temperature
It was baked at 850 ° C. for 15 hours. This product is LiNi
0.7Co0.28Mo 0.01W0.01O2Inferred
Is done. This LiNi0.7Co0.28Mo
0.01W0.01O2And the same as in the first embodiment.
A positive electrode was prepared by the method. Moreover, the same as the first embodiment.
Prepare a negative electrode, separator and organic electrolyte like
The battery is wound with the electrodes facing each other with a separator
And then impregnated by injecting organic electrolyte through the injection hole
I let it. In Comparative Example 3-6, after impregnation with the organic electrolyte,
The battery container was hermetically sealed. The above Examples 1-1 to 1-4 and
Under the same conditions as in Comparative Examples 1-1 to 1-6, the lithium secondary
Ponds were obtained (Examples 3-1 to 3-4 and Comparative examples 3-1 to 3-1).
3-6). Examples 3-1 to 3-4 and Comparative example 3-1
The charge-discharge cycle test was performed at 25 ° C.
Under the environment. Charging is 4.1V at a constant current of 1CmA
Up to 4.1V constant voltage for a total of 3 hours.
The operation was performed at a constant current of 1 CmA to a final voltage of 2.75 V. The above results are shown below. [Table 3]As is clear from the above results, the charging temperature is
Within the range of 45 to 60 ° C. and the charging voltage is 4.0 to
Examples 3-1 to 3-4 in the range of 4.3 V
Have a high cycle life of 400 times or more,
There was no blister. In contrast, the charging temperature was as low as 40 ° C.
In Example 3-1, the cycle life was reduced to 380 times,
Swelling also occurred. Comparative example in which the charging temperature is as high as 80 degrees.
In 3-2, the cycle life was extremely low at 190 times.
I dropped it. On the other hand, when the charging temperature is in the range of 45 to 60 ° C.
Even in the case of Comparative Example 3-3, the charging voltage was as high as 4.5 V.
However, the cycle life was significantly reduced to 180 times. Reverse
In Comparative Example 3-4 where the charging voltage is as low as 3.8 V,
The battery life is reduced to 340 times and the battery
Swelling occurred. Further, as shown in Comparative Example 3-5,
Out of the battery or before charging as in Comparative Example 3-6.
If the cycle life is shortened even when the
In both cases, the battery swelled. From the above results, a high battery life is maintained.
To achieve this, the battery temperature must be between 45 and 60 ° C. and between 4.0 and 4.3 V.
Charge in a voltage range where lithium is not precipitated.
Is preferred. In this embodiment, the positive electrode active material and
And LiNi0.8Co0.15Al0.05O2, L
iNi0.7Co0.28Ti0.01Nb0.01O
2, LiNi0.7Co0.28Mo0.01W
0.01O2Was used, but for example, Li1.05N
i0.82Co0.15Mg0.03O2General formula L
iaNibCocMdOTwo((However, 0 ≦ a ≦ 1.
1, 0.7 ≦ b ≦ 0.9, 0.1 ≦ c ≦ 0.3, 0 ≦ d
≦ 0.1, b + c + d = 1, M = Al, Mg, Ti, M
o, B, W, at least selected from the group consisting of Nb
The same effect can be obtained by using an active material represented by
It is clear that is obtained. [0066] The method of manufacturing a lithium secondary battery according to the present invention.
According to the method, battery swelling during use after battery manufacture
And a lithium secondary battery with excellent reliability and longevity
Can be

───────────────────────────────────────────────────── フロントページの続き Fターム(参考) 5H029 AJ05 AJ14 AK03 AL02 AL07 AL12 AM03 AM04 AM05 AM07 CJ13 CJ16 CJ28 HJ14 HJ16 5H050 AA07 AA19 BA17 CA08 CB02 CB08 CB12 GA13 GA18 GA27 HA14 HA16    ────────────────────────────────────────────────── ─── Continuation of front page    F term (reference) 5H029 AJ05 AJ14 AK03 AL02 AL07                       AL12 AM03 AM04 AM05 AM07                       CJ13 CJ16 CJ28 HJ14 HJ16                 5H050 AA07 AA19 BA17 CA08 CB02                       CB08 CB12 GA13 GA18 GA27                       HA14 HA16

Claims (1)

【特許請求の範囲】 【請求項1】 LiaNibCocMdO(ただし、
0≦a≦1.1、0.7≦b≦0.9、0.1≦c≦
0.3、0≦d≦0.1、b+c+d=1、M=Al、
Mg、Ti、Mo、B、W、Nbからなる群から選択さ
れる少なくとも1種の元素)で表される複合酸化物を主
成分とする正極活物質層と、リチウムイオンを吸蔵・脱
離可能な負極活物質層とを、セパレータを介して対向さ
せ、リチウムイオンを含有する有機電解液に含浸させた
後、正極活物質層と負極活物質層の間に45〜60℃に
て4.0〜4.3Vであり、かつ負極上にリチウムが析
出しない電圧範囲で充電し、その後電池容器内に密閉状
態に封口することを特徴とするリチウム二次電池の製造
方法。
Claims 1. LiaNibCocMdO 2 (provided that
0 ≦ a ≦ 1.1, 0.7 ≦ b ≦ 0.9, 0.1 ≦ c ≦
0.3, 0 ≦ d ≦ 0.1, b + c + d = 1, M = Al,
At least one element selected from the group consisting of Mg, Ti, Mo, B, W, and Nb), and a positive electrode active material layer containing a composite oxide as a main component, and capable of inserting and extracting lithium ions. The negative electrode active material layer is opposed to the negative electrode active material layer via a separator, and impregnated with an organic electrolyte solution containing lithium ions. A method for producing a lithium secondary battery, comprising charging the battery in a voltage range of from about 4.3 V to a level at which lithium does not deposit on the negative electrode, and then sealing the battery in a battery container.
JP2002113736A 2002-04-16 2002-04-16 Method of manufacturing lithium secondary battery Pending JP2003308880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002113736A JP2003308880A (en) 2002-04-16 2002-04-16 Method of manufacturing lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002113736A JP2003308880A (en) 2002-04-16 2002-04-16 Method of manufacturing lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2003308880A true JP2003308880A (en) 2003-10-31

Family

ID=29395835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002113736A Pending JP2003308880A (en) 2002-04-16 2002-04-16 Method of manufacturing lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2003308880A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260864A (en) * 2005-03-16 2006-09-28 Hitachi Maxell Ltd Manufacturing method of lithium secondary battery
JP2008251224A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
WO2012164763A1 (en) * 2011-06-01 2012-12-06 住友金属鉱山株式会社 Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
JP2014112496A (en) * 2012-12-05 2014-06-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015043335A (en) * 2014-10-24 2015-03-05 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2019188092A1 (en) * 2018-03-30 2019-10-03 株式会社エンビジョンAescエナジーデバイス Lithium ion secondary battery and production method for same
US10490808B2 (en) 2011-02-18 2019-11-26 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
WO2020003848A1 (en) * 2018-06-29 2020-01-02 株式会社豊田自動織機 Lithium nickel cobalt tungsten oxide having layered rock salt structure
JP2020004537A (en) * 2018-06-26 2020-01-09 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP2020087821A (en) * 2018-11-29 2020-06-04 株式会社豊田自動織機 Lithium nickel cobalt molybdenum oxide
CN111816943A (en) * 2019-04-10 2020-10-23 Sk新技术株式会社 Post-treatment method of lithium secondary battery
WO2021006129A1 (en) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2021006127A1 (en) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for lithium-ion secondary battery
WO2021006128A1 (en) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260864A (en) * 2005-03-16 2006-09-28 Hitachi Maxell Ltd Manufacturing method of lithium secondary battery
JP2008251224A (en) * 2007-03-29 2008-10-16 Sanyo Electric Co Ltd Method of manufacturing nonaqueous electrolyte secondary battery
US11139465B2 (en) 2011-02-18 2021-10-05 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
US10490808B2 (en) 2011-02-18 2019-11-26 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery and production method thereof
CN105680032A (en) * 2011-06-01 2016-06-15 住友金属矿山株式会社 Positive electrode active material and nonaqueous electrolyte secondary battery
US10236506B2 (en) 2011-06-01 2019-03-19 Sumitomo Metal Mining Co., Ltd. Method of producing transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries and method for producing positive electrode active material for nanaqueous electrolye secondary batteries
WO2012164763A1 (en) * 2011-06-01 2012-12-06 住友金属鉱山株式会社 Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery using positive electrode active material
US20140106228A1 (en) * 2011-06-01 2014-04-17 Hiroyuki Toya Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing positive electrode active material, and nonaqueous electrolyte secondary battery using positive electrode active material
CN103563137A (en) * 2011-06-01 2014-02-05 住友金属矿山株式会社 Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same, positive electrode active material for nonaqueous electrolyte secondary batteries, method for producing same and positive electrode active material for nonaqueous electrolyte secondary batteries
CN106006744A (en) * 2011-06-01 2016-10-12 住友金属矿山株式会社 Positive electrode active material and nonaqueous electrolyte secondary battery
US10038189B2 (en) 2011-06-01 2018-07-31 Sumitomo Metal Mining Co., Ltd. Transition metal composite hydroxide capable of serving as precursor of positive electrode active material for nonaqueous electrolyte secondary batteries
US10038190B2 (en) 2011-06-01 2018-07-31 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for nonaqueous electrolyte secondary batteries and nonaqueous electrolyte secondary battery using positive electrode active material
CN105680032B (en) * 2011-06-01 2018-12-18 住友金属矿山株式会社 Positive active material and non-aqueous electrolyte secondary battery
JP2012252844A (en) * 2011-06-01 2012-12-20 Sumitomo Metal Mining Co Ltd Transition metal complex hydroxide suitable for precursor of positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, positive electrode active material for nonaqueous electrolyte secondary battery and method for manufacturing the same, and nonaqueous electrolyte secondary battery comprising the positive electrode active material
JP2014112496A (en) * 2012-12-05 2014-06-19 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP2015043335A (en) * 2014-10-24 2015-03-05 住友金属鉱山株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2019188092A1 (en) * 2018-03-30 2019-10-03 株式会社エンビジョンAescエナジーデバイス Lithium ion secondary battery and production method for same
JP2019179682A (en) * 2018-03-30 2019-10-17 株式会社エンビジョンAescエナジーデバイス Lithium ion secondary battery and method for manufacturing the same
JP2021132042A (en) * 2018-06-26 2021-09-09 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP2020004537A (en) * 2018-06-26 2020-01-09 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolyte secondary battery
JP7212289B2 (en) 2018-06-26 2023-01-25 日亜化学工業株式会社 Positive electrode active material for non-aqueous electrolyte secondary batteries
US11264608B2 (en) 2018-06-26 2022-03-01 Nichia Corporation Positive electrode active material for non-aqueous electrolyte secondary battery
WO2020003848A1 (en) * 2018-06-29 2020-01-02 株式会社豊田自動織機 Lithium nickel cobalt tungsten oxide having layered rock salt structure
JP7099286B2 (en) 2018-11-29 2022-07-12 株式会社豊田自動織機 Lithium Nickel Cobalt Molybdenum Oxide
JP2020087821A (en) * 2018-11-29 2020-06-04 株式会社豊田自動織機 Lithium nickel cobalt molybdenum oxide
CN111816943A (en) * 2019-04-10 2020-10-23 Sk新技术株式会社 Post-treatment method of lithium secondary battery
US11581519B2 (en) * 2019-04-10 2023-02-14 Sk On Co., Ltd. Post-treatment method of lithium secondary battery
CN111816943B (en) * 2019-04-10 2024-03-12 Sk新能源株式会社 Pretreatment method of lithium secondary battery
WO2021006128A1 (en) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2021006127A1 (en) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 Manufacturing method for positive electrode active material for lithium-ion secondary battery
WO2021006129A1 (en) * 2019-07-08 2021-01-14 住友金属鉱山株式会社 Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
CN114096486A (en) * 2019-07-08 2022-02-25 住友金属矿山株式会社 Method for producing positive electrode active material for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US9923197B2 (en) Composite negative active material and method of preparing the same, negative electrode including composite negative active material, and lithium secondary battery including negative electrode
KR101563775B1 (en) Active material particles and use of same
EP2096692B1 (en) Cathode active material, and cathode and lithium battery including the same
CN109616614B (en) Negative electrode sheet, and electrochemical device and electronic device using same
US20220185691A1 (en) Positive Electrode Active Material For Secondary Battery, Manufacturing Method Thereof, And Secondary Battery Including Same
JP4837614B2 (en) Lithium secondary battery
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
US20130171524A1 (en) Positive active material for rechargeable lithium battery and rechargeable lithium battery including same
CN111867979B (en) Method for preparing positive electrode active material for lithium secondary battery, positive electrode for lithium secondary battery comprising same, and lithium secondary battery
JP7260573B2 (en) Composite positive electrode active material for lithium ion battery, manufacturing method thereof, and lithium ion battery including positive electrode containing the same
CN107112533B (en) Positive active material for lithium secondary battery, method of preparing the same, and lithium secondary battery comprising the same
JP2009224307A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the same
KR101497946B1 (en) Cathode active material having core-shell structure and manufacturing method therof
JP7049552B2 (en) Positive electrode active material precursor and its manufacturing method
KR20110094980A (en) Cathode and lithium battery using same
JP3858699B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
CN111771301A (en) Positive electrode active material for lithium secondary battery, method for preparing same, and lithium secondary battery comprising same
CN112054193A (en) Positive electrode material for secondary battery and secondary battery using the same
EP3793004A1 (en) Anode for lithium secondary battery and lithium secondary battery comprising same
JP2003308880A (en) Method of manufacturing lithium secondary battery
KR101666796B1 (en) Positive electrode active material for rechargable lithium battery, method for synthesis the same, and rechargable lithium battery including the same
JP4318270B2 (en) Method for manufacturing lithium secondary battery
JP4224995B2 (en) Secondary battery and current collector for secondary battery
JPH11111291A (en) Positive electrode material for nonaqueous secondary battery and battery using this
JP2022547501A (en) Method for manufacturing secondary battery