JP3144236B2 - Surface treatment method for semiconductor device - Google Patents

Surface treatment method for semiconductor device

Info

Publication number
JP3144236B2
JP3144236B2 JP22688394A JP22688394A JP3144236B2 JP 3144236 B2 JP3144236 B2 JP 3144236B2 JP 22688394 A JP22688394 A JP 22688394A JP 22688394 A JP22688394 A JP 22688394A JP 3144236 B2 JP3144236 B2 JP 3144236B2
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor layer
semiconductor
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22688394A
Other languages
Japanese (ja)
Other versions
JPH0897181A (en
Inventor
一夫 松崎
彰 天野
憲二 上條
健木 岡林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP22688394A priority Critical patent/JP3144236B2/en
Publication of JPH0897181A publication Critical patent/JPH0897181A/en
Application granted granted Critical
Publication of JP3144236B2 publication Critical patent/JP3144236B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Weting (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は、pn接合が電極を介
して複数直列接続されたメサ型構造の半導体素子の表面
処理方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a surface treatment method for a semiconductor element having a mesa structure in which a plurality of pn junctions are connected in series via electrodes.

【0002】[0002]

【従来の技術】一般に、半導体素子はシリコンチップ内
に複数のp形およびn形領域を有する。接合界面がチッ
プ表面に露出するタイプのプレーナ型半導体素子では、
通常、プロセス投入からプロセス完了まで、常に、表面
保護膜である酸化膜でpn接合界面は保護されている。
しかし、メサ形半導体素子はpn接合界面はチップの表
面でなしに側面に露出し、酸化膜での保護は困難であ
り、通常、プロセスの最終段階で、チップのpn接合界
面が露出した側面を表面処理したのち、保護膜を被覆さ
せる方法がとられる。この表面処理は、チップ化の際の
ダイシングソーでできた機械的な歪み層を除去するため
に、高濃度の酸またはアルカリ液で行われる。
2. Description of the Related Art Generally, a semiconductor device has a plurality of p-type and n-type regions in a silicon chip. In a planar type semiconductor device where the bonding interface is exposed on the chip surface,
Normally, the pn junction interface is always protected by an oxide film, which is a surface protection film, from the start of the process to the completion of the process.
However, in a mesa-type semiconductor device, the pn junction interface is exposed on the side surface instead of the chip surface, and it is difficult to protect with an oxide film. Usually, at the final stage of the process, the side surface where the pn junction interface of the chip is exposed is exposed. After the surface treatment, a method of covering with a protective film is employed. This surface treatment is performed with a high-concentration acid or alkali solution in order to remove a mechanically distorted layer formed by a dicing saw during chip formation.

【0003】図4は従来のpn接合が電極金属4、5と
はんだ6からなる金属層11を介して積層されたメサ型
ダイオードの要部断面図を示す。同図(a)は機械加工
後の要部断面図を示す。n形半導体ウエハの一方にp+
層3、他方にn+ 層2を拡散で形成し、p+ 層3、n層
1およびn+ 層2のpn構造とし、n+ 層2、p+ 層3
の表面に電極金属4、5を被着させてダイオード構造と
し、このダイオード構造のウエハを2個以上(同図は2
個の場合)をはんだ6を介して直列に積層し、その後ウ
エハをダイシングソーで切断し、小さな積層されたダイ
オード片とし、その両側にはんだでリード線7、8をそ
れぞれ接続してメサ型ダイオードとする。積層されたダ
イオード片のpn接合が露出している側面の表面層には
ダイシング時の機械的歪み層9が形成されている。同図
(b)は同図(a)のダイオード片を高濃度の水酸化カ
リウム水溶液で湿式エッチングした後の要部断面図を示
す。電極金属4と接するn+ 層2がエッチングにより楔
状の欠落部10が形成されている。ただし、リード線7
に隣接したn+ 層2の界面は楔状の欠落部10がない。
FIG. 4 is a sectional view showing a main part of a conventional mesa diode in which a pn junction is laminated via a metal layer 11 composed of electrode metals 4 and 5 and solder 6. FIG. 3A is a sectional view of a main part after machining. p + on one of the n-type semiconductor wafers
Layer 3 and n + layer 2 formed on the other side by diffusion to form a pn structure of p + layer 3, n layer 1 and n + layer 2, and n + layer 2 and p + layer 3
The electrodes 4 and 5 are applied to the surface of the substrate to form a diode structure.
Are stacked in series via a solder 6, and then the wafer is cut with a dicing saw to form small stacked diode pieces, and lead wires 7 and 8 are connected to both sides of the mesa diode by soldering, respectively. And A mechanical strain layer 9 at the time of dicing is formed on the surface layer on the side surface where the pn junction of the stacked diode pieces is exposed. FIG. 2B is a sectional view of a main part after the diode piece of FIG. 1A is wet-etched with a high-concentration aqueous solution of potassium hydroxide. The n + layer 2 in contact with the electrode metal 4 has a wedge-shaped notch 10 formed by etching. However, lead wire 7
There is no wedge-shaped notch 10 at the interface of the n + layer 2 adjacent to.

【0004】[0004]

【発明が解決しようとする課題】この様に、楔状の欠落
部10があると、この部分から積層したダイオード片が
折れ易くなり、機械的強度の点からと、欠落部分で電流
が絞られるためダイオード片の面積の縮小化の阻害要因
となる。この発明は前記の課題を解決するために、楔状
の欠落部分が生じない半導体素子の表面処理方法を提供
することを目的とする。
As described above, if there is a wedge-shaped missing portion 10, the diode pieces laminated from this portion are easily broken, and the current is reduced at the missing portion in terms of mechanical strength. This becomes a hindrance factor for reducing the area of the diode piece. An object of the present invention is to provide a method for treating a surface of a semiconductor device in which a wedge-shaped missing portion does not occur.

【0005】[0005]

【課題を解決するための手段】この発明は前記の目的を
達成するために、n形の第一半導体層の一主面にp形第
二半導体層が、このp形第二半導体層上に金属層がそれ
ぞれ形成され、n形第一半導体層の他主面に高濃度n形
第三半導体層が、この高濃度n形第三半導体層上に金属
層がそれぞれ形成された半導体基体が少なくとも2個以
上直列に積層され、切断されて形成される半導体素子片
において、n形第三半導体層,金属層,p形第二半導体
層からなる積層構造の側表面を少なくともアンモニア水
と過酸化水素水と水との混合液を用いてエッチング処理
する。またはn形第三半導体層,金属層,p形第二半導
体層からなる積層構造の側表面を、前記積層の両端間に
数式V(V)=0.059×n×ΔpH(ここで、nは
n形第三半導体層,金属層,p形第二半導体層を一組の
層として積層する層数、ΔpHは用いる電解質のペーハ
ー値と不具合が発生しない電解質のペーハー値の差であ
る。)を満足するような電圧を印加するようにして電解
質を用いて湿式のエッチング処理する。
According to the present invention, in order to achieve the above object, a p-type second semiconductor layer is provided on one main surface of an n-type first semiconductor layer, and a p-type second semiconductor layer is provided on the p-type second semiconductor layer. A metal layer is formed, a high-concentration n-type third semiconductor layer is formed on the other main surface of the n-type first semiconductor layer, and at least a semiconductor substrate on which the metal layer is formed on the high-concentration n-type third semiconductor layer is formed. In a semiconductor element piece formed by stacking and cutting two or more semiconductor elements in series, the side surface of the stacked structure including the n-type third semiconductor layer, the metal layer, and the p-type second semiconductor layer has at least ammonia water and hydrogen peroxide. Etching is performed using a mixed solution of water and water. Alternatively, the side surface of the laminated structure composed of the n-type third semiconductor layer, the metal layer, and the p-type second semiconductor layer is formed by applying the following equation between both ends of the laminate: V (V) = 0.059 × n × ΔpH (where n Is the number of layers in which the n-type third semiconductor layer, the metal layer, and the p-type second semiconductor layer are laminated as a set of layers, and ΔpH is the difference between the pH value of the electrolyte used and the pH value of the electrolyte where no problem occurs.) And wet etching using an electrolyte so as to apply a voltage that satisfies the following conditions.

【0006】[0006]

【作用】金属層とn+ 層との界面部分のシリコン層が楔
が入ったように異常エッチングされるという現象が生ず
るメカニズムを説明する。図5は金属層11をn層1、
+ 層2の半導体とp+ 層3、n層1の半導体とで挟み
こんだ部分の拡大断面図と各層に対応する電子エネルギ
ー準位を模式的に示す図である。同図(a)は各層の位
置関係を示した図で、金属層11を挟んで、左右に半導
体の各層が位置している。同図(b)が接合状態のエネ
ルギー準位図を示し、フェルミ準位12を点線で示す。
電解液に浸漬せず、ダイオード片に電圧を印加していな
状態では、フェルミ準位12はn層1、n+ 層2、金属
層(金属電極、はんだ層および金属電極を含んだ層をい
う)11、p+ 層3およびn層1の各層で同じ高さにな
っている。また金属層11との界面の半導体側の禁制帯
のエネルギーバンド13はn + 層2側、p+ 層3側とも
電子エネルギー準位が高くなるように曲がっており、n
+ 層2側では電子が金属層11に注入されるのが抑えら
れ非オーミック接合となり、p+ 層3側では正孔が金属
層11に自由に注入されるオーミック接合となってい
る。この系が電解質と接すると、電極電位E(電子エネ
ルギー準位で表現した電位で通常のプラス電荷に対する
電位と逆になる)はNernstの式で表され、次式に
従って変動する。
[Function] Metal layer and n+Silicon layer at interface with layer is wedge
Phenomenon that abnormal etching occurs as if
The following describes the mechanism. FIG. 5 shows that the metal layer 11 is the n-layer 1,
n+Layer 2 semiconductor and p+Sandwiched between layer 3 and n-layer 1 semiconductor
Enlarged sectional view of the indented part and the electron energy corresponding to each layer
FIG. 3 is a diagram schematically showing levels. FIG. 3A shows the order of each layer.
This is a diagram showing the positional relationship, with the metal layer 11 sandwiched between the left and right sides.
Each layer of the body is located. FIG. 2B shows the energy in the joined state.
Fig. 2 shows a Lugie level diagram, and a Fermi level 12 is indicated by a dotted line.
Do not apply voltage to the diode pieces without immersion in the electrolyte.
In the state, the Fermi level 12 is the n-layer 1, n+Layer 2, metal
Layers (including layers containing metal electrodes, solder layers and metal electrodes)
U) 11, p+Layer 3 and n-layer 1 have the same height.
ing. Also, a forbidden band on the semiconductor side at the interface with the metal layer 11.
Energy band 13 is n +Layer 2 side, p+Layer 3 side
Bent so that the electron energy level becomes higher, and n
+On the layer 2 side, injection of electrons into the metal layer 11 is suppressed.
Is a non-ohmic junction, p+Holes are metal on layer 3 side
Ohmic junction freely injected into layer 11
You. When this system comes into contact with the electrolyte, the electrode potential E (electron energy)
At the potential expressed by the Luggy level
Is opposite to the potential) is expressed by Nernst's equation.
Therefore, it fluctuates.

【0007】[0007]

【数1】E=EO −2.3kTpH (eV) (1) 〔ここで、EO は電解質に接する前の標準電極電位、k
はボルツマン定数、Tは系の絶対温度、pHは電解質の
ペーハー値(厳密には、ペーハー値というよりも電解質
内のイオンの活動度で論ずるべきであるが、ここでは便
宜上ペーハー値とした)である。〕 この系をペーハー値の高い電解質に浸漬すると、上式か
ら電極電位Eは低下し、反対にペーハー値の低い電解質
に浸漬すると、電極電位Eは高くなる。
E = E O −2.3 kTpH (eV) (1) [where E O is the standard electrode potential before contacting the electrolyte, k
Is the Boltzmann constant, T is the absolute temperature of the system, and pH is the pH value of the electrolyte (strictly, it should be discussed not by the pH value but by the activity of ions in the electrolyte, but here the pH value is used for convenience). is there. When the system is immersed in an electrolyte having a high pH value, the electrode potential E decreases from the above equation, and when the system is immersed in an electrolyte having a low pH value, the electrode potential E increases.

【0008】同図(c)は同図(b)の接合状態の系を
pH値の高い電解質内に置いた状態を示す図である。電
解質の影響で金属層11に対して半導体側は電子エネル
ギー準位が相対的に高くなり、フェルミ準位は金属層1
1との界面の半導体側の電子エネルギー準位が低くなる
ように曲がる。そのため、n+ 層2側では電子が金属層
11に自由に注入されるオーミック接合に変わり、金属
層11の近傍のn+ 層2のシリコンが電解質に溶解し、
そのときにn+ 層2に取り残された電子が金属層11に
入り込み、一方p+ 層3の正孔はオーミック接合を通り
金属層11に入り込み、一部の電子、正孔は金属層11
内で結合し、一部は金属層11と接する電解質に溶解し
たシリコンと結合する。
FIG. 1C is a view showing a state where the system in the joined state shown in FIG. 1B is placed in an electrolyte having a high pH value. Due to the effect of the electrolyte, the electron energy level on the semiconductor side is relatively higher than that on the metal layer 11, and the Fermi level is
It bends so that the electron energy level on the semiconductor side at the interface with 1 becomes low. Therefore, on the n + layer 2 side, an ohmic junction in which electrons are freely injected into the metal layer 11 is changed, and silicon in the n + layer 2 near the metal layer 11 is dissolved in the electrolyte,
At this time, the electrons left in the n + layer 2 enter the metal layer 11, while the holes of the p + layer 3 enter the metal layer 11 through the ohmic junction, and some of the electrons and holes enter the metal layer 11.
Inside, and partly bonds with silicon dissolved in the electrolyte in contact with the metal layer 11.

【0009】同図(d)は同図(b)の接合状態の系を
pH値の低い電解質内に置いた状態を示す図である。電
解質の影響で金属層11に対して半導体側はフェルミ準
位12が相対的に低くなり、そのため金属層11との界
面の半導体側のエネルギーバンド13はn+ 層2側、p
+ 層3側ともこの系を電解質に浸漬しない場合よりも、
一層、電子エネルギー準位が高くなるように曲げられ、
+ 層3側はオーミック性を保ったままであるが、n+
層2側では非オーミック性が強まり、n+ 層2から金属
層11への電子の注入が遮断される。そのため、n+
2のシリコンは電解質に溶解しないことになる。しか
し、pH値の低い電解質は酸ということになるが、酸に
よる処理は電極金属、およびはんだからなる金属層を腐
食するなどの問題があり採用が困難であるため、これと
同等の効果がある次に述べる方法が実用的である。
FIG. 1D is a view showing a state in which the system in the joined state shown in FIG. 1B is placed in an electrolyte having a low pH value. The Fermi level 12 on the semiconductor side relative to the metal layer 11 is relatively lower than that of the metal layer 11 due to the influence of the electrolyte. Therefore, the energy band 13 on the semiconductor side at the interface with the metal layer 11 is n + layer 2 side, p
+ Both the layer 3 side and this system are not immersed in the electrolyte,
It is bent so that the electron energy level becomes higher,
Although the p + layer 3 side keeps ohmic properties, n +
On the layer 2 side, non-ohmicity is enhanced, and injection of electrons from the n + layer 2 to the metal layer 11 is blocked. Therefore, the silicon of the n + layer 2 does not dissolve in the electrolyte. However, an electrolyte having a low pH value is an acid, but treatment with an acid has problems such as corrosion of a metal layer made of an electrode metal and a solder, and is difficult to employ. The following method is practical.

【0010】前記の現象はp+ 層3を金属層11に対し
て高い電位(電子エネルギー準位としては低くする)を
与えることで同等の効果がでる。このとき、印加する電
圧VはNernstの式を目安に次式で見積もられる。
The same effect can be obtained by giving the p + layer 3 a high potential (lower electron energy level) with respect to the metal layer 11. At this time, the voltage V to be applied is estimated by the following equation using Nernst's equation as a guide.

【0011】[0011]

【数2】V=0.059×n×ΔpH (V) (2) 〔ここで、nはn+ 層2−金属層11−p+ 層3を一組
の層として積層する層数、ΔpHは用いる表面処理液の
ペーハー値と不具合が発生しない表面処理液のペーハー
値の差である。〕 また、前記とは異なり、シリコンを酸化し、その酸化膜
をエッチングで除去する方法もある。この場合は、酸化
膜によって電子および正孔の金属膜11への注入が遮断
されるので、類似の効果が得られる。
V = 0.059 × n × ΔpH (V) (2) [where n is the number of layers in which the n + layer 2 -metal layer 11 -p + layer 3 are stacked as one set of layers, ΔpH Is the difference between the pH value of the surface treatment liquid used and the pH value of the surface treatment liquid that does not cause any trouble. Further, unlike the above, there is a method of oxidizing silicon and removing the oxide film by etching. In this case, injection of electrons and holes into the metal film 11 is blocked by the oxide film, so that a similar effect is obtained.

【0012】[0012]

【実施例】図1はこの発明の第一の実施例の表面処理を
行う前と後の積層された要部断面図を示す。同図(a)
は表面処理前の積層されたダイオードの要部構造図を示
す。シリコンウエハにn+ 層2−n層1−p+ 層3から
なるダイオードを形成し、n+ 層2上およびp+ 層3上
にそれぞれNi/Auの無電解メッキにより電極付けを
した後、このウエハを10枚重ね高温はんだで互いを接
着し、ダイシングソーで切断し、積層したダイオード片
とし、このダイオード片の両端にリード線7、8が取り
付けられる。この切断により機械的歪み層9が表面層に
形成される。同図(b)は表面処理後のダイオードの要
部断面図を示す。同図(a)の状態の機械的歪み層9が
表面層に形成されているダイオード片の側面を、7%K
OH液に80°Cで1.5分間浸漬してダイオード片の
両側にp+ 層3が正極、n+ 層2が負極に成るように電
圧を印加しながら、湿式エッチングによる表面処理を行
う。従来処理のような楔状の欠落部10(図4(b)参
照)は生じていない。図2は表面処理時に使用する治具
とダイオード15を示し、同図(a)はPtで製作され
た簡単な電圧を印加するための治具141、142にダ
イオードのリード線7、8を挟み込んだ図と同図(b)
はこのリード線7、8を挟み込む部分(A部)の拡大図
を示す。ダイオードのリード端子間には図3は積層され
たダイオードのリード端子間に印加される電圧の極性を
示す図である。このとき、リード端子間に印加する電圧
Vは、(2)式からn=10、ΔpH=7として、約4
Vとした。その結果、450μm□のチップサイズのダ
イオード片で無電圧処理の場合に発生していた楔の深さ
L(図4(b)参照)が30ないし40μmからほぼ0
μmにすることができた。
FIG. 1 is a sectional view showing a main part of a first embodiment of the present invention, before and after surface treatment. FIG.
2 shows a structural diagram of a main part of a stacked diode before surface treatment. After forming a diode composed of an n + layer 2 -n layer 1 -p + layer 3 on a silicon wafer and applying electrodes on the n + layer 2 and the p + layer 3 by Ni / Au electroless plating, Ten wafers are stacked and bonded to each other with a high-temperature solder, cut with a dicing saw to form stacked diode pieces, and lead wires 7 and 8 are attached to both ends of the diode pieces. By this cutting, a mechanical strain layer 9 is formed on the surface layer. FIG. 1B is a cross-sectional view of a main part of the diode after the surface treatment. The side surface of the diode piece in which the mechanical strain layer 9 in the state of FIG.
Surface treatment by wet etching is performed while immersing in an OH solution at 80 ° C. for 1.5 minutes while applying a voltage so that the p + layer 3 becomes a positive electrode and the n + layer 2 becomes a negative electrode on both sides of the diode piece. There is no wedge-shaped missing portion 10 (see FIG. 4B) unlike the conventional processing. FIG. 2 shows a jig and a diode 15 used for surface treatment, and FIG. 2A shows a jig 141 and 142 made of Pt for applying a simple voltage, with the lead wires 7 and 8 of the diode interposed therebetween. Figure (b)
Shows an enlarged view of a portion (A portion) sandwiching the lead wires 7 and 8. FIG. 3 is a diagram showing the polarity of the voltage applied between the lead terminals of the stacked diodes. At this time, the voltage V applied between the lead terminals is approximately 4 assuming that n = 10 and ΔpH = 7 from the equation (2).
V. As a result, the wedge depth L (see FIG. 4 (b)) generated in the no-voltage processing with the diode piece having a chip size of 450 μm square is reduced from 30 to 40 μm to almost 0.
μm.

【0013】また、この発明の第二の実施例は、表面処
理液をアンモニア水と過酸化水素水の混合液を用いる方
法である。この混合液は基本的には通常SC−1とよば
れるウエハの洗浄液として知られているものと同一であ
る。このアンモニア水と過酸化水素水の混合液はシリコ
ン基板の酸化作用とエッチング作用と洗浄作用があるこ
とが知られている。NH4OH:H2O2:H2O=1:1:5 の場合、シ
リコン基板上では酸化膜は瞬時に5Å程形成され、その
厚さで飽和してしまうが、エッチングは約1nm/分
(90°C)の速度で進む。即ち、酸化とエッチングが
共存する系であるため、電子および正孔の金属膜への流
入が断続的であり、楔の深さLの大きさもかなり小さく
できる。実際、上記の表面処理液に3分浸漬した結果、
従来と変わらない素子特性が得られ、且つ楔の深さLは
0.1μm以下と実用上問題のない結果が得られた。
A second embodiment of the present invention is a method using a mixture of aqueous ammonia and aqueous hydrogen peroxide as the surface treatment liquid. This liquid mixture is basically the same as that known as a cleaning liquid for wafers usually called SC-1. It is known that the mixed solution of the ammonia water and the hydrogen peroxide solution has an oxidizing action, an etching action and a cleaning action of the silicon substrate. In the case of NH 4 OH: H 2 O 2 : H 2 O = 1: 1: 5, an oxide film is instantaneously formed on the silicon substrate by about 5 ° and saturated at the thickness, but the etching is performed at about 1 nm / Proceed at a speed of minutes (90 ° C). That is, since the oxidation and etching coexist, the flow of electrons and holes into the metal film is intermittent, and the depth L of the wedge can be considerably reduced. Actually, as a result of immersion in the above surface treatment liquid for 3 minutes,
The same element characteristics as those of the related art were obtained, and the wedge depth L was 0.1 μm or less, which was a result having no practical problem.

【0014】[0014]

【発明の効果】この発明によれば、pn接合が積層され
たメサ型ダイオードの機械的歪み層を除去するための表
面処理で発生する楔状の異常サイドエッチをダイオード
の両端に電圧を印加しながら表面処理するか、表面処理
液を従来の表面処理液からアンモニア水と過酸化水素の
混合液に変更することによって、防止することができ
る。その結果、積層されたダイオード片が表面処理後の
工程で折れが発生せず、工程歩留りが向上した。また、
機械的強度の確保が可能となったことと、通電断面積を
チップサイズ一杯まで取れることにより、従来よりチッ
プサイズを小さくして、同等の性能が得られた。その結
果、チップコストの低減が図られた。
According to the present invention, an abnormal wedge-shaped side etch generated by a surface treatment for removing a mechanically strained layer of a mesa diode having a pn junction laminated is applied while applying a voltage to both ends of the diode. This can be prevented by performing surface treatment or changing the surface treatment solution from a conventional surface treatment solution to a mixed solution of aqueous ammonia and hydrogen peroxide. As a result, the stacked diode pieces did not break in the process after the surface treatment, and the process yield was improved. Also,
Since the mechanical strength can be ensured and the current-carrying cross-sectional area can be as large as the chip size, the chip size can be made smaller than before and equivalent performance can be obtained. As a result, a reduction in chip cost was achieved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第一の実施例の表面処理前後の積層
されたダイオードの要部断面図で、同図(a)は表面処
理前の要部断面図、同図(b)は表面処理後の要部断面
FIGS. 1A and 1B are cross-sectional views of main parts of a stacked diode before and after surface treatment according to a first embodiment of the present invention. FIG. 1A is a cross-sectional view of main parts before surface treatment, and FIG. Cross-sectional view of main parts after processing

【図2】第一の実施例の表面処理を行うときに使用する
電圧を印加する治具にダイオードを挟み込んだ図
FIG. 2 is a diagram in which a diode is sandwiched in a jig for applying a voltage used when performing the surface treatment of the first embodiment.

【図3】第一の実施例の表面処理のときのダイオードに
電圧を印加するときの極性を示した図
FIG. 3 is a diagram illustrating polarities when a voltage is applied to a diode during surface treatment according to the first embodiment;

【図4】従来の表面処理前後の積層されたダイオードの
要部断面図で、同図(a)は表面処理前の要部断面図、
同図(b)は表面処理後の要部断面図
FIG. 4 is a cross-sectional view of a main part of a stacked diode before and after a conventional surface treatment. FIG.
FIG. 4B is a cross-sectional view of a main part after surface treatment.

【図5】積層したダイオードの拡大断面図とそれに対応
した各層の電子エネルギー準位図
FIG. 5 is an enlarged cross-sectional view of a stacked diode and a corresponding electron energy level diagram of each layer.

【符号の説明】[Explanation of symbols]

1 n層 2 n+ 層 3 p+ 層 4 電極金属 5 電極金属 6 はんだ 7 リード端子 8 リード端子 9 機械的歪み層 10 楔状の欠落部 11 金属層(電極金属/はんだ/電極金属) 12 フェルミ準位 13 禁制帯のエネルギーバンド 141 電圧印加治具 142 電圧印加治具 15 ダイオード L 楔の深さReference Signs List 1 n layer 2 n + layer 3 p + layer 4 electrode metal 5 electrode metal 6 solder 7 lead terminal 8 lead terminal 9 mechanically strained layer 10 wedge-shaped cutout 11 metal layer (electrode metal / solder / electrode metal) 12 Fermi level Position 13 Energy band of forbidden band 141 Voltage applying jig 142 Voltage applying jig 15 Diode L Depth of wedge

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡林 健木 神奈川県川崎市川崎区田辺新田1番1号 富士電機株式会社内 (56)参考文献 特開 昭49−96676(JP,A) 特開 平1−243435(JP,A) 特開 昭62−252141(JP,A) 特開 昭60−239028(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 21/306,21/3063,21/308 H01L 21/304 ──────────────────────────────────────────────────続 き Continuation of the front page (72) Inventor Kenki Okabayashi 1-1-1, Tanabe-Nitta, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Inside Fuji Electric Co., Ltd. (56) References JP-A-49-96676 (JP, A) JP-A-1-243435 (JP, A) JP-A-62-252141 (JP, A) JP-A-60-239028 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01L 21 / 306,21 / 3063,21 / 308 H01L 21/304

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】n形の第一半導体層の一主面にp形第二半
導体層が、このp形第二半導体層上に金属層がそれぞれ
形成され、n形第一半導体層の他主面に高濃度n形第三
半導体層が、この高濃度n形第三半導体層上に金属層が
それぞれ形成された半導体基体が少なくとも2個以上直
列に積層され、切断されて形成される半導体素子片にお
いて、n形第三半導体層,金属層,p形第二半導体層か
らなる積層構造の側表面を少なくともアンモニア水と過
酸化水素水と水との混合液を用いてエッチング処理する
ことを特徴とする半導体素子の表面処理方法。
1. A p-type second semiconductor layer is formed on one main surface of an n-type first semiconductor layer, and a metal layer is formed on the p-type second semiconductor layer. A semiconductor element formed by stacking at least two or more semiconductor substrates each having a high-concentration n-type third semiconductor layer formed on a surface thereof and a metal layer formed on the high-concentration n-type third semiconductor layer in series and cutting the same. In one of the above, the side surface of the laminated structure including the n-type third semiconductor layer, the metal layer, and the p-type second semiconductor layer is etched using at least a mixed solution of aqueous ammonia, aqueous hydrogen peroxide and water. Surface treatment method for a semiconductor element.
【請求項2】n形第一半導体層の一主面にp形第二半導
体層が、このp形第二半導体層上に金属層がそれぞれ形
成され、n形第一半導体層の他主面に高濃度n形第三半
導体層が、この高濃度n形第三半導体層上に金属層がそ
れぞれ形成された半導体基体が少なくとも2個以上直列
に積層され、切断されて形成される半導体素子片におい
て、n形第三半導体層,金属層,p形第二半導体層から
なる積層構造の側表面を、前記積層の両端間に数式V
(V)=0.059×n×ΔpH(ここで、nはn形第
三半導体層,金属層,p形第二半導体層を一組の層とし
て積層する層数、ΔpHは用いる電解質のペーハー値と
不具合が発生しない電解質のペーハー値の差である。)
を満足するような電圧を印加するようにして電解質を用
いて湿式のエッチング処理することを特徴とする半導体
素子の表面処理方法。
2. A p-type second semiconductor layer is formed on one main surface of the n-type first semiconductor layer, and a metal layer is formed on the p-type second semiconductor layer. A semiconductor element piece formed by laminating at least two or more semiconductor substrates each having a metal layer formed on the high-concentration n-type third semiconductor layer in series, and cutting the same. Wherein the side surface of the laminated structure including the n-type third semiconductor layer, the metal layer, and the p-type second semiconductor layer is defined by the formula V between both ends of the laminate.
(V) = 0.059 × n × ΔpH (where n is the number of layers in which an n-type third semiconductor layer, a metal layer, and a p-type second semiconductor layer are stacked as a set, and ΔpH is the pH of the electrolyte used. This is the difference between the value and the pH value of the electrolyte where no failure occurs.)
A wet etching process using an electrolyte so as to apply a voltage satisfying the following conditions.
JP22688394A 1994-09-21 1994-09-21 Surface treatment method for semiconductor device Expired - Fee Related JP3144236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22688394A JP3144236B2 (en) 1994-09-21 1994-09-21 Surface treatment method for semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22688394A JP3144236B2 (en) 1994-09-21 1994-09-21 Surface treatment method for semiconductor device

Publications (2)

Publication Number Publication Date
JPH0897181A JPH0897181A (en) 1996-04-12
JP3144236B2 true JP3144236B2 (en) 2001-03-12

Family

ID=16852080

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22688394A Expired - Fee Related JP3144236B2 (en) 1994-09-21 1994-09-21 Surface treatment method for semiconductor device

Country Status (1)

Country Link
JP (1) JP3144236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025656A (en) * 2012-07-27 2014-02-06 Fujimak Corp Trivet

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3211872B2 (en) 1997-07-29 2001-09-25 日本電気株式会社 Chemical solution treatment method, semiconductor substrate treatment method, and semiconductor device manufacturing method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014025656A (en) * 2012-07-27 2014-02-06 Fujimak Corp Trivet

Also Published As

Publication number Publication date
JPH0897181A (en) 1996-04-12

Similar Documents

Publication Publication Date Title
JP2003516631A (en) Low leakage current protected silicon carbide device and manufacturing method
JPH0888392A (en) Solar battery cell with bypass function
JP4126359B2 (en) Silicon carbide Schottky diode and manufacturing method thereof
JP3144236B2 (en) Surface treatment method for semiconductor device
JPH07221326A (en) Planar semiconductor element
JPS6097659A (en) Semiconductor integrated circuit
JPS58197825A (en) Method of forming semiconductor protecting layer
US20070052099A1 (en) Protective barrier layer for semiconductor device electrodes
US3891483A (en) Method for etching semiconductor surfaces
JPH05291186A (en) Formation of metal contact on surface of semiconductor chip
JP4216059B2 (en) III / V compound semiconductor solar cell manufacturing method
JP2007305906A (en) Diode
JP2008205249A (en) Method of fabricating semiconductor device
JP3609171B2 (en) Manufacturing method of semiconductor device
US11011607B2 (en) Method of manufacturing semiconductor device
JP2542718B2 (en) Method for manufacturing DHD type diode
JP2713232B2 (en) Method for manufacturing semiconductor integrated circuit
US9941124B1 (en) Semiconductor device
KR100644895B1 (en) Fabrication Method of Zener Diode with the Property of Bidirectional Threshold Voltage by Self-Assembly Method
KR20030075783A (en) High efficient solar cell and fabrication method thereof
JP2000216410A (en) Manufacture of schottky barrier diode
KR100192978B1 (en) Semiconductor device and method of fabricating the same
JPH0756895B2 (en) Mesa type semiconductor substrate
JPH08191148A (en) High dielectric strength mesa semiconductor rectifying device and manufacture thereof
JPH1117162A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees