JP2002260633A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002260633A
JP2002260633A JP2001053334A JP2001053334A JP2002260633A JP 2002260633 A JP2002260633 A JP 2002260633A JP 2001053334 A JP2001053334 A JP 2001053334A JP 2001053334 A JP2001053334 A JP 2001053334A JP 2002260633 A JP2002260633 A JP 2002260633A
Authority
JP
Japan
Prior art keywords
volume
positive electrode
negative electrode
mixture layer
electrode mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
JP2001053334A
Other languages
Japanese (ja)
Inventor
Kenji Hara
賢二 原
Katsunori Suzuki
克典 鈴木
Kensuke Hironaka
健介 弘中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP2001053334A priority Critical patent/JP2002260633A/en
Publication of JP2002260633A publication Critical patent/JP2002260633A/en
Abandoned legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery capable of improving safety, while realizing a high output, in particular, high output at low temperatures. SOLUTION: A positive electrode mix layer is formed, by evenly applying a positive electrode mix containing lithium manganate, having a spinel structure which has an average diameter of 5-20 μm, scale-like graphite and polyvinylidene fluoride to a collector. The vacancy volume in the positive electrode mix layer is adjusted to 25-35%, with respect to the volume of the positive electrode mix layer. A negative electrode mix layer is formed by evenly applying a negative electrode mix, containing amorphous carbon having an average particle diameter of 2-20 μm, acetylene black and polyvinylidene fluoride to a collector. The vacancy volume in the negative electrode mix layer is adjusted to 30-40%, with respect to the volume of the negative electrode mix layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係り、高出力化、特に低温での高出力化が図られ安全
性が改善された非水電解液二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having high output, particularly high output at low temperatures and improved safety.

【0002】[0002]

【従来の技術】従来、再充電可能な二次電池の分野で
は、鉛電池、ニッケル−カドミウム電池、ニッケル−水
素電池等の水溶液系電池が主流であった。しかしなが
ら、地球温暖化や枯渇燃料の問題から電気自動車(E
V)や駆動の一部を電気モータで補助するハイブリッド
自動車(HEV)が着目され、それらの電源に用いられ
る電池にはより高容量で高出力な電池が求められるよう
になってきた。このような要求に合致する電源として、
高電圧を有する非電解液二次電池が注目されている。
2. Description of the Related Art In the field of rechargeable secondary batteries, aqueous batteries such as lead batteries, nickel-cadmium batteries, and nickel-hydrogen batteries have hitherto been the mainstream. However, due to global warming and exhausted fuel, electric vehicles (E
V) and hybrid electric vehicles (HEV), in which a part of the drive is assisted by an electric motor, have attracted attention, and higher capacity and higher output batteries have been required for the batteries used for these power supplies. As a power supply that meets such requirements,
A non-electrolyte secondary battery having a high voltage has attracted attention.

【0003】非水電解液二次電池の正極材にはリチウム
遷移金属酸化物が用いられており、中でも容量やサイク
ル特性等のバランスからコバルト酸リチウムが用いられ
ているが、原料であるコバルトの資源量が少なくコスト
高となることから、EVやHEV用の電池材料としては
マンガン酸リチウムが有望視され開発が進められてい
る。一方、負極材には一般的には炭素材が用いられてお
り、この炭素材は、天然黒鉛や鱗片状、塊状等の人造黒
鉛、メソフェーズピッチ系黒鉛等の黒鉛系材料とフルフ
リルアルコール等のフラン樹脂等を焼成した非晶質炭素
材料が用いられている。
[0003] A lithium transition metal oxide is used as a positive electrode material of a non-aqueous electrolyte secondary battery. Among them, lithium cobalt oxide is used in view of balance of capacity and cycle characteristics. Since the amount of resources is small and the cost is high, lithium manganate is promising as a battery material for EVs and HEVs, and is being developed. On the other hand, a carbon material is generally used for the negative electrode material, and this carbon material is made of natural graphite, flake-like, artificial graphite such as lump, graphite material such as mesophase pitch graphite, and furfuryl alcohol. An amorphous carbon material obtained by firing a furan resin or the like is used.

【0004】特にEVやHEVの用途では、充放電にお
ける電流密度が非常に大きく、かつ、長寿命、高出力特
性が要求されている。負極活物質に非晶質炭素を用いた
場合には、黒鉛の理論容量値以上の容量が得られサイク
ル特性にも優れる非水電解液二次電池を得ることができ
る。また、充放電時の電圧に傾きを有していることか
ら、電圧を測定するだけで電池の状態を容易にかつ正確
に推定することが可能となる。しかしながら、不可逆容
量が大きく、電池での高容量化が難しく、また活物質間
の電子伝導性は黒鉛系材料に比べ劣るという欠点があ
る。これに対し、黒鉛系材料を用いた場合には、不可逆
容量が小さく電圧特性も平坦であることから、高容量、
高出力の非水電解液二次電池を得ることができる。しか
しながら、充放電での体積変化が大きいので、活物質粒
子間の電子伝導性を長期間維持できず早期に寿命に至
る、という問題がある。更に、電気自動車などの大型電
池を想定した場合、大きな電流密度での充電受け入れ性
が、非晶質炭素に比べ劣る、という問題がある。また、
EVやHEV用の電池には、複数個の電池が接続して用
いられ、単電池の特性のバラツキが寿命特性や安全性に
大きく左右することから、通常、制御システムが併用し
て使用され個々単電池の電圧、電流、温度などを監視・
制御してバラツキを抑制しているが、黒鉛系材料は電圧
特性が平坦であるがために、電圧から電池の状態を正確
に監視することは非常に難しく、もしくは高精度な制御
システムが必要となる。従って、電気自動車などの用途
に用いられる非水電解液二次電池の負極材としては、非
晶質炭素を主とすることが望ましく、高出力化の改善を
進めることが有望である。
[0004] In particular, for use in EVs and HEVs, a very high current density in charging and discharging, and a long life and high output characteristics are required. When amorphous carbon is used as the negative electrode active material, a nonaqueous electrolyte secondary battery having a capacity higher than the theoretical capacity of graphite and excellent cycle characteristics can be obtained. In addition, since the voltage at the time of charging and discharging has a gradient, it is possible to easily and accurately estimate the state of the battery only by measuring the voltage. However, there are drawbacks in that the irreversible capacity is large, it is difficult to increase the capacity in a battery, and the electron conductivity between active materials is inferior to that of a graphite-based material. On the other hand, when a graphite material is used, the irreversible capacity is small and the voltage characteristics are flat, so that a high capacity,
A high-output nonaqueous electrolyte secondary battery can be obtained. However, since there is a large change in volume during charging and discharging, there is a problem that electron conductivity between the active material particles cannot be maintained for a long period of time and the life is early reached. Furthermore, when a large battery such as an electric vehicle is assumed, there is a problem that charge acceptability at a large current density is inferior to amorphous carbon. Also,
A plurality of batteries are connected and used for EVs and HEVs, and since the variation in the characteristics of the cells greatly affects the life characteristics and safety, a control system is usually used in combination with each battery. Monitors cell voltage, current, temperature, etc.
Although control is used to suppress variations, it is extremely difficult to accurately monitor the state of the battery from the voltage because graphite-based materials have flat voltage characteristics, or a highly accurate control system is required. Become. Therefore, as a negative electrode material of a non-aqueous electrolyte secondary battery used for an application such as an electric vehicle, it is desirable to mainly use amorphous carbon, and it is promising to improve the output power.

【0005】また、正極、負極共に電極構造として合剤
層内の電子伝導性を向上させるために、導電剤を添加し
たり、合剤密度を大きくして、粒子間のネットワークを
確保する等種々の低抵抗化の改善がなされ、非水電解液
二次電池の高出力化が図られている。
Further, in order to improve the electron conductivity in the mixture layer for both the positive electrode and the negative electrode, a conductive agent is added, the mixture density is increased, and a network between particles is secured, for example. Of non-aqueous electrolyte secondary batteries has been improved.

【0006】[0006]

【発明が解決しようとする課題】しかしながら、非水電
解液二次電池の高出力化を図るためには、上述したよう
に合剤層内の電子伝導性を向上させる一方で、リチウム
イオンの拡散を良くする必要がある。そのためには、合
剤層中に非水電解液を保持する空間が必要である。特
に、非水電解液二次電池が低温で使用される場合は、非
水電解液中でのリチウムイオンの移動が非常に鈍くなる
と共に、合剤層中の非水電解液の分布により出力特性が
著しく変化する。更に、合剤層中に非水電解液が均一に
分布していることは、均一な電極反応を起こさせる必須
の条件であり、電極反応が偏った場合に非水電解液二次
電池が過充電状態に陥ると、電池が破裂するに至るまで
安全性を損なうこととなる。
However, in order to increase the output of a non-aqueous electrolyte secondary battery, it is necessary to improve the electron conductivity in the mixture layer as described above while diffusing lithium ions. Need to be better. For that purpose, a space for holding the non-aqueous electrolyte is required in the mixture layer. In particular, when the non-aqueous electrolyte secondary battery is used at a low temperature, the movement of lithium ions in the non-aqueous electrolyte becomes extremely slow, and the output characteristics are increased due to the distribution of the non-aqueous electrolyte in the mixture layer. Changes significantly. Furthermore, uniform distribution of the non-aqueous electrolyte in the mixture layer is an essential condition for causing a uniform electrode reaction, and when the electrode reaction is biased, the non-aqueous electrolyte secondary battery becomes excessive. When charged, the safety is compromised until the battery explodes.

【0007】本発明は上記事案に鑑み、高出力化、特に
低温での高出力化を図りつつ、安全性を改善することが
できる非水電解液二次電池を提供することを課題とす
る。
SUMMARY OF THE INVENTION In view of the above-mentioned problems, an object of the present invention is to provide a non-aqueous electrolyte secondary battery capable of improving safety while achieving high output, particularly at low temperature.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に、本発明の第1の態様は、平均粒子径5〜20μmの
リチウムマンガン複合酸化物と、黒鉛系炭素材を主とす
る導電剤と、結着剤とを含む正極合剤が帯状集電体の両
面にほぼ均等に塗着され正極合剤層が形成された非水電
解液二次電池において、前記正極合剤層内の空孔体積
が、前記正極合剤層の体積に対して25%以上35%以
下であることを特徴とする。本態様によれば、正極合剤
層内の空孔体積を正極合剤層の体積に対して25%以上
35%以下とすることにより、正極合剤層内に非水電解
液がほぼ均一に分布し正極活物質である平均粒子径5〜
20μmのリチウムマンガン複合酸化物と非水電解液と
の電極反応がほぼ均一に行われので、低温雰囲気下でも
良好な出力特性が得られると共に、過充電時に部分的に
電極反応が集中することなく安全性に優れた非水電解液
二次電池を得ることができる。
Means for Solving the Problems In order to solve the above problems, a first aspect of the present invention is to provide a lithium manganese composite oxide having an average particle diameter of 5 to 20 μm and a conductive agent mainly composed of a graphite-based carbon material. In a non-aqueous electrolyte secondary battery in which a positive electrode mixture containing a binder and a positive electrode mixture is substantially uniformly applied to both surfaces of the belt-shaped current collector to form a positive electrode mixture layer, the empty space in the positive electrode mixture layer is formed. The pore volume is 25% or more and 35% or less with respect to the volume of the positive electrode mixture layer. According to this aspect, by setting the pore volume in the positive electrode mixture layer to be not less than 25% and not more than 35% with respect to the volume of the positive electrode mixture layer, the non-aqueous electrolyte can be substantially uniformly formed in the positive electrode mixture layer. The average particle size of the positive electrode active material that is distributed 5 to 5
Since the electrode reaction between the 20 μm lithium manganese composite oxide and the non-aqueous electrolyte is performed almost uniformly, good output characteristics can be obtained even in a low-temperature atmosphere, and the electrode reaction does not partially concentrate during overcharge. A non-aqueous electrolyte secondary battery excellent in safety can be obtained.

【0009】また、本発明の第2の態様は、平均粒子径
5〜20μmの非晶質炭素と、導電剤と、結着剤とを含
む負極合剤が帯状集電体の両面にほぼ均等に塗着され負
極合剤層が形成された非水電解液二次電池において、前
記負極合剤層内の空孔体積が、前記負極合剤層の体積に
対して30%以上40%以下であることを特徴とする。
本態様によれば、負極合剤層内の空孔体積を負極合剤層
の体積に対して30%以上40%以下とすることによ
り、負極合剤層内に非水電解液がほぼ均一に分布し負極
活物質である平均粒子径5〜20μmの非晶質炭素と非
水電解液との電極反応がほぼ均一に行われので、低温雰
囲気下でも良好な出力特性が得られると共に、過充電時
に部分的に電極反応が集中することなく安全性に優れた
非水電解液二次電池を得ることができる。
In a second aspect of the present invention, a negative electrode mixture containing amorphous carbon having an average particle diameter of 5 to 20 μm, a conductive agent, and a binder is substantially evenly distributed on both surfaces of the belt-shaped current collector. In the non-aqueous electrolyte secondary battery in which the negative electrode mixture layer is formed by coating on the negative electrode mixture layer, the volume of the pores in the negative electrode mixture layer is 30% or more and 40% or less with respect to the volume of the negative electrode mixture layer. There is a feature.
According to this aspect, the non-aqueous electrolyte is almost uniformly formed in the negative electrode mixture layer by setting the pore volume in the negative electrode mixture layer to 30% or more and 40% or less with respect to the volume of the negative electrode mixture layer. The electrode reaction between the non-aqueous electrolyte and the amorphous carbon having an average particle diameter of 5 to 20 μm, which is a distributed negative electrode active material, is performed almost uniformly, so that good output characteristics can be obtained even in a low-temperature atmosphere and overcharging can be performed. A non-aqueous electrolyte secondary battery with excellent safety can be obtained without partial concentration of electrode reactions at times.

【0010】[0010]

【発明の実施の形態】以下、本発明に係る非水電解液二
次電池を電気自動車用の円筒型リチウムイオン二次電池
適用した実施の形態について説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment in which a nonaqueous electrolyte secondary battery according to the present invention is applied to a cylindrical lithium ion secondary battery for an electric vehicle will be described below.

【0011】(正極)平均粒子径が5〜20μmでスピ
ネル構造を有するリチウムマンガン複合酸化物としての
マンガン酸リチウム(正極活物質)に、正極活物質10
0質量部に対して10質量部の導電剤としての鱗片状黒
鉛と正極活物質100質量部に対して5質量部の結着剤
としてのポリフッ化ビニリデン(PVDF)とを添加
し、これに分散溶媒としてN−メチルピロリドンを添
加、混練してスラリを得た。このスラリを、厚さ20μ
mの帯状集電体としてのアルミニウム箔の両面にロール
・ツー・ロールによる転写で塗布し、乾燥させることで
アルミニウム箔上にぼぼ均等かつ均質な正極合剤層を形
成した。その後、ロールプレス機で正極合剤層を所定圧
でプレスすることで、正極合剤層内の空孔体積を正極合
剤層全体の体積に対して25%〜35%の範囲とした。
プレス後、幅80mmに裁断して帯状の正極を得た。な
お、正極合剤層内の空孔体積はプレス圧を変えることに
よって調整可能である。
(Positive Electrode) Lithium manganate (positive active material) as a lithium manganese composite oxide having an average particle diameter of 5 to 20 μm and having a spinel structure is added to a positive active material 10
10 parts by mass of flake graphite as a conductive agent and 0 parts by mass of polyvinylidene fluoride (PVDF) as a binder of 5 parts by mass are added to 100 parts by mass of the positive electrode active material, and dispersed therein. N-methylpyrrolidone was added as a solvent and kneaded to obtain a slurry. This slurry has a thickness of 20μ
m was applied to both sides of an aluminum foil as a belt-shaped current collector by roll-to-roll transfer, and dried to form a substantially uniform and uniform positive electrode mixture layer on the aluminum foil. Thereafter, the positive electrode mixture layer was pressed at a predetermined pressure by a roll press, so that the volume of pores in the positive electrode mixture layer was in the range of 25% to 35% with respect to the entire volume of the positive electrode mixture layer.
After pressing, it was cut into a width of 80 mm to obtain a belt-shaped positive electrode. The volume of pores in the positive electrode mixture layer can be adjusted by changing the pressing pressure.

【0012】(負極)負極活物質として平均粒子径が5
〜20μmの非晶質炭素粉末に、負極活物質100質量
部に対して5質量部の導電剤としてのアセチレンブラッ
クと、負極活物質100質量部に対して10質量部の結
着剤としてのポリフッ化ビニリデンとを添加し、これに
分散溶媒としてN−メチルピロリドンを添加、混練した
スラリを得た。このスラリを、厚さ10μmの帯状集電
体としての圧延銅箔の両面にロール・ツー・ロールによ
る転写で塗布し、乾燥させることで銅箔上にぼぼ均等か
つ均質な負極合剤層を形成した。その後、ロールプレス
機で負極合剤層を所定圧でプレスすることで、負極合剤
層内の空孔体積を正極合剤層全体の体積に対して30%
〜40%の範囲とした。プレス後、幅85mmに裁断し
て帯状の負極を得た。なお、正極と同様に、負極合剤層
内の空孔体積はプレス圧を変えることによって調整可能
である。
(Negative Electrode) The average particle diameter of the negative electrode active material is 5
To 20 μm of amorphous carbon powder, 5 parts by mass of acetylene black as a conductive agent with respect to 100 parts by mass of the negative electrode active material, and 10 parts by mass of polyfluoro as a binder with respect to 100 parts by mass of the negative electrode active material. And vinylidene chloride, and N-methylpyrrolidone as a dispersing solvent was added thereto to obtain a kneaded slurry. This slurry is applied to both sides of a rolled copper foil as a 10 μm-thick strip-shaped current collector by transfer using a roll-to-roll method, and dried to form a roughly uniform and uniform negative electrode mixture layer on the copper foil. did. Thereafter, by pressing the negative electrode mixture layer at a predetermined pressure with a roll press machine, the volume of pores in the negative electrode mixture layer is reduced to 30% of the total volume of the positive electrode mixture layer.
4040%. After pressing, it was cut into a width of 85 mm to obtain a strip-shaped negative electrode. As in the case of the positive electrode, the volume of pores in the negative electrode mixture layer can be adjusted by changing the pressing pressure.

【0013】(電池の作製)作製した正負極を、厚さ4
0μmのポリエチレン製セパレータとともに捲回して電
極群を作製し、この電極群を円筒状の電池容器に挿入、
非水電解液を所定量注入後、上蓋をカシメ封口すること
により円筒型リチウムイオン二次電池を得た。非水電解
液にはエチレンカーボネートとジメチルカーボネートと
の混合溶液中に6フッ化リン酸リチウム(LiPF
を1モル/リットル溶解したものを用いた。
(Preparation of Battery) The prepared positive and negative electrodes were
An electrode group was prepared by winding the electrode group together with a 0 μm polyethylene separator, and this electrode group was inserted into a cylindrical battery container.
After injecting a predetermined amount of the non-aqueous electrolyte, the upper lid was swaged to obtain a cylindrical lithium ion secondary battery. For the non-aqueous electrolyte, lithium hexafluorophosphate (LiPF 6 ) is used in a mixed solution of ethylene carbonate and dimethyl carbonate.
Was dissolved at 1 mol / liter.

【0014】[0014]

【実施例】次に、本実施形態に従って、正極合剤層内、
負極合剤層内の空孔体積を変更して作製した実施例の電
池について説明する。なお、比較のために作製した比較
例の電池についても併記する。
Next, according to the present embodiment, in the positive electrode mixture layer,
An example of a battery manufactured by changing the volume of pores in the negative electrode mixture layer will be described. The battery of the comparative example produced for comparison is also described.

【0015】(実施例1)下表1に示すように、実施例
1では、正極合剤層全体の体積に対する正極合剤層内の
空孔体積の割合(以下、正極空孔率という。)を25体
積%、負極合剤層全体の体積に対する負極合剤層内の空
孔体積の割合(以下、負極空孔率という。)を35体積
%として電池を作製した。正極空孔率及び負極空孔率
は、正負極それぞれの帯状集電体から合剤層を剥離し、
水銀圧入法により測定した(以下の実施例及び比較例に
おいても同じ。)。なお、合剤層中に存在する各種材料
の真比重、質量配合量、プレス後の極板の厚さの値から
算出した空孔体積は、水銀圧入法による測定結果と極め
て近似な値が得られた。
Example 1 As shown in Table 1 below, in Example 1, the ratio of the volume of pores in the positive electrode mixture layer to the total volume of the positive electrode mixture layer (hereinafter, referred to as positive electrode porosity). , And the ratio of the volume of pores in the negative electrode mixture layer to the entire volume of the negative electrode mixture layer (hereinafter, referred to as negative electrode porosity) was 35% by volume, to produce a battery. Positive electrode porosity and negative electrode porosity are obtained by peeling the mixture layer from the current collectors of the positive and negative electrodes,
It was measured by the mercury intrusion method (the same applies to the following Examples and Comparative Examples). The pore volume calculated from the values of the true specific gravity, mass blending amount, and thickness of the electrode plate after pressing of the various materials present in the mixture layer was very close to the measurement result by the mercury intrusion method. Was done.

【0016】[0016]

【表1】 [Table 1]

【0017】(実施例2、3、比較例1〜4)表1に示
すように、実施例2では正極空孔率を30体積%、負極
空孔率を35体積%とし、実施例3では正極空孔率を3
5体積%、負極空孔率を35体積%として電池を作製し
た。また、比較例1〜比較例4では、それぞれ正極空孔
率及び負極空孔率を、24体積%及び35体積%、36
体積%及び35体積%、24体積%及び28体積%、3
6体積%及び41体積%として電池を作製した。
(Examples 2 and 3, Comparative Examples 1 to 4) As shown in Table 1, in Example 2, the porosity of the positive electrode was 30% by volume, and the porosity of the negative electrode was 35% by volume. Positive electrode porosity of 3
A battery was manufactured with 5% by volume and a negative electrode porosity of 35% by volume. In Comparative Examples 1 to 4, the positive electrode porosity and the negative electrode porosity were respectively set to 24% by volume, 35% by volume, and 36% by volume.
% By volume and 35% by volume, 24% by volume and 28% by volume, 3
Batteries were prepared at 6% by volume and 41% by volume.

【0018】(実施例4〜6、比較例5、6)表1に示
すように、実施例4では正極空孔率を30体積%、負極
空孔率を30体積%とし、実施例5では正極空孔率を3
0体積%、負極空孔率を35体積%とし、実施例6では
正極空孔率を30体積%、負極空孔率を40体積%とし
て電池を作製した。また、比較例5、6では、それぞれ
正極空孔率及び負極空孔率を、30体積%及び28体積
%、30体積%及び41体積%として電池を作製した。
(Examples 4 to 6, Comparative Examples 5 and 6) As shown in Table 1, in Example 4, the porosity of the positive electrode was 30% by volume, and the porosity of the negative electrode was 30% by volume. Positive electrode porosity of 3
A battery was manufactured with 0% by volume and negative electrode porosity of 35% by volume. In Example 6, the positive electrode porosity was 30% by volume and the negative electrode porosity was 40% by volume. In Comparative Examples 5 and 6, batteries were manufactured with positive electrode porosity and negative electrode porosity of 30% by volume and 28% by volume, 30% by volume and 41% by volume, respectively.

【0019】(試験)次に、以上のように作製した実施
例及び比較例の各電池について以下の試験を実施した。
(Test) Next, the following tests were carried out for the batteries of the examples and the comparative examples manufactured as described above.

【0020】まず、25°Cの雰囲気にて3時間率
(0.33C)で定電流定電圧充電(設定電圧4.1
V)を5時間行った後、1時間率(1C)で放電終止電
圧2.7Vに至るまで放電し、再度同条件で充電した。
次に、日本蓄電池工業会規格SBA8503に準じ、放
電電流1、3、6Aの各電流値で放電し、5秒目の電圧
を測定、この電流−電圧特性より初期の出力を求めた。
First, constant-current constant-voltage charging (set voltage 4.1) at an atmosphere of 25 ° C. at a rate of 3 hours (0.33 C).
After performing V) for 5 hours, the battery was discharged at an hourly rate (1C) until the discharge end voltage reached 2.7 V, and charged again under the same conditions.
Next, in accordance with Japan Storage Battery Manufacturers Association Standard SBA8503, discharge was performed at respective current values of discharge currents 1, 3, and 6 A, the voltage at the 5th second was measured, and the initial output was obtained from the current-voltage characteristics.

【0021】初期の出力を測定した電池を−25°Cの
恒温槽内に24時間静置して電池全体が−25°Cにな
るように冷却し、上述した室温(25°C)での初期出
力の測定と同条件で、低温(−25°C)での出力特性
を測定した。
The battery whose initial output was measured was allowed to stand in a constant temperature bath at -25 ° C. for 24 hours to cool the battery to -25 ° C., and the battery was cooled at room temperature (25 ° C.) as described above. Under the same conditions as the measurement of the initial output, the output characteristics at a low temperature (−25 ° C.) were measured.

【0022】次に、充放電サイクルによる出力劣化を確
認するため、室温に24時間静置した後、25°Cの雰
囲気にて3時間率(0.33C)で定電流定電圧充電
(設定電圧4.1V)を5時間行った後、1時間率(1
C)で放電終止電圧2.7Vに至るまでの放電を繰り返
し、100サイクル経過後、初期出力の測定と同様に電
池の出力を測定した。
Next, in order to confirm the output deterioration due to the charge / discharge cycle, the battery was allowed to stand at room temperature for 24 hours and then charged at a constant current and a constant voltage (at a set voltage of 0.33 C) in an atmosphere of 25 ° C. at a rate of 0.33 C. 4.1 V) for 5 hours and then 1 hour rate (1
In C), the discharge was repeated until the discharge end voltage reached 2.7 V, and after 100 cycles, the output of the battery was measured in the same manner as the measurement of the initial output.

【0023】また、作製した電池を、室温で10A定電
流で連続充電して過充電状態とし、そのときの電池表面
の最高温度を測定し、挙動を観察した(過充電試験)。
The battery was continuously charged at room temperature with a constant current of 10 A to make it overcharged. At that time, the maximum temperature of the battery surface was measured and the behavior was observed (overcharge test).

【0024】表2にこれら一連の試験の試験結果を示
す。
Table 2 shows the test results of these series of tests.

【0025】[0025]

【表2】 [Table 2]

【0026】表1及び表2に示すように、正極空孔率が
25体積%以上35体積%以下の実施例1〜3の電池で
は、低温での出力が280W以上確保され、また、充放
電サイクルを100回繰り返した後でも初期出力の83
%以上の出力が維持されている。
As shown in Tables 1 and 2, in the batteries of Examples 1 to 3 having a positive electrode porosity of 25% by volume or more and 35% by volume or less, an output at a low temperature of 280 W or more was ensured, and charging and discharging were performed. Even after repeating the cycle 100 times, the initial output 83
% Output is maintained.

【0027】これに対し、正極空孔率が25体積%未満
の比較例1、3の電池では、低温での出力の低下が著し
く、また、過充電試験において、電池が破裂して安全性
を著しく損ねている。これは、比較例1の電池が実施例
1〜3の電池と負極空孔率が同じであるにも拘わらず現
象が見られることから、正極合剤層中の非水電解液分布
が不均一で、その結果非水電解液の存在する部分に電極
反応が集中して、その部分が早期から過充電状態に至っ
たものと考えられる。逆に、正極空孔率が35体積%を
超える比較例2、4の電池では、初期出力が低いことか
ら、正極合剤層中の電子伝導性が低下して電極反応が不
均一となっていると考えられる。しかしながら、これら
の電池では、初期から出力特性が劣っていることもあっ
て、破裂の状態にまでは至らなかった。
On the other hand, in the batteries of Comparative Examples 1 and 3 in which the porosity of the positive electrode was less than 25% by volume, the output at a low temperature was remarkably reduced. Significantly damaged. This is because the phenomenon in which the battery of Comparative Example 1 is the same as the batteries of Examples 1 to 3 has the same negative electrode porosity, and thus the nonaqueous electrolyte distribution in the positive electrode mixture layer is uneven. As a result, it is considered that the electrode reaction was concentrated on the portion where the non-aqueous electrolyte was present, and that portion was overcharged from an early stage. Conversely, in the batteries of Comparative Examples 2 and 4 in which the positive electrode porosity exceeds 35% by volume, since the initial output is low, the electron conductivity in the positive electrode mixture layer is reduced and the electrode reaction becomes uneven. It is thought that there is. However, these batteries did not reach a rupture state due to poor output characteristics from the beginning.

【0028】一方、負極空孔率が30体積%以上40体
積%以下の実施例4〜6の電池では、正極と同様に、低
温での出力が280W以上確保され、また、充放電サイ
クルを100回繰り返した後でも初期出力の80%以上
の出力が維持されている。
On the other hand, in the batteries of Examples 4 to 6 in which the porosity of the negative electrode is 30% by volume or more and 40% by volume or less, an output at a low temperature of 280 W or more is secured as in the case of the positive electrode. The output of 80% or more of the initial output is maintained even after the number of repetitions.

【0029】これに対し、負極空孔率が30体積%未満
の比較例5の電池では、低温での出力の低下が著しく、
また、過充電試験において、電池が破裂して安全性を著
しく損ねている。これは、正極の場合と同様に、負極合
剤層中の非水電解液分布が不均一で、その結果非水電解
液の存在する部分に電極反応が集中して、その部分が早
期から過充電状態に至ったものと考えられる。負極の電
極反応が部分的に偏ると活物質間にリチウムイオンが挿
入できず、金属状のリチウムが負極合剤層表面に析出す
る。その結果、出力の著しい低下はもちろん、破裂など
安全性が損なわれる原因となる。逆に、負極空孔率が4
0体積%を超える比較例6の電池でも、初期出力が著し
く低下していた。
On the other hand, in the battery of Comparative Example 5 in which the porosity of the negative electrode was less than 30% by volume, the output at a low temperature was significantly reduced.
Further, in the overcharge test, the battery ruptured and safety was significantly impaired. This is because, similarly to the case of the positive electrode, the distribution of the non-aqueous electrolyte in the negative electrode mixture layer is non-uniform, and as a result, the electrode reaction concentrates on the portion where the non-aqueous electrolyte is present, and that portion is early in excess. It is considered that the state of charge has been reached. If the electrode reaction of the negative electrode is partially biased, lithium ions cannot be inserted between the active materials, and metallic lithium precipitates on the surface of the negative electrode mixture layer. As a result, not only is the output significantly reduced, but also safety is impaired such as rupture. Conversely, the negative electrode porosity is 4
Even in the battery of Comparative Example 6 exceeding 0% by volume, the initial output was significantly reduced.

【0030】以上のように、電極合剤層中の空孔体積に
は、電子伝導性とリチウムイオンの拡散性とを共に良好
に維持可能な範囲が存在し、正極では正極空孔率25体
積%以上35体積%以下、負極では負極空孔率30体積
%以上40体積%以下の空孔を合剤層中に存在させるこ
とで、低温でも良好な出力特性が得られ、かつ、過充電
時にも安全性が確保される電池が得られる。
As described above, the vacancy volume in the electrode mixture layer has a range in which both electron conductivity and lithium ion diffusivity can be maintained well. % Or more and 35% by volume or less, and the negative electrode porosity of 30% by volume or more and 40% by volume or less is present in the mixture layer, so that good output characteristics can be obtained even at low temperatures, and at the time of overcharging. In addition, a battery whose safety is ensured can be obtained.

【0031】なお、本実施形態では、正極活物質にマン
ガン酸リチウム、正極導電剤に鱗片状黒鉛、結着剤にポ
リフッ化ビニリデン、負極導電剤にアセチレンブラッ
ク、非水電解液にエチレンカーボネートとジメチルカー
ボネートとの混合溶液中へ6フッ化リン酸リチウムを溶
解したものを例示したが、以下に詳述するように、これ
らは上述した特許請求の範囲において通常用いられてい
るいずれのものも使用可能である。
In the present embodiment, lithium manganate is used as the positive electrode active material, flake graphite is used as the positive electrode conductive agent, polyvinylidene fluoride is used as the binder, acetylene black is used as the negative electrode conductive agent, and ethylene carbonate and dimethyl are used as the nonaqueous electrolyte. Although a solution in which lithium hexafluorophosphate is dissolved in a mixed solution with carbonate is exemplified, as described in detail below, any of those commonly used in the claims described above can be used. It is.

【0032】すなわち、本例以外で用いることのできる
正極活物質としては、リチウムを挿入・脱離可能な材料
であり、予め十分な量のリチウムを挿入したリチウムマ
ンガン複合酸化物が好ましく、スピネル構造を有したマ
ンガン酸リチウムや、結晶中のマンガンやリチウムの一
部をそれら以外の元素で置換あるいはドープした材料を
好適に使用することができる。高容量、高出力で、かつ
安全性を確実に確保するためには、正極活物質にリチウ
ム・コバルト複合酸化物、リチウム・ニッケル複合酸化
物より、リチウムマンガン複合酸化物であるマンガン酸
リチウムを用いることが好ましい。
That is, as the positive electrode active material that can be used in other than this example, a material into which lithium can be inserted and desorbed, and a lithium manganese composite oxide into which a sufficient amount of lithium has been inserted in advance is preferable. Lithium manganate having a manganese or a material in which a part of manganese or lithium in a crystal is substituted or doped with another element can be suitably used. In order to ensure high capacity, high output, and safety, use lithium manganate, a lithium-manganese composite oxide, instead of lithium-cobalt composite oxide and lithium-nickel composite oxide for the positive electrode active material. Is preferred.

【0033】また、本例以外で用いることのできる結着
剤としては、テフロン(登録商標)、ポリエチレン、ポ
リスチレン、ポリブタジエン、ブチルゴム、ニトリルゴ
ム、スチレン/ブタジエンゴム、多硫化ゴム、ニトロセ
ルロース、シアノエチルセルロース、各種ラテックス、
アクリロニトリル、フッ化ビニル、フッ化ビニリデン、
フッ化プロピレン、フッ化クロロプレン等の重合体及び
これらの混合体などがある。
Examples of the binder that can be used in other than this example include Teflon (registered trademark), polyethylene, polystyrene, polybutadiene, butyl rubber, nitrile rubber, styrene / butadiene rubber, polysulfide rubber, nitrocellulose, and cyanoethylcellulose. , Various latex,
Acrylonitrile, vinyl fluoride, vinylidene fluoride,
There are polymers such as propylene fluoride and chloroprene fluoride, and mixtures thereof.

【0034】更に、本例以外で用いることのできる正極
導電材にも黒鉛系炭素材であれば特に制限はない。例え
ば、天然黒鉛や、人造の各種黒鉛材、コークスなどの炭
素質材料等でよく、その粒子形状においても、鱗片状、
球状、繊維状、塊状等、特に制限されるものではない。
また、本例以外で用いることができる負極導電剤にも特
に制限がない。例えば、ケッチェンブラック等の無定形
炭素を用いるようにしてもよい。
Further, there is no particular limitation on the positive electrode conductive material that can be used in other than this example as long as it is a graphite-based carbon material. For example, natural graphite, various artificial graphite materials, carbonaceous materials such as coke and the like may be used.
It is not particularly limited, such as a sphere, a fiber, and a lump.
Also, there is no particular limitation on the negative electrode conductive agent that can be used in other than this example. For example, amorphous carbon such as Ketjen black may be used.

【0035】また、非水電解液としては、一般的なリチ
ウム塩を電解質とし、これを有機溶媒に溶解した電解液
を用いることができる。また、用いられるリチウム塩や
有機溶媒も特に制限はない。例えば、電解質としては本
例の他に、LiClO、LiAsF、LiBF
LiB(C、CHSOLi、CFSO
Li等やこれらの混合物を用いることができる。ま
た、本例以外の非水電解液有機溶媒としては、プロピレ
ンカーボネート、ジエチルカーボネート、1,2−ジメ
トキシエタン、1,2−ジエトキシエタン、γ−ブチロ
ラクトン、テトラヒドロフラン、1,3−ジオキソラ
ン、4−メチル−1,3−ジオキソラン、ジエチルエー
テル、スルホラン、メチルスルホラン、アセトニトリ
ル、プロピオニトニル等またはこれら2種類以上の混合
溶媒が用いられる。混合配合比についても限定されるも
のではない。
As the non-aqueous electrolyte, an electrolyte obtained by dissolving a general lithium salt in an organic solvent as an electrolyte can be used. Further, the lithium salt and the organic solvent used are not particularly limited. For example, in addition to this example, LiClO 4 , LiAsF 6 , LiBF 4 ,
LiB (C 6 H 5 ) 4 , CH 3 SO 3 Li, CF 3 SO
3 Li or a mixture thereof can be used. Further, non-aqueous electrolyte organic solvents other than this example include propylene carbonate, diethyl carbonate, 1,2-dimethoxyethane, 1,2-diethoxyethane, γ-butyrolactone, tetrahydrofuran, 1,3-dioxolan, 4- Methyl-1,3-dioxolan, diethyl ether, sulfolane, methylsulfolane, acetonitrile, propionitonyl and the like, or a mixed solvent of two or more thereof are used. The mixing ratio is not limited.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
正極合剤層内の空孔体積を正極合剤層の体積に対して2
5%以上35%以下とし、負極合剤層内の空孔体積を負
極合剤層の体積に対して30%以上40%以下とするこ
とで、合剤層内に非水電解液がほぼ均一に分布し活物質
と非水電解液との電極反応がほぼ均一に行われので、低
温雰囲気下でも良好な出力特性が得られると共に、過充
電時に部分的に電極反応が集中することなく安全性に優
れた非水電解液二次電池を得ることができる、という効
果を得ることができる。
As described above, according to the present invention,
The volume of pores in the positive electrode mixture layer is 2 times the volume of the positive electrode mixture layer.
The nonaqueous electrolyte is substantially uniform in the mixture layer by setting the pore volume in the negative electrode mixture layer to 30% to 40% with respect to the volume of the negative electrode mixture layer. And the electrode reaction between the active material and the non-aqueous electrolyte is performed almost uniformly, so that good output characteristics can be obtained even in a low-temperature atmosphere, and safety can be achieved without partial concentration of electrode reactions during overcharge. In addition, an effect that a non-aqueous electrolyte secondary battery having excellent characteristics can be obtained can be obtained.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 弘中 健介 東京都中央区日本橋本町二丁目8番7号 新神戸電機株式会社内 Fターム(参考) 5H029 AJ02 AJ06 AJ12 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ22 DJ08 EJ04 EJ12 HJ05 HJ09 5H050 AA02 AA03 AA06 AA15 AA19 BA17 CA09 CB08 DA02 DA03 DA10 DA11 EA08 EA24 FA05 FA20 GA22 HA05 HA09  ────────────────────────────────────────────────── ─── Continued on the front page (72) Inventor Kensuke Hironaka 2-7-7 Nihonbashi Honcho, Chuo-ku, Tokyo F-term in Shin-Kobe Electric Co., Ltd. 5H029 AJ02 AJ06 AJ12 AK03 AL07 AM03 AM05 AM07 BJ02 BJ14 CJ22 DJ08 EJ04 EJ12 HJ05 HJ09 5H050 AA02 AA03 AA06 AA15 AA19 BA17 CA09 CB08 DA02 DA03 DA10 DA11 EA08 EA24 FA05 FA20 GA22 HA05 HA09

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平均粒子径5〜20μmのリチウムマン
ガン複合酸化物と、黒鉛系炭素材を主とする導電剤と、
結着剤とを含む正極合剤が帯状集電体の両面にほぼ均等
に塗着され正極合剤層が形成された非水電解液二次電池
において、前記正極合剤層内の空孔体積が、前記正極合
剤層の体積に対して25%以上35%以下であることを
特徴とする非水電解液二次電池。
1. A lithium-manganese composite oxide having an average particle diameter of 5 to 20 μm, a conductive agent mainly containing a graphite-based carbon material,
In a non-aqueous electrolyte secondary battery in which a positive electrode mixture containing a binder and a positive electrode mixture layer are formed on the both sides of a belt-shaped current collector substantially uniformly, a pore volume in the positive electrode mixture layer Is 25% or more and 35% or less based on the volume of the positive electrode mixture layer.
【請求項2】 平均粒子径5〜20μmの非晶質炭素
と、導電剤と、結着剤とを含む負極合剤が帯状集電体の
両面にほぼ均等に塗着され負極合剤層が形成された非水
電解液二次電池において、前記負極合剤層内の空孔体積
が、前記負極合剤層の体積に対して30%以上40%以
下であることを特徴とする非水電解液二次電池。
2. A negative electrode mixture containing amorphous carbon having an average particle diameter of 5 to 20 μm, a conductive agent, and a binder is substantially uniformly coated on both surfaces of a belt-shaped current collector, and a negative electrode mixture layer is formed. In the formed non-aqueous electrolyte secondary battery, the volume of pores in the negative electrode mixture layer is 30% to 40% of the volume of the negative electrode mixture layer. Liquid secondary battery.
JP2001053334A 2001-02-28 2001-02-28 Nonaqueous electrolyte secondary battery Abandoned JP2002260633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001053334A JP2002260633A (en) 2001-02-28 2001-02-28 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001053334A JP2002260633A (en) 2001-02-28 2001-02-28 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002260633A true JP2002260633A (en) 2002-09-13

Family

ID=18913812

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001053334A Abandoned JP2002260633A (en) 2001-02-28 2001-02-28 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002260633A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225366A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
WO2012063369A1 (en) * 2010-11-12 2012-05-18 トヨタ自動車株式会社 Secondary battery
JP2012164638A (en) * 2011-01-19 2012-08-30 Gs Yuasa Corp Negative electrode, electrode body, and electrical storage device
WO2013069643A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
EP2639861A1 (en) * 2010-11-12 2013-09-18 Toyota Jidosha Kabushiki Kaisha Secondary battery
WO2014103849A1 (en) * 2012-12-28 2014-07-03 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
JP2015173059A (en) * 2014-03-12 2015-10-01 株式会社豊田自動織機 power storage device
JP2017054822A (en) * 2011-10-28 2017-03-16 旭化成株式会社 Non-aqueous secondary battery
JP2018078029A (en) * 2016-11-09 2018-05-17 株式会社Gsユアサ Negative electrode and nonaqueous electrolyte power storage device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010225366A (en) * 2009-03-23 2010-10-07 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JP5854285B2 (en) * 2010-11-12 2016-02-09 トヨタ自動車株式会社 Secondary battery
CN103348510A (en) * 2010-11-12 2013-10-09 丰田自动车株式会社 Secondary battery
EP2639861A4 (en) * 2010-11-12 2014-08-20 Toyota Motor Co Ltd Secondary battery
EP2639861A1 (en) * 2010-11-12 2013-09-18 Toyota Jidosha Kabushiki Kaisha Secondary battery
WO2012063369A1 (en) * 2010-11-12 2012-05-18 トヨタ自動車株式会社 Secondary battery
JPWO2012063369A1 (en) * 2010-11-12 2014-05-12 トヨタ自動車株式会社 Secondary battery
JP2012164638A (en) * 2011-01-19 2012-08-30 Gs Yuasa Corp Negative electrode, electrode body, and electrical storage device
US9449764B2 (en) 2011-01-19 2016-09-20 Gs Yuasa International Ltd. Electric storage device
JP2017054822A (en) * 2011-10-28 2017-03-16 旭化成株式会社 Non-aqueous secondary battery
US10644353B2 (en) 2011-10-28 2020-05-05 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery
WO2013069643A1 (en) * 2011-11-09 2013-05-16 新神戸電機株式会社 Nonaqueous electrolyte secondary battery
WO2014103849A1 (en) * 2012-12-28 2014-07-03 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
CN104995783A (en) * 2012-12-28 2015-10-21 株式会社理光 Nonaqueous electrolytic storage element
JP2014130717A (en) * 2012-12-28 2014-07-10 Ricoh Co Ltd Nonaqueous electrolyte storage element
US9831521B2 (en) 2012-12-28 2017-11-28 Ricoh Company, Ltd. Nonaqueous electrolytic storage element
JP2015173059A (en) * 2014-03-12 2015-10-01 株式会社豊田自動織機 power storage device
JP2018078029A (en) * 2016-11-09 2018-05-17 株式会社Gsユアサ Negative electrode and nonaqueous electrolyte power storage device

Similar Documents

Publication Publication Date Title
CA2851994C (en) Lithium secondary cell with high charge and discharge rate capability
US9553299B2 (en) Lithium-ion secondary battery
US9240701B2 (en) Lithium-ion secondary battery
JP2000003724A (en) Nonaqueous electrolyte and lithium secondary battery using the same
US9219278B2 (en) Non-aqueous electrolyte secondary battery and use thereof
JP2009245808A (en) Lithium ion secondary battery, and power source for electric vehicle
EP3016197B1 (en) Lithium secondary battery
CN106133952B (en) Non-aqueous electrolyte secondary battery
KR20130031085A (en) Positive-electrode active material with high power at the low soc and lithium secondary battery including them
JP6627621B2 (en) Output evaluation method of lithium ion secondary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JP2002260633A (en) Nonaqueous electrolyte secondary battery
CN105789554A (en) Electrode for nonaqueous electrolyte secondary battery and method of manufacturing the same
US20230290955A1 (en) Carbon-based conductive agent, secondary battery, and electrical device
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH09306546A (en) Positive electrode plate for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
CN109983605A (en) Negative electrode active material and preparation method thereof
JPH11312523A (en) Electrode for battery and nonaqueous electrolyte battery
CN113690412A (en) Active slurry, preparation method thereof, positive plate and lithium ion battery
JP3624793B2 (en) Lithium ion battery
JP2009176598A (en) Nonaqueous electrolyte secondary battery, and manufacturing method thereof
EP4451377A1 (en) Secondary battery, battery module, battery pack and electric device
WO2022163061A1 (en) Power storage element and method for using power storage element
JP7230569B2 (en) lithium ion secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051125

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A762 Written abandonment of application

Free format text: JAPANESE INTERMEDIATE CODE: A762

Effective date: 20080610